文档库 最新最全的文档下载
当前位置:文档库 › GFRP筋混凝土梁抗剪承载力影响因素_师晓权

GFRP筋混凝土梁抗剪承载力影响因素_师晓权

GFRP筋混凝土梁抗剪承载力影响因素_师晓权
GFRP筋混凝土梁抗剪承载力影响因素_师晓权

墙体抗剪承载力计算的应用

墙体抗剪承载力计算的应用 [摘要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了 不同高宽比砖墙的水平开裂荷载的计算公式。最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。所提出的方法可供砌体结构设计和研究参考。 [关键词] 砖墙剪切承载力 Abstract:The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the end,the calculating formula of shear load-bearing capacity of wall has been es-tablished.The calculating results agree well with the experimental data.This method can provide reference for mason-ry structural design and research. Keywords:brick wall;shear;load-bearing capacity 混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压 力以及本身的自重外,还承担风、地震引起的水平力。因此,墙体受竖向压力和水平力共同作用是工程中常遇到的一种 受力状态。研究墙体在这种受力状态下的应力分布以及高宽比对墙体开裂荷载、裂缝分布情况和抗剪承载力的影响,对于丰富砌体结构基本理论和完善砌体结构构件抗剪承载力 的设计方法有较大的实际工程意义。

钢筋混凝土梁计算

钢筋混凝土梁计算 一、设计要求: C30 结构安全等级: 一级 混凝土强度等级: C30 钢筋等级: HRB335 弯矩设计值M=150.000000(kN-m) 矩形截面宽度b=250.0(mm) 矩形截面高度h=500.0(mm) 钢筋合力点至截面近边的距离a=35.0(mm)二、计算参数: 根据设计要求查规范得: ◇重要性系数γ0=1.1 ◇混凝土C30的参数为: 系数α1=1.00 系数β1=0.80 混凝土轴心抗压强度设计值fc=14.3(N/mm2) 混凝土轴心抗拉强度设计值ft=1.43(N/mm2) 正截面混凝土极限压应变εcu=0.00330 ◇钢筋HRB335的参数为: 普通钢筋抗拉强度设计值fy=300(N/mm2) 普通钢筋弹性模量Es=2.0(×100000N/mm2)

三、计算过程: ◇截面有效高度: h0=h-a=465.0(mm) ◇相对受压区高度计算: ξb=β1/(1+fy/Es/εcu)=0.550 ξ=1-√ ̄[1-2×γ0×M/(α1×fc×b×h0×h0)]=0.243 ξ≤ξ b ◇钢筋截面面积计算: As=α1×fc×b×h0×ξ/fy=1208.0(mm2) ◇配筋率验算: 规范要求最小配筋率ρmin=取大者(0.2%,45×ft/fy%)=0.21(%) As≥ρmin×b×h=262.5(mm2) ─────单筋矩形截面受弯构件正截面配筋计算书─────C15二级 一、设计要求: 结构安全等级: 二级 混凝土强度等级: C15 钢筋等级: HRB335 弯矩设计值M=150.000000(kN-m) 矩形截面宽度b=250.0(mm)

