文档库 最新最全的文档下载
当前位置:文档库 › 光链路噪声系数计算

光链路噪声系数计算

光链路噪声系数计算
光链路噪声系数计算

光链路噪声系数计算

噪声(功率或电平)

F

B Hz dBm ktBF ++-==/174lg 10)( 系统噪声系数s F ,

+-+-+=21312111F G G F G F F s 设前置放大器噪声系数dB NF pre 3=

设后置放大器噪声系数dB NF p 3ost =

激光器噪声---相对强度噪声RIN N

设激光器噪声系数Hz dB N RIN /-155= 又率)(激光器平均光输出功)(激光器输出端光噪声22

laser noise opt RIN P P N = 所以,mW

Hz dB P NF P laser RIN noise opt

823210113.7)104(/155--?=??-=?=

引起此RIN 光噪声的RIN 输入噪声电流(光电流),

因为,)/(O E T I P RIN noise opt ?= 所以,A

A

W mW O E T P I noise opt RIN 10810113.7/1.010113.7)/(--?=?==

其中,T(E/O)为激光器转换函数(光电流——激光器功率),E 为在激光器输入端的RIN 噪声功率,O 为射频RIN 噪声产生激光器光电流。

)97.145(1053.25

)10113.7(152102)(dBm mW R I P laser

RIN in RIN -?=??=?=--

因为一个器件输入端噪声功率F

ktBF +-==174lg 10)(

所以,dB F RIN 03.2817497.145=--=

光电二极管产生的噪声noise photo P (在光电二极管输出端)

)/25.160(/10444.995.2106.12217192Hz dBm Hz mW mA

B I q R I P p pho

noise photo noise photo -?=???=??=?=--库

其中,p I 是平均(DC )光功率产生的电流,q 是电子电荷库仑19109.1-?=q 设激光器的平均(D)光功率为4mW,经光纤(1KM )损耗为0.35dB(0.92),光电二极管的转换函数T(O/E),照到光电二极管的光功率产生的RF 电流T(O/E)=0.8A/W 。

所以,mA

W A mW E O T L P I cable DC laser p 95.2/8.092.04)

/()(=??=??=

由光电二极管在其输出端产生的噪声,折算其输出端的噪声系数,

F=-160.25+174=13.75dB 。

光链路系统噪声系数:

(12dB 15.840.263

0.02775.3740.00148.1720.00288210

1-2101-1.117101-23.714101-1.174910635.3311001-1.288211F 0.580.6260.6262.0961.89213121=++++++=++++++=+-+-+

= G G F G F F s

激光器RF 增益(损耗)分析

物理过程:RF 功率加到激光二极管上产生电流(光电流)

l a s e

l a s e r R R I ?=2F P

所以,A

W R P I laser

RF

laser 01246.0)(5)(107762.03=Ω?=

=- 此RF 光电流,产生调制光功率。光电流转换至光功率的转换系数T(E/O),T(光电流——光功率)=T (W/A )

W

A W A O E T I laser 001246.0/.001246.0)

/(P =?==调制光

)06.2(605.17762

.0246.1P dB mW P RF ==调制光

接收光电二极管增益(损耗)分析:

照射到光电二极管的光功率转换为RF 电流。

mA

W A mW E O T P I RF photo 92.0/8.015.1)

/()(=?=?=光

此RF 电流流过负载电阻(匹配网络输入电阻)产生RF 功率,

mW

mA R

I P photo 043.050)92.0(22=Ω?=?= 光电二极管增益dB mW mW 27.1415.1043.0-==

区别光电二极管产生的霰弹噪声,1,它是平均(DC)光功率产生的,2,它等于流过光电二极管光噪声电流平方乘以光电二极管的内阻(100欧姆)

