文档库 最新最全的文档下载
当前位置:文档库 › 第一性原理计算及相关理论方法

第一性原理计算及相关理论方法

第一性原理计算及相关理论方法
第一性原理计算及相关理论方法

第二章第一性原理计算及相关理论方法

固体能带理论是凝聚态物理中最成功的理论之一,是固体电子论的支柱。原则上固体能带理论能够阐明和解释固体的许多基本物理性质,如力学,电学,光学及磁学等性质。固体能带理论的主要任务是确定固体电子能级,也就是能带。而要确定固体电子能带,其出发点便是求解组成固体的多粒子系统的定态薛定愕方程。但是对固体这样有1029/m3数量级个原子核和电子的复杂的多粒子系统而言,其薛定愕方程是无法精确求解的,必须作近似简化求解:通过绝热近似将核运动和电子运动分开;通过Hartree-Fock 自洽场方法或更严格、更精确的密度泛函理论(DFT) 将多电子问题简化为单电子问题;通过将固体抽象为平移对称性的理想晶体,将多体问题归结为单电子在周期性势场中的运动。而上述的这些近似简化最终把求解薛定愕方程的全部复杂性都归入了所谓的交换关联泛函,可见交换关联泛函在密度泛函理论中占有重要地位。目前密度泛函理论已经成为探索具有重要应用背景的功能材料和结构材料的重要理论方法。基于密度泛函理论,根据基函数选取的不同有多种具体的计算方法,通常都称为第一性原理计算(ab initio calculation)。所谓第一性原理,即从最基本的物理规律出发,求解体系的薛定愕方程以获取材料性能的信息,从而理解材料中出现的一些现象,预测材料的性能。

第一性原理计算方法[79, 80]有着半经验(HF)方法不可比拟的优势,因为它只需要知道构成微观体系各元素的原子序数,而不需要任何可调(经验或拟合)参数,就可以基于量子力学来处理体系中的电子运动,来计算出该微观体系电子的波函数和对应的本征能量,从而求得系统的总能量、电子结构以及成键、弹性、稳定性等性质。它们被广泛应用于原子,分子,固体,固体表面,界面,超晶格材料,低维材料的电子结构和物理性质的计算,并取得了惊人的成功。随着最近几十年计算机技术的飞速发展,第一性原理的规模和效率都有了极大的提高。目前计算物理已经从解析理论物理和实验物理中完全独立了出来,成为物理学中不可缺少的一个独立分支– 计算物理学[81]。

能带理论的周期性表象为布洛赫(Bloch)表象,同时还存在着局域化的瓦尼(Wannier)表象,Marzari N.等人[82, 83]发展了一套构造最局域Wannier 函数的数值方法,使得Wannier 轨道与第一性原理很好的结合,在传统的化学键分析和最近比较热的拓扑体系的非平庸的表面态计算上都有很大的应用。

传统的半导体模型分析k · p 方法[84],对于分析有效质量和光学性质有很大的帮助,同时它也一直是很好的能带近似手段,能准确的抓住物理实质,便于解析理论分析。

本章的主要任务是对密度泛函理论[85, 86],以及相应的数值的Wannier 方法

[82, 83]和解析的k · p 能带[84]分析方法作简要介绍。

2.1 密度泛函理论(DFT)

对于简单的晶体模型,描述多粒子体系的多体薛定谔方程可以写成如下形式: (),(,)H r R E r R ψ=ψ (2.1)

其中r,R 分别表示所有电子和原子核的坐标。不考虑外部势场时,其哈密顿量可以写为:

2222

222,1122||22||||I J I i I

i i j I I J i I e i j I I J i I Z Z e Z e e H m r r M R R r R ≠≠=-?+-?+----∑∑∑∑∑ (2.2) 右边第一项为电子动能部分,第二项为电子电子相互作用,第三项为原子核的 动能部分,第四项为原子原子相互作用,第五项为电子和原子核的相互作用。这是一个复杂的多体哈密顿量,其希尔伯特空间(态空间)的维度与体系中的原子核和电子数目是指数相关的。在实际体系中,总粒子数往往是巨大的。因此尽管我们知道体系的各种性质是由薛定谔方程确定的,但是当总粒子数较大时,我们仍然不可能求解该方程,这样对于体系的性质我们仍然一无所知。通过直接求解薛定谔方程来决定体系的各种性质, 仅限于用在理想模型或者简单的分子原子体系中,如氢分子H2,氦原子He 等。对于实际的复杂体系而言,我们只能采取单电子近似。