题目1:钢筋混凝土梁抗剪承载力的试验研究

题目1:钢筋混凝土梁抗剪承载力的试验研究 1. 受剪应力分析 对于受剪钢筋混凝土构件在出现裂缝前的应力状态,由于它是两种不同材料组成的非均质体,因而材料力学公式不能完全适用。但是,当作用的荷载较小,构件的应力也较小,其拉应力还未超过混凝土的抗拉极限强度,构件与均质弹性体相似,应力-应变基本成线性关系,此时其应力可按一般的材料力学公式来进行分析。在计算时可将纵向钢筋截面按其重心处钢筋的拉应变取与同一高度处混凝土纤维拉应变相等的原则,由虎克定律换算成等效的混凝土截面,得出一个换算截面,则截面上任意一点的正应力和剪应力分别按下式计算,其应力分布见图1。 正应力 0 I My =σ 剪应力 0bI VS = τ 式中,0I 是换算截面惯性矩 根据材料力学原理,构件正截面上任意一点在正应力σ和剪应力τ共同作用下,在该点所产生的主应力,可按下式计算 主拉应力 22tp 42τσσσ++= 主压应力 22 cp 4 2τσσ σ+-= 主应力的作用方向与构件纵向轴线的夹角α可由下式求得: στα22tan -= 图 1 (a) 中绘出了构件开裂前的主拉应力及主压应力轨迹线。在截面中和轴处,因0=σ,故其主应力与剪应力相等,方向与纵轴成45°。 在图中仅承受弯矩的区段,由于剪应力等于零,最大主拉应力发生在截面的下边缘,其值与最大正应力相等,作用方向为水平方向。因此,当主拉应力超过混凝土的抗拉强度时,就产生了垂直裂缝。而在同时承受弯矩和剪力的弯剪区段,在截面下边缘主拉应力是水平的方向,在截面的腹部主拉应力是倾斜方向,所以在开裂时裂缝首先垂直于截面的下边缘,然后向腹部延伸称为弯斜的裂缝。 2. 受剪受力分析 由受剪应力分析可知,无腹筋钢筋混凝土梁受剪开裂后会出现斜裂缝,其中导致破坏的

岩土工程计算实例-按抗剪强度指标计算承载力

—岩土2010C9某建筑物基础承受轴向压力,其矩形基础剖面及土层的指标如右图所示,基础底面尺寸为1.5m ×2.5m 。根据《建筑地基基础设计规范》(GB 50007—2011)由土的抗剪强度指标确定的地基承载力特征值a f ,应与( )最为接近。 (A )138kPa (B )143kPa (C )148kPa (D )153kPa 【答案】B 【解答】根据《建筑地基基础设计规范》(GB 50007-2011) (1)确定基础埋深: 1.5d m = (2)确定基础底面以下土的重度,地下水位以下取浮重度,故318108.0/kN m γ=-= (3)确定基础底面以上土的加权平均重度m γ: 2=17.8 1.0=21.8/i i m m i i h d h kN m d γγγγ=→=?+?∑∑(18-10)0.5 (4)由表5.2.5,22k ?=,0.61, 3.44, 6.04c b d M M M === (5)根据公式(5.2.5): 【评析】(1)根据式(5.2.5)按照土的抗剪强度指标确定地基承载力特征值时,公式中的b 为基础短边尺寸,本题取b=min (1.5,2.5)=1.5m 。 (2)需要指出的是,5.2.5条文公式适用条件“当偏心距e 小于或等于0.033倍基础底面宽度”,此处的“基础底面宽度”为“与弯矩作用平面平行的基础边长”,与是否为“基础短边”或“长边”没有关系。 (3)基础底面以下土的重度γ,地下水位以下取浮重度;此处的“基础底面以下土”即“与基础底面接触部位的土”,而不是基础底面以下“所有土”的平均重度。 (4)基础底面以上土的加权平均重度m γ,是指“基础埋深范围内”的基础底面以上土,而

土抗剪强度与地承载力

第五章 土的抗剪强度与地基承载力 第一节 土的抗剪强度 一.名词解释 1.抗剪强度:指土体抵抗剪切破坏的极限能力。 2. 库仑定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即?στtan +=c f , 式中?,c 分别为土的粘聚力和内摩擦角。 二.填空 1. kPa 40,kPa 20 2. c+σtan φ、c ˊ+(σ-μ) tan φˊ 3.极限平衡 4.土粒间的摩擦力,摩擦力,粘聚力 5. ?στtan =f ,剪切滑动面上的法向应力 6.粘聚力,内摩擦角 7.总应力,有效应力 三、选择题 1. A 2.A 3.A 4.B 5.C 6.A 7.C 8.A 四.判断题(判断下列各题,正确的在题后括号内打“√”,错的打“×”。) 1.? 2.√ 3.√ 4.√ 5.√ 6.√ 7.√ 8.√ 9.√ 10. ? 五、简答题 1.答:判断土中发生破坏的条件是强度包络线与摩尔应力圆的相关关系,当两者相切时土体发生剪切破坏,剪切滑动面与大主应力作用面成±(45°+Φ/2)的角度。一般情况下,并非剪应力最大的平面首先发生破坏,只有当Φ=0°时(饱和软土不排水剪切),破裂面与最大剪应力平面才是一致的。 2.答:(1)抗剪强度是指土体抵抗剪切破坏的极限能力。 (2)a .土坡的稳定性问题 b.土工建筑物的安全问题 c.地基的承载力问题。 3.答案 1)剪切破裂面上,材料的抗剪强度是法向应力的函数; 2)当法向应力不很大时,抗剪强度可以简化为法向应力的线性函数,即表示为库伦公式; 3)土单元体中,任何一个面上的剪应力大于该面上土体的抗剪强度,土单元体即发生剪 切破坏,可用莫尔-库伦破坏准则表示。 六.计算题 1. 解:(1)