噪声计算公式

三、时间平均声级或等效连续声级Leq A 声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不连续的噪声,很难确定A 声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75d B ,但当没有汽车通过时可能只有50dB ,这时就很难说交通噪声是75dB 还是50dB 。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A 计权,故亦称等效连续A 声级L Aeq 。 等效连续A 声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A 声级以一个A 声级来表示该段时间内的噪声大小,并称这个A 声级为此时间段的等效连续A 声级,即: ()??????? ??????????=?dt P t P T L T A eq 2001lg 10 =??? ? ???T L dt T A 01.0101lg 10 (2-4) 式中:p A (t )是瞬时A 计权声压;p 0是参考声压(2×10-5 Pa );L A 是变化A 声级的瞬时值,单位dB ;T 是某段时间的总量。 实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则: ??? ??=∑=n i L eq Ai N L 11.010 1lg 10 (2-5) 式中:N 是测量的声级总个数,L A i 是采样到的第i 个A 声级。 对于连续的稳定噪声,等效连续声级就等于测得的A 声级。 四、昼夜等效声级 通常噪声在晚上比白天更显得吵,尤其对睡眠的干扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB 。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h 的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是在晚上22点后到早上6点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来:

翻译_无线电接收器的噪声系数

无线电接收器的噪声系数 H. T. ERJISt, FELLOW, I.R.E. 摘要——本文给出了电波接收器噪系数的严格定义,此定义不局限于高增益接收机,也适用于普通的四端口网络。分析了接收器整体的噪声系数与其组件的噪声系数之间的关系,简要叙述了接收器组件与其噪声系数的测量方法之间的不匹配。 简介 当越来越短的波得到实际应用,无线电接收器的噪声源也越来越被重视。在很多相关论文中,特别是Llewellyn(英国音乐家)和Jansky(美国无线电工程师)在1928年发表的论文中,通过实验得到:热激噪声(约翰逊噪声)决定了短波无线电接收器的绝对灵敏度。早在1942年,North 建议采用的无线电接收器的绝对灵敏度的标准与我们当时所用的标准相差多达2倍。因为它是基于接收器输入电路的阻抗匹配,我们的标准很有局限性,所以我们采用了他的标准。 本文提出了一个更严格的关于无线电接收器的绝对灵敏度标准的定义,即噪声系数。该定义不局限于高增益接收机,也适用于普通的四端口网络。它使通过一个简单的分析就给出接收器整体的噪声系数与其组件的噪声系数之间的关系成为可能。对于双重检波接收器来说,这些组件可能是高频放大器、变频器和中频放大器。本文也给出了噪声系数的测量方法。

四端口网络噪声系数的定 义如图1所示,一个信号发生器 连接到输入端,输出电路也被标 记出来。网络的输入阻抗和输出 阻抗可能包含电抗成分,它们可 能与发生器和输出电路匹配或不匹配。四端口网络可能是一个放大器、转换器、衰减器或简单的变压器。信号发生器对于接下来的定义是必要的,但信号发生器里面的衰减器和连接右面的输出电路则只是为了表明对噪声系数和增益的测量。 噪声系数将依据可用信号功率、有效噪声功率、增益和有效带宽来定义,下面将给出这些术语的定义并进行讨论。 可用信号功率 阻为R0欧,电动势为E伏特的发生器提供给R1欧的电阻E2R1/(R0+R1)2瓦特的功率,当输出电路与发生器匹配,即R1= R0时,这个功率达到最大等于E2/4R0。E2/4R0被人们称为发生器的可用功率,它的定义与所连接的电路的阻抗无关。当R1不等于R0时,因为存在失配损耗,所以输出功率小于可用功率。事实上,在放大器的输入电路中,由于不匹配而降低的输出噪声可能比降低的输出信号更多,所以不匹配很可能是个有益的条件。正是这种放大器的输入电路中不匹配条件的存在,使本文中的术语“可用功率”显得更加恰当。在图1中,用S o表示信号发生器输出端的可用信号功率。这里S o等于V2/RA瓦特,当V表示衰减器输入端电压,R表示衰减器的特征阻抗,A表示