下面介绍如何由晶格模型的多体哈密顿量到单电子方程。

2.1.1 从多体哈密顿量到单电子方程

原则上,凝聚态物理的所有性质都已包括在(2.2)式中。但是,要从对应的 薛定谔方程中得出所有的信息是不可能的。既然直接求解是行不通的,人们提出了一些近似和模型来简化这个问题。

我们考虑一个具有N 个全同粒子的固体的简单模型,其中一定数量的近核电子可认为被紧紧的束缚在核的周围。这些电子是定域的,因而对固体性质的贡献很小。然而,外层轨道的电子可以是离域的,对体系的物理性质影响较大。实际上,当原子结合在一起形成固体时,这些价电子(电子)的组态变化很大,而近核电子却比较固定,因此固体的电学和光学性质主要由价电子决定,这样我们就引入了价电子近似。每个核和它的束缚电子看作一个整体,称为离子实(离子),固体可以看成是由价电子和离子实组合而成。

与此同时,对于电子系统,总体的电子波函数取决于作热振动的离子的瞬间位置。电子运动的很快,以至于绝热的来适应缓慢运动的离子的影响。另一方面,就离子的缓慢运动而言,快速运动的电子可以看成一个均匀的背景,这样我们就把运动的电子和振动的离子看成两个独立的子系统,这就是著名的Born-Oppenheimer 近似,或所谓的绝热近似。

这样,多粒子系统的Schrodinger 方程(2.1)的解就可以写成如下分离的形式: (,)()(,)r R R r R χψψ= (2.3)

其中,()R χ描述的是离子实的运动;(,)r R ψ描述的是电子的运动。在讨论后面电子近似时,我们主要关注电子的运动,离子的仅提供一个周期的晶格势场。方便起见,在后面的电子波函数略去了对R 的依赖。

采取了绝热近似之后,我们的薛定谔方程仍然是多电子的,是一个多体问题,具体如下:

22

21(())()()22||i i i i j i e i j e r r E r m r r νψψ≠-?++=-∑∑∑ (2.4)

为了解决多体问题的需要,人们想到各种方法来把多电子方程变成单电子方程。直到密度泛函理论的建立,才真正严谨地给出了单电子方程,为单电子方法建立了坚实物理理论基础。这里我们简要的描述一下各种单电子近似方法的相继承关系。

最简单的近似就是自由电子气近似,这种近似认为金属中价电子是完全自由的,没有任何相互作用,尽管看上去这是很不切实际的想法,但是这种模型确实可以对简单金属的物理性质给以理论解释,得到了很好的结果。最重要的是给出了金属的能谱,引出了重要的费米面的概念。当然,由于这种模型的过于简单化,人们一直对这个结论心存怀疑,但是从后面提到的赝势理论可以看出,这种简化在一定条件下是完全合理的,只是这里得到的波函数应该认为是赝波函数,而在某种程度上赝波函数可以和真实波函数同样来描述这个系统。

哈特利(Hartree )近似[87]比自由电子气体近似多考虑了电子之间的库仑相互作用,把复杂的库仑作用看成是一种平均势。哈特利多体波函数写成每个电子波函数()i i r ?连成的形式:

112233()()()()()N N r r r r r ψ????= (2.5)

我们假定每个电子波函数i ?满足正交归一化条件,

即是|i j ij ??δ=。然后把哈特利波函数的能量期待值对每个电子波函数i ?做变分,在电子波函数的正交归一条件下求能量的极小值。这样就得到了单电子的哈特利方程:

22

22'|(')|(()')()()2|'|i i i i i i r r e dr r E r m r r ?ν??≠-?++=-∑? (2.6) 其中,()r ν表示单电子受到的晶格势,2