钢筋混凝土梁设计

钢筋混凝土梁设计

钢筋混凝土梁课程设计 目录 混凝土的配合比--------------------------------------------------------------1 几种方案的比较--------------------------------------------------------------2 正截面抗弯承载能力计算--------------------------------------------------3 箍筋配置-----------------------------------------------------------------------4 斜截面抗剪、抗弯承载力复核--------------------------------------5 裂缝宽度W fk的验算-------------------------------------------------------6 挠度的验算--------------------------------------------------------------------7

1.配合比设计 材料: 普通水泥:强度等级为32.5 (实测28d 强度35.0Mpa ) 细沙:os ρ=2670Kg/m 3 卵石:最大粒径20mm 3 2660ρm k g g = 水:自来水 (1) 计算配制强度 o cu f , 查表得 C25时 Mpa 5=σ Mpa k cu co f f 225.335645.125σ645.1,=×+=+= (2) 计算水灰比 (C W ) 已知水泥实测强度: Mpa f ce 35= 所用粗集料为卵石,回归系数为: 48.0a α= 33.0α=b 43 .035 33.048.0225.333548.0αα,=××+×==×+×ce o cu ce a f f f c w b 查表最小水灰比规定为0.65 所以 43 .0=c w

混凝土简支梁斜截面抗剪强度

混凝土简支梁斜截面抗剪强度 1 影响混凝土抗剪强度V c 的主要参数的分析 1.1 混凝土强度的影响 试验表明,混凝土梁抗剪强度的增长与混凝土抗压强度f cu 并非直线关系, 而是按抛物线变化。图1表示前苏联学者无箍筋梁抗剪强度与混凝土强度f cu 的 关系,梁混凝土立方体强度f cu 从20kg/cm2到1000kg/cm2变化,曲线为采用f ct 为参数的V c 表达式,V c =Kf ct bh2 /a=Kf ct bh /m,m=a/h 为剪跨比;直线表示采用f c 为参数的波氏公式,V c =0.15f c bh2 /c=0.15f c bh /m。从图可明显地看出,采用f ct 为混凝土强度影响参数与试验结果比较相符合,而如果采用f cu 或f c 为参数时, 混凝土强度低时,试验值高于计算值;中等强度时,两者相接近;高强度时,试验值大大低于计算值,这是很不安全的。因此,苏联规范对波氏抗剪强度公式进 行了修改,将混凝土强度从f c 改为f ct 。CEB/FIP规范对无抗剪钢筋构件V c 计算 式实际是采用f ct 为参数。西南交大抗剪试验[2,3]表明,把混凝土抗拉强度f ct 做 为混凝土强度对V c 影响参变量是合适的。考虑到铁路桥梁多使用高强度混凝土, 而采用f ct 为参数,能更明确地反映问题的实质,并可避免单位变换时引起不同 系数的因次带来的麻烦。因此,选取f ct 为混凝土强度的影响参数。 图1 苏联无箍筋梁抗剪强度V c 与混凝土f ct 的关系 1.2 剪跨比m的影响 大量试验表明,剪跨比m是影响混凝土抗剪强度的主要参数之一。 V c 随m的增大而减小,当m>3~4,V c 基本上就不受m的影响,其变化较 小。各规范在V c 表达式中,对m影响的处理上有所不同。CEB/FIP,BS5400 和《苏联СНИПⅡ-21-75》等规范,其V c 取较低值,考虑小剪距比时,乘一个2/m(m<2)的提高系数。我国铁路、公路桥规直接取1/m,文中分析时选取1/m为参数。 1.3 预应力度的影响[2,3,5] PPC简支T梁试验结果证明,预应力大小对无箍、有箍PPC简支梁 的混凝土抗剪强度V c 有提高作用。这主要是因为预压应力推迟了斜裂缝的出现和发展,增加了梁混凝土剪压区的高度,从而提高了混凝土剪压区的抗剪能力。试验分析时,曾采用了两个与预应力度λ相关的提高系