2_4GHz低噪声放大器的研究

第25卷第4期 杭州电子科技大学学报Vol.25,No.4 2005年8月Jo urnal of Ha ngzhou Dianzi Uni versi ty Aug.2005 2.4GHz 低噪声放大器的研究 潘少祠,官伯然 (杭州电子科技大学电子信息学院,浙江杭州310018) 收稿日期:2005-07-01 作者简介:潘少祠(1981-),男,广东佛冈人,本科毕业生,电子信息工程. 摘要:低噪声放大器是对来自天线的微伏级信号进行放大的射频接收端的放大模块。该低噪声放 大器主要由输入匹配网络、微波晶体管放大器和输出匹配网络组成。匹配网络采用微带线形式建 立,微波晶体管采用NPN 硅晶体管BFP420。利用Microwave Office 进行电路仿真和优化。该放大器 满足小信号放大器的指标要求,可以用于射频接入电路的前端。 关键词:无线接入射频电路;低噪声放大器;晶体管 中图分类号:TN722.3 文献标识码:A 文章编号:1001-9146(2005)04-0046-04 0 引 言 无线接入射频电路很多应用在小型设备或便携式电子产品中,如:笔记本,PDA,手机等;目的是实现设备之间的无线连接和信息交换。低噪声放大器在射频电路中是非常重要的。低噪声微波晶体管放大器已广泛地应用于宇宙通讯、雷达、电子对抗、遥测遥控、射电天文、大地测绘、微波通信、电视以及各种高精度的微波测量系统中的前端低噪声放大器,以完成对微弱信号的放大作用。因此,对低噪声微波晶体管放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定可靠、足够的带宽和较大的动态范围等。此外,在不同的应用情况下,可能对其体积、重量、耗电量等等提出限制性要求。微波晶体管放大器还在向更高工作频率、低噪声、宽频带、集成化和标准化发展。本文主要是通过研究低噪声放大器的稳定性、噪声、增益,设计一个满足技术指标的低噪声放大器。放大器模块采用高增益低噪声NPN 晶体管B FP420设计,具有较低的噪声系数和合适的增益,在射频通信电路中能满足电路的要求。 1 低噪声放大器组成 低噪声放大器由输入匹配网络、微波晶体管放大器和输出匹配网络组成。匹配网络采用微带线、分支调节器和波长阻抗变换器建立。低噪声放大器的组成框图,如图1 所示。 图1 低噪声放大器组成框图 图1中,左边方框是输入匹配网络,其增益G S ;中间方框是晶体管网络,其增益G 0;右边框输出匹配网络,其增益G L 。选定晶体管和确定偏置后,在已定频率下的S 参数是确定的。然后再利用S 参数设