2'|(')|'|'|i i i r e dr r r ?≠-∑?表示单电子受到其它电子的平均库伦势。所以他描写了r 处单个电子在晶格势()r ν和其他所有电子的平均势场中的运动。这里单电子能量Ei 其实是变分的拉格朗日乘子。我们可以看到平均库伦势明显地包含了单电子波函数()i r ?,所以解此类方程时必须自洽求解,这是该方法的特点。首先,先假设电子处于一组特殊的状态,计算有效势,然后代入方程重新计算本征态,反复进行此过程,直到得到自洽结果。

哈特利近似明显没有考虑电子间交换相互作用,这个缺陷是提出哈特利-福克近似[88, 89]的出发点。明显的修正体现在哈特利-福克多体波函数波函数上,他取单电子波函数φi 的Slater 行列式形式:

1122212212()()()

()()()1()!

()()(

)i N i N N N N N q q q q q q q N q q q ??????ψ???= (2.7)

i q 表示第i 个电子的坐标,

包括位置i r 和自旋指标。同样利用单电子波函数i ?为约束条件,对哈特利-福克波函数的能量期待值变分求极小值,得到如下单电子的哈特利-福克方程:

2

*2222'''',|||(')|(')(')(()')()'()()2|'||'|i i i i i i i i i i i r r r r e dr r e dr r E r m r r r r ???ν???≠≠-?++-=--∑∑??(2.8)

很显然,哈特利-福克单电子方程(2.8)只计及电子间的交换作用,完全忽略了自旋反平行电子之间的相关能,这是这一近似的本质性缺陷。虽然它在能带理论中长期被应用,但是由于这一本质性的缺陷,哈特利-福克近似不是单电子近似的严格理论。后来提出的密度泛函理论突破了这个障碍,是严格的单电子理论。

2.1.2 密度泛函理论(DFT)

对比传统的单电子自洽方程,密度泛函理论的不同之处是将单电子的密度函数作为基本变量,体系总能E 可以表示成电子密度函数的泛函。20世纪六十年代,P. Hohenberg 和W. Kohn 在研究非均匀电子气理论时提出了著名的Hohenberg-Kohn(HK)定理[85],成功的建立起了密度泛函理论:

定理一:不记自旋的全同费米子系统的基态能量是粒子数密度函数()r ρ的唯一泛函。 定理二:能量泛函在粒子数不变条件下在且仅在基态粒子数密度函数()o r ρ处取极小值,并等于基态能量。

此两定理的证明,可以在原始文献[85]中找到,这里不作赘述。考虑N 个电子的相互作用系统,其哈密顿量可写成如下的两部分:

int ext H H V =+

(2.9) 其中:

22

2

int 122||ee i i i j e i j e H T V m r r ≠=+=-?+-∑∑ (2.10)

表示电子的动能项和电子之间的库伦相互作用项之和。

()

ext i i V V r =∑ (2.11)

代表N 个电子系统的定域外势,描述单电子在离子实构成的晶格势场中运动。当给定总粒子数N 和电子间相互作用的形式以及电荷和质量时,定域外势自然就成为控制多电子系统物性的唯一变量。根据HK 定理,电子的定域外势()ext V r 与系统的基态电子数密度()o r ρ成一一对应关系。如此,对于特定的电荷密度()o r ρ,就可以唯一地确定哈密顿量,进而求得体系基态或者激发态。即体系的任何性质都可以由系统的基态电荷密度分布函数()o r ρ唯一确定。

我们可以将定域外势Vext (r )与系统的电荷密度分布函数()o r ρ表示成如下的 泛函形式:

()();()()ext ext r D V V r G ρρ== (2.12)

当定域外势已知时,不仅可以确定系统的基态波函数()ext V ψ,还可以进一步确定系统的基态能、动能和电子间的相互作用,并写成如下泛函形式:()ext E V ,()ext T V ,()ee ext E V 。又根据对应关系(2.12) , 进一步写成()E ρ,()T ρ,()ee E ρ。这时,基态能量可以表示成如下电荷密度分布泛函的形式:

33333(,)()||()()()()()