16米钢筋混凝土t梁设计计算书

16米钢筋混凝土T梁设计计算书 一、设计资料 1、设计荷载:汽车—20级,挂车—100, 人群荷载3KN/㎡ 2、桥面净空:净—7+2X0.75m人行道; 3、主梁跨径和全长: 标准跨径L B=16m 计算跨径L P=15.5m =15.96m 主梁全长L 全 4、材料 混凝土:C25 钢筋:主钢筋,弯起钢筋和架立钢筋用Ⅱ级,其它用I级。 桥面铺装:沥青混凝土6cm,C40防水混凝土10cm; 二、设计依据与参考书 《公路桥涵设计规范(合订本)》(JTJ021-85)人民交通出版社 《公路砖石及混凝土桥涵设计规范》(JTJ022-85) 《结构设计原理》叶见曙主编,人民交通出版社 《桥梁计算示例集》(梁桥)易建国主编,人民交通出版社 《桥梁工程》(1985)姚玲森主编,人民交通出版社 《公路桥涵标准图》公路桥涵标准图编制组,人民交通出版社 三、桥梁纵横断面及主梁构造 横断面共5片主梁,间距1.6m。纵断面共5道横梁,间距3.875m。尺寸拟定见图,T梁的尺寸见下表:

T形梁尺寸表(单位:m) 桥梁横断面图 桥梁纵断面图 主梁断面图横梁断面图 四、主梁计算 (一)主梁荷载横向分布系数

1、跨中荷载弯矩横向分布系数(按刚接梁法计算) (1)主梁抗弯及抗扭惯矩Ix和ITx 求主梁形心位置 平均板厚h1=1/2(8+14)=11cm Ax=(160-18×11×11/2+130×18×130/2/(160-18×11+130×18=41.2cm Ix=4/12×142×113+142×11×(41.2-11/2)2+1/12×18×1303+18×130×(130/2-41.2)2=6627500cm4=6.6275×10-2m4 T形截面抗弯及抗扭惯矩近似等于各个矩形截面的抗扭惯矩之和,即: I TX =∑c i b i h i 3 t 1/b 1 =0.11/1.60=0.069 c 1 =1/3 t 2/b 2 =0.18/(1.3-0.11)=0.151,查表得c 2 =0.301 I TX =1/3×1.60.113+0.301×0.19×0.183=0.0028m4单位抗弯及抗扭惯性矩: J X = I X /b=0.066275/160=4.142×10-4m4/cm J TX =I Ty /b=0.0028/160=1.75×10-5m4/cm (2)求内横梁截面和等刚度桥面板的抗弯惯矩 取内横梁的翼板宽度等于横梁中距,取桥面板靠主梁肋d1/3处的板厚12cm 作为翼板的常厚度,截面见图。 截面形心至常厚度翼板中心距离: a y =(8815.550)/(387.512+8815.5)=11.34cm 内横梁截面抗弯惯矩: Iy=387.5123/12+387.51210.472+15.5883/12+8815.5(50-11.34) =3.573106cm4 把一根内横梁截面抗弯惯矩Iy平均分布于横梁的中距L1作为设想的等刚度 桥面板的抗弯惯矩I1: I1=Iy/L1=3.573106/387.5=9.22103cm4/cm (3)求主梁的抗弯与抗扭刚度比例参数: r=5.8I(b1/L)/I T