曙光航空航天高性能计算方案

曙光航空航天高性能计算方案 摘要CFD-FASTRAN软件是由CFDRC公司与美国NASA联合开发的专门用于航空航天领域空气动力学计算的CFD软件,该软件可广泛应用于飞行器的亚、跨、超和高超音速的气动力学计算和一些特殊气体动力学问题如直升机旋翼、导弹发射、座舱弹射、投弹、机动和气动弹性等。本文针对航空航天高性能计算提出了一套完整的集群解决方案,并在此平台上对FASTRAN并行性能进行了详细的测试。测试结果表明,FASTRAN软件可以方便的部署和运行于曙光集群系统,并能够获得令人满意的加速比。 关键字CFD,FASTRAN,并行,航空航天 1.FASTRAN介绍 CFD-FASTRAN是CFDRC公司与美国NASA联合开发的专门用于航空航天领域空气动力学计算的CFD软件,在当前所有为航空航天设计的计算流体力学软件中位于前列,被广泛应用于飞行器的亚、跨、超和高超音速的气动力学计算和一些特殊气体动力学问题如直升机旋翼、导弹发射、座舱弹射、投弹、机动和气动弹性等。CFD-FASTRAN 具有挑战性的功能是将基于密度的可压缩欧拉方程和N-S方程同多体运动力学、有限反应率化学和非平衡传热学耦合起来,解决一系列极为复杂的航空航天问题。 CFD-FASTRAN具有强大的技术优势,它体现在: @多年同美国国家航空和宇宙航行局(NASA),美国能源部(DOE),美国国家科学基金会(NSF)等机构的合作,使CFD-FASTRAN不断得到完善和发展。 @CFD-FASTRAN专门针对航空航天设计,可以计算包括超高速流动,移动体,气动热化学和气弹等复杂艰辛的课题。 @CFD-FASTRAN充分考虑了行业的需要,开发出航空航天工程师所需要的前处理、后处理程序。 正是基于上述原因,使得FASTRAN在全球拥有巨大的用户数量并获得了广泛的认可。在美国军方,CFD-FASTRAN软件一直用于先进战斗机的设计,其中著名的应用案例包括F-16战斗机翼身气动弹性分析、Martin Baker MK16座椅弹射设计、F/A18杰达姆投弹模拟设计以及X34机高超音速激波模拟设计等,如下图所示。 此外,近期NASA采用CFD-FASTRAN模拟了在9500英尺高空高速飞行(7倍声速)状态下的飞行器分离情况。高速分离现象一直是CFD软件很难模拟的领域,但如下图所示,FASTRAN很好的模拟了飞行器分离过程中整个流场的速度和温度分布。 随着中国航天航空事业的快速发展,尤其是载人航天技术的巨大成功,我国科技人员对空气动力学的数值模拟研究提出了越来越多的需求,常规的计算能力远远无法满足复杂的大型飞行器设计所带来的巨大需求。因此,采用大规模集群技术成为最佳选择。 FASTRAN支持大规模并行计算集群系统,它可以采用两种并行计算环境,一种为我们熟知的MPI,适用于非结构化网格;一种为自行开发的MDICE,适用于结构化网格。由于FASTRAN的大多数湍流模型仅针对结构化网格,因此本文仅对MDICE并行环境下的FASTRAN性能进行了测试,并根据测试结果提供了一套完整的集群解决方案。 2.曙光航空航天高性能计算解决方案 曙光高性能集群由若干台高性能节点机、高速计算网络连接到一起组成,并通过监控系统和一组集群管理软件对其进行有序管理。曙光集群的基本体系结构如下图1所示,主要包括节点、网络、存储、监管和软件等几个部分。根据用户对计算规模需求的不同,可以对节点、网络和存储等进行量身定制。 2.1.节点机 节点机主要包括三类节点:计算节点、管理/登入节点和IO节点。

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

噪声复习题

噪声复习题及参考答案(39题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(第三册噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 5、国标(GB-9660-88)《机场周围飞机噪声环境标准》和国标(GB-9661-88)《机场周围飞机噪声测 量方法》 一、填空题 1.测量噪声时,要求气象条件为:无、无、风力(或)。 答:雨雪小于5.5米/秒(或小于四级) 2.从物理学观点噪声是指;从环境保护的观点,噪声是指。 答:频率上和统计上完全无规则的声音人们所不需要的声音 3.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 4.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声其它噪声 5.声压级常用公式L P= 表示,单位。 答: L P=20 lgP/P° dB(分贝) 6.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计 为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 7.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz范围内必定有峰值。 答:低频高频 2000-5000 8.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 21/3 63,125,250,500,1k,2k,4k,8k

噪声衰减公式(建议收藏)

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为:.。.。..文档交流 (8—1) 式中: △L—-距离增加产生衰减值,dB; r——点声源至受声点的距离,m. 在距离点声源,r1处至r2处的衰减值: △L=20 lg(r1/r2)(8-2) 当r2=2 r1时,△L=—6dB,即点声源声传播距离增加1倍,衰减值是6 dB. 点声源的几何发散衰减实际应用有两类: a.无指向性点声源几何发散衰减的基本公式是: L(r)=L(r0)-20 lg(r/r0)(8—3) 式中:L(r),L(r0)—-分别是r,r0处的声级。 如果已知r0处的A声级,则式(8-4)和式(8-3)等效: L A(r)=L A(r0)-20 lg(r/r0) (8—4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div=20 lg(r/r0) (8-5)

如果已知点声源的A声功率级L WA,且声源处于自由空间,则式(8—4)等效为式(8—6): L A(r)=L WA-20 lgr—11 (8—6) 如果声源处于半自由空间,则式(8—4)等效为式(8—7): L A(r)=L WA-20 lgr-8 (8—7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r0)-20 lg(r/r0)(8-8) L A(r)=L A(r0)—20 lg(r/r0)(8—9) 式(8-8)、式(8-9)中,L(r)与L(r0),LA(r)与L A(r0)必须是在同一方向上的声级.。..。.。文档交流 文档交流感谢聆听

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

噪声常用计算公式整汇总

目录 一、相关标准及公式 (3) 1)基本公式 (3) 2)声音衰减 (4) 二、吸声降噪 (5) 1)吸声实验及吸声降噪 (6) 2)共振吸收结构 (7) 三、隔声 (8) 1)单层壁的隔声 (8) 2)双层壁的隔声 (9) 3) 隔声测量.................................. 错误!未定义书签。 4)组合间壁的隔声及孔、缝隙对隔声的影响 (10) 5)隔声罩 (10) 6)隔声间 (10) 7)隔声窗 (11) 8)声屏障 (11) 9)管道隔声量 (12) 四、消声降噪 (12) 1)阻性消声器 (12) 2)扩张室消声器 (14) 3)共振腔式消声器 (15) 4)排空放气消声器 (13)

压力损失 (13) 气流再生噪声 (13) 五、振动控制 (16) 1)基本计算 (16) 2)橡胶隔振器(软木、乳胶海棉) (16) 3)弹簧隔振器 (18)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度 5273.2=1.29 1.01310P T ρ? ?? 基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2 倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式 声速331.50.6c t =+ 声压与声强的关系2 2P I=cv c ρρ= 其中v wA =,单位:W/m 2 声能密度和声压的关系,由于声级密度I c ε=,则2 2P c ερ= J/m 3 质点振动的速度振幅p I v c p ρ= = m/s 《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

魔方(曙光5000A)超级计算机的测试与分析

魔方(曙光5000A)超级计算机的测试与分析 徐莹 张丹丹 徐磊 张伟 姜恺 姚继锋 上海超级计算中心 上海 201203 yxu@ssc.net.cn 摘要: 本文对“魔方”(曙光5000A)超级计算机系统从单点性能和应用在集群系统上的性能进行了测试与分析。测试结果为在“魔方”超级计算机进行科学及工程计算应用提供参考。 1. 引言 2008年世界超级计算机TOP500中,采用SMP的集群系统所占比例约82%,采用多核处理器的SMP集群系统所占比例近80%,使用多核处理器的SMP集群系统已经成为一种趋势。排名第10的曙光5000A,在上海超级计算中心安装之后,取名为“魔方”(Magic Cube),采用的是新型的“超并行”(Hyper Parallel Processing,简称HPP)系统架构,具有全局地址空间和三级并行(CMP-SMP-DSM)的分布式系统。这种体系结构结合了SMP和MPP的优点,同时具备节点间分布式存储和节点内共享存储的层次结构,支持节点间消息传递和节点间共享内存2级至多级混合并行编程模型。目前,对于集群上不同并行编程模型的研究[2,3]都基于某种类型的硬件系统,系统的架构往往成为性能影响的最重要的因素。 面对如此庞大的高性能的计算系统,如何让它的计算能力发挥到最大,更有效的进行利用,尤其是如何利用其为大规模科学及工程计算模拟服务,已经成为研究的热点。为了能有效利用高性能计算资源并提高科学和工程应用的性能,本文从两个角度对“魔方”的使用进行了考查,一方面是系统本身可提供的性能,包括单点性能及集群系统性能;另一方面则是典型应用大规模运行时的可扩展性及加速性能。 文中,以“魔方”作为测试平台,选取单点内存带宽测试程序Stream进行单点性能测试,使用Intel MPI Benchmark进行集群系统的组通信性能测试;应用上,选取已被广泛用于评价高性能计算机系统的NAS Parallel Benchmark及NAS Parallel Benchmark Multi-Zone作为测试算例,研究在HPP架构下消息传递编程模型、共享内存编程模型及混合编程模型下应用的性能。 本文分四部分,第二部分介绍“魔方”集群系统,第三部分介绍所使用的测试程序及应用Benchmark,第四部分为测试结果及分析,最后一部分为全文结论及未来要开展的工作。 2. “魔方”系统简介 测试平台为安装于上海超级计算中心的“魔方”,系统为HPP体系结构,共1920个16计算核心的刀片节点,每个节点通过Infiniband高速网络互联。每个节点由4路Quad-core AMD Opteron 8347@1.9GHz构成,64GB内存,理论计算峰值达到128Gflop/node。“魔方”的计算节点分布在38个rack中,每个rack包含有5箱刀片(每箱10个刀片),每箱刀片内置有Infiniband交换模块和千兆以太网交换模块。 3. Benchmark程序集简介 3.1 访存带宽测试Stream Stream benchmark 用于单节点内测试内存访问的持续带宽,它通过测试四种向量运算的性能来衡量系统的性能,这四种运算是:(1)COPY: a(i) = b(i);(2)SCALE:a(i) = q*b(i);(3)SUM:a(i) = b(i) + c(i);(4)TRIAD: a(i) = b(i) + q*c(i)。Stream的并行版本基于OpenMP实现,可用于测试多核的SMP节点。Stream在设计上采用了远远大于Cache容量的大数据集,因此其测试结果更能反映大型向量计算类应用的性能。 3.2 组通信测试IMB IMB(Intel MPI Benchmark)[4]是Intel Cluster Toolkit的一个组成部分,是由Intel开发维护的用于测试MPI函数在实际运行中的性能的软件包。它包含三个组成部份:(1)IMB-MPI1;(2)IMB-EXT;(3)IMB-IO。其中IMB-MPI1针对不同的MPI1函数