承载力计算方法

承载力计算方法 1.计算公式 V A q Q n ?+?=1γ 其中, Q —— 极限承载力; 1γ—— 桩靴排开土的水下溶重; V —— 桩靴体积; A —— 桩靴面积; 2. 桩端阻力 n q —— 确定方法如下: 2.1 对于粘性土(不排水土) u c n S N q ?= 其中, c N ——承载力系数 9)2 .01(6≤+=B D N c 最大值不能超过9 D ——桩靴入泥深度; B ——与桩靴面积相当的圆的直径; u S ——不排水剪切强度。 2.2 对于砂性土(排水颗粒土) )1(3.002-+??=q r n N p N B q γ 其中, 2γ——桩靴底面下0.5B 处土壤水下溶重; B ——与桩靴面积相当的圆的直径; 0P ——桩靴底面处压强;

q N ——承载力系数 )2 45(tan 2 tan φ φ π+ =e N q r N ——承载力系数 φt a n )1(2+=q r N N 其中, φ——内摩擦角。 3 算例: 桩靴底面积70m 2 桩靴型深:2m 桩靴入泥土深度:10m 桩靴体积:105m 3 算例1:(粘性土质 表1) V A q Q n ?+?=1γ q n =N C ×S u Nc=6(1+0.2D/B) D=10m B=2*sqr(A/3.14)=2*sqr(70/3.14)=9.443m Nc=14.54>9 , 所以取9 Nc =9 Su=9kPa q n =9*9000=81000 pa r 1=9kN/m 3 V=105m 3 Q=81000*70+9000*105=6615kN=675t

墙体抗剪承载力计算公式在砌体结构设计中的应用

墙体抗剪承载力计算公式在砌体结构设计中的应用

墙体抗剪承载力计算公式在砌体结构设计 中的应用 [提要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了不同高宽比砖墙的水平开裂荷载的计算公式。最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。所提出的方法可供砌体结构设计和研究参考。 [关键词] 砖墙剪切承载力 The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the

end,the calculating formula of shear load-bearing capacity of wall has been es-tablished.The calculating results agree well with the ex perimental data.This method can provide reference for mason-ry structural design and research. Keywords:brick wall;shear;load-bearing capacity 混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压力以及本身的自重外,还承担风、地震引起的水平力。因此,墙体受竖向压力和水平力共同作用是工程中常遇到的一种受力状态。研究墙体在这种受力状态下的应力分布以及高宽比对墙体开裂荷载、裂缝分布情况和抗剪承载力的影响,对于丰富砌体结构基本理论和完善砌体结构构件抗剪承载力的设计方法有较大的实际工程意义。 一、竖向压应力和水平集中力共同作用下砖墙的弹性有限元分析有限元方法是目前研究砌体结构非常有用的工具[1-4]。图1所示的砖墙,在墙顶受到平行于墙面并且不沿厚度变化的竖向压应力σ0和顶点集中水平力F作用,由于墙厚t 相对于墙高H和墙宽B较薄,因此可将空间问题简化为近似的平面应力问题。采用ALGOR FEA软件,并选用二维的四节点单元对砖墙进行分析,分别计算墙体高宽比ψ=H/B=0·5,0·75,1,1·5,2五种情况下墙体的应力,相应单元网格分别为16×8,16×12,16×16,16×24,16×32。墙体在σ0和F共同作用下的应力,在弹性阶段可看成是两种荷载单独作用时

混凝土配筋计算例题

1、某宿舍的内廊为现浇简支在砖墙上的钢混凝土平板(例图4-1a),板上作用的均布活荷载标准值为q k=2kN/m。水磨石地面及细石混凝土垫层共30mm厚(重力密度为22kN/m3),板底粉刷白灰砂浆12mm厚(重力密度为17kN/m3)。混凝土强度等级选用C15,纵向受拉钢筋采用HPB235热轧钢筋。试确定板厚度和受拉钢筋截面面积。 例图4-1(a)、(b)、(c) [解] 1.截面尺寸 内廊虽然很长,但板的厚度和板上的荷载都相等,因此只需计算单位宽度板带的配筋,其余板带均按此板带配筋。取出1m宽板带计算,取板厚h=80mm(例图4-1b),一般板的保护层厚15mm,取a s=20mm,则h0=h-a s=80-20=60mm. 2.计算跨度 单跨板的计算跨度等于板的净跨加板的厚度。因此有 l0=l n+h=2260+80=2340mm 3.荷载设计值 恒载标准值:水磨石地面0.03×22=0.66kN/m

钢筋混凝土板自重(重力密度为25kN/m3)0.08×25=2.0kN/m 白灰砂浆粉刷0.012×17=0.204kN/m g k=0.66+2.0+0.204=2.864kN/m 活荷载标准值:q k=2.0kN/m 恒载设计值: 活荷载设计 值: 4.弯矩设计值M(例图4-1c) 5.钢筋、混凝土强度设计值 由附表和表4-2查得: C15砼: HPB235钢筋: 6.求x及A s值 由式(4-9a)和式(4-8)得: 7.验算适用条件 8.选用钢筋及绘配筋图 选用φ8@130mm(A s=387mm2),配筋见例图4-1d。

例图4-1d 冷轧带肋钢筋是采用普通低碳钢筋或普通低合金钢筋为原材料加工而成的一种新型高效钢筋。由于它强度高,可以节约许多钢材,加之其直径细、表面带肋、与混凝土的粘结锚固效果特别好,因此在国外得到广泛的应用。我国自80年代中期将其引入后,经过近十年的努力,已经编制了国家标准《冷轧带肋钢筋》GB13788-92和行业标准《冷轧带肋钢筋混凝土结构技术规程》JGJ95-95。国家科委和建设部曾相继下文,要求大力推广采用冷轧带肋钢筋。 本例如果改用经调直的550级冷轧带肋钢筋配筋时: 选用φ6@125mm(A s=226mm2) 即是说,将采用HPB235钢筋配筋改为采用550级的冷轧带肋钢筋配筋以后,可以节省41.6%的受力钢筋用钢量,这个数字是十分可观的。

抗剪扭计算

目录 一、概述 (1) 二、主要材料 (1) (一)混凝土 (1) (二)普通钢筋 (1) (三)预应力钢材 (1) (四)锚具 (2) (五)支座 (2) 三、主桥结构描述 (2) (一)主桥箱梁构造 (2) (二)预应力体系 (2) 四、结构计算 (2) (一)主要规范标准 (2) (二)计算方法概述 (3) (三)计算条件及参数说明 (4) (四)施工阶段划分及各施工阶段应力状态 (4) (五)承载能力极限状态验算 (6) (六)箱梁抗剪扭承载力验算 (6) (七)正常使用极限状态验算 (8) 五、总结 (12)

一、概述 H匝道H03~H06号墩上部结构为(3×25)m的等截面预应力混凝土连续箱梁,单幅桥宽9m,位于半径为250m的圆曲线上。桥面横断面组成为: 0.5m(单层栏杆)+7.0m(行车道)+0.5m(单层栏杆)=8m 桥梁设计主要技术标准如下: 结构重要系数:1.1 设计计算行车速度:60Km/h; 设计荷载:城-A级;公路-Ⅰ级荷载进行验算 地震烈度:抗震设防烈度7度,地震动峰值加速度系数为0.10g。 二、主要材料 (一)混凝土 箱梁采用C50混凝土;桥面铺装为10厘米沥青混凝土+APP防水卷材+6cmC40钢筋混凝土。 (二)普通钢筋 普通钢筋采用HRB335和R235级钢筋,其技术标准应符合《GB1499-1998》及《GB13013-91》的规定。 (三)预应力钢材 箱梁纵向预应力钢束采用高强度低松驰7股捻制预应力钢绞线,公称直径为15.20毫米,公称面积139mm2,标准强度1860MPa,弹性模量为