技术专家手把手教你计算放大器噪声系数

导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。关键词:噪声系数放大器 1. 引言 在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。 2. 放大器噪声指标 电子元件应用中,常见如下5 种噪声来源: 1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的) 2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的) 3. 闪烁噪声(flicker noise,1/f 噪声) 4. 突发噪声(burst noise,脉冲噪声) 5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声) 基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。如下图: Figure 1 输入电压噪声和电流噪声曲线图例 按噪声种类来分,其大致贡献在不同的频段如下:

Figure 2 噪声种类分布图 如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示: Figure 3 放大器噪声分量分解

根据这个估计,可以得到如下电阻值的电压噪声: 在输出的噪声中,上图的各个分量其贡献如下: 输出的噪声是这些分量的均方和:

Figure 4 放大器电压噪声等效输出模型 同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:

电荷灵敏前置放大器噪声系数测量实验报告

电荷灵敏前置放大器噪声系数测量实验报告 班级:姓名:学号: 一、实验目的 1、研究电荷灵敏前置放大器不同功率谱的噪声成分及其特性; 2、通过实验数据定量分析成形时间对等效噪声电荷(ENC)的影响,从而分离出各个 噪声成分; 3、加深对电荷灵敏前置放大器噪声ENC的理解,同时熟练掌握电荷灵敏前放的噪声 测试方法以及主放和多道分析仪等常用核仪器的使用。 二、实验原理 核辐射测量中,探测器输出的信号往往较小,需要加以放大再进行测量。其中放大器又分为前置放大器与主放大器两部分。前置放大器的主要作用有两点: 1、提高系统性噪比; 2、减小信号经电缆传送时外界干扰的影响。 探测器将粒子的信息转化成电流或电压信号后直接传入紧跟其后的前置放大器。经前置放大器放大、成型后传输到线性放大器,经后续的电路处理得到粒子的电荷、能量、速度、时间等信息。 前置放大器紧跟探测器,一般直与和探测器做成一体,这样有利于提高信噪比,信号经前放放大,抗干扰能力增强,以方便较远距离的传输。 在能谱和时间测量系统中,前置放大器按输出信号所保留的信息特点,大致可以分为两类。一类是积分型放大器,包括电压灵敏前置放大器和电荷灵敏前置放大器,它有输出信号幅度正比于输入电流对时间的积分,即输出信号的幅度和探测器输出的总电荷量成正比。另一类是电流型放大器,亦即电流灵敏前置放大器,它的输出信号波形应与探测输出电流信号的波形保持一致。 前置放大器有多种,总的来说可以分为积分型放大器(包括电压灵敏前置放大器和电荷灵敏前置放大器)和电流型放大器(主要是电流灵敏前置放大器)。 电荷灵敏前置放大器原理图如下: 图1 电荷灵敏前置放大器原理图 由于前置放大器的噪声将经过主放大器的放大输出,所以其对最后信号的信噪比影响很大,本实验就是要测定前置放大器的噪声系数。前置放大器的噪声主要包括沟道热噪声、输入端串联电阻噪声、晶体管沟道1/f噪声、探测器漏电流散粒噪声、反馈电阻噪声、前放输