1.95×105MPa。 (四)锚具 纵向束锚固采用OVM系列锚具,并配以相应的锚垫板及螺旋筋。千斤顶采用锚具生产厂家指定型号。预应力管道采用塑料波纹管。(五)支座 4D2号墩外偏20cm采用墩梁固接不设支座,4D1、4D5号墩采用GJZF4 450×650×93型板式橡胶支座,4D3、4D4处采用GPZ(KZ)7DX抗震型盆式橡胶支座。 三、主桥结构描述 (一)主桥箱梁构造 上部结构采用直腹板的预应力混凝土箱梁,箱梁为单箱单室断面。箱梁顶宽8米,底宽4米,悬臂长2米。箱梁梁高为1.5米,跨中顶板厚0.25米,底板厚0.20米,腹板厚0.5米。 (二)预应力体系 纵向预应力采用15-φs15.2的预应力钢束,采用两端张拉,一端锚具变形钢束回缩值0.006米,锚下张拉控制应力为0.72倍的钢绞线标准强度值。预应力管道采用塑料波纹管,孔道摩阻系数取为0.25,偏差系数取为0.0015。 四、结构计算 (一)主要规范标准

最新墙体抗剪承载力计算公式在砌体结构设计中的应用

墙体抗剪承载力计算公式在砌体结构设计 中的应用

墙体抗剪承载力计算公式在砌体结构设计 中的应用 [提要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了不同高宽比砖墙的水平开裂荷载的计算公式。最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。所提出的方法可供砌体结构设计和研究参考。 [关键词] 砖墙剪切承载力 The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the end,the calculating formula of shear

load-bearing capacity of wall has been es-tablished.The calculating results agree well with the ex perimental data.This method can provide reference for mason-ry structural design and research. Keywords:brick wall;shear;load-bearing capacity 混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压力以及本身的自重外,还承担风、地震引起的水平力。因此,墙体受竖向压力和水平力共同作用是工程中常遇到的一种受力 状态。研究墙体在这种受力状态下的应力分布以及高宽比 对墙体开裂荷载、裂缝分布情况和抗剪承载力的影响,对于丰富砌体结构基本理论和完善砌体结构构件抗剪承载力的 设计方法有较大的实际工程意义。 一、竖向压应力和水平集中力共同作用下砖墙的弹性有限元分析有限元方法是目前研究砌体结构非常有用的工具[1-4]。图1所示的砖墙,在墙顶受到平行于墙面并且不沿厚度变化的竖向压应力σ0和顶点集中水平力F作用,由于墙厚t 相对于墙高H和墙宽B较薄,因此可将空间问题简化为近似的平面应力问题。采用ALGOR FEA软件,并选用二维的四节点单元对砖墙进行分析,分别计算墙体高宽比 ψ=H/B=0·5,0·75,1,1·5,2五种情况下墙体的应力,相应单元网格分别为16×8,16×12,16×16,16×24,16×32。墙体在σ0和F 共同作用下的应力,在弹性阶段可看成是两种荷载单独作用