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: * HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 式2. 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: PNA = kTΔF,

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一) 时间:2012-10-25 14:32:49 来源:作者: 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为 设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

噪声常用计算公式整汇总资料

目录 一、相关标准及公式 (2) 1)基本公式 (2) 2)声音衰减 (2) 二、吸声降噪 (3) 1)吸声实验及吸声降噪 (3) 2)共振吸收结构 (4) 三、隔声 (5) 1)单层壁的隔声 (5) 2)双层壁的隔声 (6) 3) 隔声测量 (6) 4)组合间壁的隔声及孔、缝隙对隔声的影响 (6) 5)隔声罩 (6) 6)隔声间 (7) 7)隔声窗 (7) 8)声屏障 (7) 9)管道隔声量 (8) 四、消声降噪 (8) 1)阻性消声器 (8) 2)扩张室消声器 (8) 3)共振腔式消声器 (9) 4)排空放气消声器 (10)

压力损失 (10) 气流再生噪声 (10) 五、振动控制 (10) 1)基本计算 (10) 2)橡胶隔振器(软木、乳胶海棉) (11) 3)弹簧隔振器 (12)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度 5273.2=1.29 1.01310P T ρ? ?? 基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2 倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式 声速331.50.6c t =+ 声压与声强的关系2 2P I=cv c ρρ= 其中v wA =,单位:W/m 2 声能密度和声压的关系,由于声级密度I c ε=,则2 2P c ερ= J/m 3 质点振动的速度振幅p I v c p ρ= = m/s 《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

第9章 噪声中信号的检测

第9章 噪声中信号的检测 前一章学习了经典假设检验理论,本章将要运用假设检验理论讨论噪声中信号的检测问题或最佳接收机的设计问题,在这里信号检测的含义是指从含有噪声的观测过程中判断是否有信号存在或区分几种不同的信号;而接收机实际上是对观测过程实施的数学运算。为了设计最佳接收机,首先需要指定设计准则,这可以采用第8章介绍的判决准则,然后相对于选定的准则来设计接收机,在设计通信系统的接收机时,通常采用最小错误概率准则,而对于雷达和声纳系统则采用纽曼-皮尔逊(Neyman-Pearson )准则。本章只介绍高斯白噪声环境下信号的检测问题,高斯有色噪声以及非高斯噪声环境下的检测问题请读者参看其它相关教材。 9.1 高斯白噪声中确定性信号的检测 考虑一个简单的二元通信系统,系统发送信号)(0t y 或)(1t y ,两个信号是完全已知的,假定接收机的观测时间间隔为(0,T),由于信道噪声的影响,接收到的信号受到噪声的污染,因此接收机观测到的过程为: 0011:()()() 0:()()() 0H z t y t v t t T H z t y t v t t T =+<<=+<< (9.1.1) 其中噪声)(t v 假定是零均值的高斯白噪声,功率谱密度为2/0N 。现在要设计一种接收机,通过对观测过程)(t z 的处理,对(9.1.1)式的两种假设作出判决。 由假设检验理论可知,最佳接收机的结构由似然比计算器与一个门限比较器组成,然而在第8章,涉及的观测数据都是离散的,因此要运用假设检验理论来解决噪声中信号的检测问题。首先需要将连续的观测过程离散化,然后再计算似然比。 假定噪声)(t v 为一带限噪声,功率谱密度为 0()/2, v G N ω=ω<Ω (9.1.2) 很显然,当Ω→∞时,带限过程趋于白噪声。带限过程的相关函数为 τ ΩτΩ?πΩ=τ) sin(2)(0N R v (9.1.3) 噪声的方差为 π Ω= σ202 N v 当/τ=πΩ时,(/)0v R πΩ=,即(0),(/),(2/),...,v v v πΩπΩ是相互正交的随机变量序列,由于

WCDMABTS接收机灵敏度和整机噪声系数的理论计算

WCDMA BTS 接收机灵敏度和整机噪声系数的理论计算 1 概述 灵敏度是衡量接收机在一定条件下能够接收小信号的能力,它和诸多因素有关。例如,在不同的误码率、信纳比、信噪比等条件及不同的接收环境(静态、多径信道模型)情况下灵敏度概念和数值可能各不相同。 静态参考灵敏度是指接收机在静态理想传播环境(相当于有用信号直接输入接收机,没有任何外界干扰)下,错误比特率小于某一规定值时接收机可以接收最小有用信号的能力。它是各种传播条件中最高的灵敏度,也就是说在任何情况下的接收机灵敏度数值都不可能超过静态参考灵敏度。通常所讲的基站灵敏度一般是指它的静态参考灵敏度。 2 接收机灵敏度计算 基站接收机系统可以分为射频滤波、LNA、混频、中频滤波、放大、A/D变换、DSP 处理、解调等几部分组成,如图1所示。 图1 接收机原理框图 进入接收机输入端的信号有两种,有用信号P min 和热噪声信号P noise,由于接收机通道中电路本身也会产生噪声N f,因而在解调处有用信号和噪声信号的比例为: E b/N t=P min-P noise-N f(1) 其中E b/N t是有用信号平均比特能量与噪声和干扰功率谱密度的比值,又称为解调门限,相当于模拟FM调制的C/I(载干比),是衡量数字调制和编码方式品质因素的标准。E b/N t的值取决于该系统的调制方式和解调算法。P noise为接收机输入口处的热噪声信号,又称本底噪声,其数值为P noise=10Log(KT0·BW),其中K是波尔兹曼常数,K=1.38 10-23J/K;T0为标准噪声温度,T0=290K。则: P noise=10Log(KT0)+10Log(BW)=-174dBm+10Log(BW) (2) 式中BW为系统信道带宽。 对于WCDMA系统而言,BW=3.84MHz,由式(1)、(2)可以推出WCDMA基站接收机理论上静态参考灵敏度P min为: P min=-174dBm+10Log(BW)+ N f+ E b/N t =-108.15+ N f+ E b/N t(3)静态参考灵敏度是在静态传播情况下测得的数值,是衡量接收机性能好坏的一个重要指标。但在实际工作中,由于接收机所处的环境非常复杂,移动通信信道不可能是一个静态信

GPS信号功率,信噪比和系统灵敏度

GPS信号功率,信噪比和系统灵敏度讨论(摘自网上论坛 (2009-12-15 12:40:30) 转载 标签: 噪声功率 gps 热噪声 灵敏度 it GPS信号功率,信噪比和系统灵敏度讨论 Arm720: 讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的。[https://www.wendangku.net/doc/b416297638.html,] 问题:我们经常看到某些GPS芯片厂商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.wendangku.net/doc/b416297638.html,] 1)系统的灵敏度是如何计算的?芯片的灵敏度对系统设计有什么影响?[https://www.wendangku.net/doc/b416297638.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平?[https://www.wendangku.net/doc/b416297638.html,] 3)如何按照信噪比,信号功率设计系统灵敏度?[https://www.wendangku.net/doc/b416297638.html,] [https://www.wendangku.net/doc/b416297638.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2

jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比,NF为系统噪声系数。如果是扩频系统,还需要减去扩频增益。 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系。从仿真来看,GSM的解调Eb/N0为4-5dB. 3 见1。 snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 dB Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正) Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.wendangku.net/doc/b416297638.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度。那么对于设计来说是不是可以这么理解:

相关文档