钢筋混凝土梁剪切抗剪强度设计方法的评估

Technical Note Evaluation of Shear Strength Design Methodologies for Slender Shear-Critical RC Beams Zuanfeng Pan1and Bing Li2 Abstract:This paper seeks to examine the concrete contribution to shear strength and determine the inclination of the compressive strut within the variable truss model for slender RC shear-critical beams with https://www.wendangku.net/doc/b74375560.html,ing the modi?ed compression?eld theory in place of the conven-tional statistical regression of experimental data,the expression for the concrete contribution to shear strength was derived,and the inclination of compressive struts was determined.A simpli?ed explicit expression for shear strength was then provided,with which shear strength can be calculated without extensive iterative computations.This method was then veri?ed using the available experimental data of209RC rectangular beams with stirrups and compared with the current methods from the American Concrete Institute and the Canadian Standards Association.The theoretical results are shown to be consistent with the experimentally observed behavior of shear-critical RC beams.DOI:10.1061/(ASCE) ST.1943-541X.0000634.?2013American Society of Civil Engineers. CE Database subject headings:Shear strength;Struts;Compression;Concrete beams;Design. Author keywords:Shear strength;Concrete contribution to shear;Inclination of strut;Modi?ed compression?eld theory;Evaluation. Introduction Although the?exural behavior of RC beams is generally well un-derstood,the explanation of shear mechanisms is relatively in-adequate.Over the last century,many researchers have managed to develop semiempirical theories based on extensive experimental data[ASCE-American Concrete Institute(ACI)Committee4261973; ASCE-ACI Committee4451998].Representative models include the limit equilibrium theory,the truss model,the strut and tie model, the plastic theory,and the shear friction theory.However,given the complexity of shear failure mechanisms,none of these theories can offer a complete explanation,and as such,there has been no unani-mously accepted theory.Recent years have seen renewed efforts to develop a theoretical model that is veri?ed by experimental data. Many truss analogy models such as the traditional45°truss model,constant or variable angle truss model,and modi?ed com-pression?eld theory(MCFT)(Vecchio and Collins1986)are widely used as the basis of most shear design methodologies for RC beams. The general methods in LRFD-04(AASHTO2004)and Canadian Standard-04[Canadian Standards Association(CSA)2004]are both based on https://www.wendangku.net/doc/b74375560.html,ing the method in AASHTO LRFD-04,for beams with stirrups,the two factors,b and u,need to be looked up in the data charts.On the other hand,in CSA-04,it is necessary to determine the longitudinal strain at the middepth of the member using extensive iterative computations and a rough gauge of its initial value.The proposed approach in this paper is based on MCFT, rendering it unnecessary for iterative calculations or reference to data tables.The results of the proposed approach are veri?ed using the experimental data of209RC beams with stirrups and compared with the results obtained through the methods mentioned in ACI 318R-08(ACI2008)and CSA-04(CSA2004). Shear Strength for Slender Shear-Critical RC Beams It is worthwhile to note that for beams with a small l or deep beams, the hypothesis that plane sections remain plane is not satis?ed,and parts of the shear are directly transmitted to the supports by arch action.If the sectional shear design method is used,the results may be conservative without consideration of arch action.For RC beams with stirrups,when l$2.5,the arch action could be considered small(ASCE-ACI Committee4451998).In this paper,the present approach for shear strength based on MCFT is aimed mainly at the slender beams,which means l of the beam is$2.5,because the most practical RC beams are slender,with l ranging from approximately 2.5to6(Kassian1990;Li and Tran2008,2012). Formulas for shear strength in many codes for RC beams take into account the contribution of concrete V c and the contribution of stirrups V s.The MCFT has made an attempt to simplify the transmitting mechanism of concrete using average stresses,average strains,and local variations(Collins and Mithell1991).In the theory, the cracked concrete beam must be capable of resisting the effects of the shear,or the beam will fail before the breakdown of the ag-gregate interlock mechanism,to develop the capacity of a rough and interlocked crack interface for shear transfer.Derived by Collins and Mithell(1991),the contribution of concrete to shear is V c?min 2 66 66 4 0:18 ???? f0c p bd v 0:31t 24?1 eat16T sin u s tcos u s x , 0:33a1a2bd v ???? f0c p cot u 1t ???????????? 500?1 p 3 77 77 5 e1T From Eq.(1),it can be seen that there are two unknowns needed to calculate shear strength:crack angle u and principal tensile strain?1. 1Lecturer,School of Civil Engineering,Tongji Univ.,Shanghai200092, China. 2Associate Professor and Director of Natural Hazards Research Centre (NHRC),Nanyang Technological Univ.,Singapore639798(corresponding author).E-mail:cbli@https://www.wendangku.net/doc/b74375560.html,.sg Note.This manuscript was submitted on July25,2011;approved on July 20,2012;published online on August10,2012.Discussion period open until September1,2013;separate discussions must be submitted for individual papers.This technical note is part of the Journal of Structural Engineering, Vol.139,No.4,April1,2013.?ASCE,ISSN0733-9445/2013/4-619–622/ $25.00.

相关文档