1()(')()'()()()2|'|()()()

ee ext ee ext xc ext ext E V T V V T V d rV r r r r T d rd r E d rV r r r r F d rV r r ρψρψρρρρρρρρρρρ=++=++=+++-=+????(2.13)

HK 定理二告诉我们,ρ 取严格的基态电子密度时,能量泛函(2.13)才可能取得极小值,并且等于系统的基态能。其中的动能项仍然是未知的,于是W.Kohn 和L. J. Sham 提出[86]:用无相互作用的多粒子的动能泛函0()T ρ来代替这里的真实动能泛函()T ρ,把他们的差别放进未知的交换关联项()exc E ρ中,从而转化为单电子图像:

2

()|()|i i r r ρ?=∑ (2.14)

3*20()()()()

i i i T d r r r ρ??=-?∑? (2.15)

于是对ρ(r )的变分可以转化成对单粒子波函数φi (r )的变分,得到KS 方程:

223()(')(()')()()2|'|xc ext i i i E r V r e d r r E r m r r δρρ??δρ-?+++

=-? (2.16) 如此,人们总可以将求解基态密度的多体问题在形式上转化为描述单电子运动的等效KS 方程来代替,这个意义上,密度泛函理论和KS 方程为单电子近似提供了严格的理论基础。

在当前计算机高速发展、DFT 理论已经取得辉煌成功的今天,对于原子势的表述可以取赝势或全势,赝势又可以分为模守恒赝势(NCPP),超软赝势(USPP)以及投影缀加波函数(PAW);基函数的选取又可以分为:简单平面波,线性缀加平面波(LAPW),线性原子轨道组合(LCAO),线性Muffin-Tin 轨道(LMTO)等等。基于原子势和基函数的选取,目前已经发展出了很多成熟的高性能第一性原理的计算软件

(BSTATE[92],WIEN2k[93], VASP[94, 95],Quantum Espresso[96], ABINIT[97])。需要注意的是,密度泛函理论只是有理论上的意义,其中交换关联项Exc 还是未知的,也就是说它没有提供具体的实用的方案。为了进行实际可行的计算,必需对交换关联项进行某种处理,用的比较广的是局域密度近似(Local Density Approximation, LDA)[86, 98, 99]和广义梯度近似(Generalized Gradient Approximation, GGA)[100–104]。

参考文献部分:

[79] Martin ,Richard M. Electronic Structure Basic Theory and Practical Methods .

Cambridge University Press, Cambridge, 2004.

[80] 李正中. 固体理论. 高等教育出版社, 北京, 2002.

[81] 马文淦. 计算物理学. 科学出版社, 北京, 2006.

[82] Nicola Marzari and David Vanderbilt. Maximally localized

generalized

Wannier functions for composite energy bands. Phys. Rev. B , 56:12847–

12865, Nov 1997.

[83] Ivo Souza, Nicola Marzari, and David Vanderbilt. Maximally localized

Wannier functions for entangled energy bands. Phys. Rev. B , 65:035109, Dec 2001.

100 拓扑半金属的第一性原理研究

[84] L. C. Lew Yan Voon and M. Willatzen. The k · p Method: Electronic Properties

of Semiconductors . Springer, Berlin, 2009.

[85] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev.,

136:B864–B871, Nov 1964.

[86] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange

and Correlation Effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[87] D.R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb

Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(01):89–110, 1928.

[88] J. C. Slater. Note on Hartree’s Method. Phys. Rev., 35:210–211, Jan 1930.

[89] V. Fock. N¨aherungsmethode zur l¨osung des quantenmechanischen

mehrk¨orperproblems. Zeitschrift f¨ur Physik A Hadrons and Nuclei, 61:126–

148, 1930.

[90] P. E. Bl¨ochl. Projector augmented-wave method. Phys. Rev. B, 50:17953–

17979, Dec 1994.

[91] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B, 59:1758–1775, Jan 1999.

[92] Zhong Fang and Kiyoyuki Terakura. Structural distortion and magnetism

in transition metal oxides: crucial roles of orbital degrees of freedom. Journal

of Physics: Condensed Matter, 14(11):3001, 2002.

[93] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz.

WIEN2k package. available at http://www.wien2k.at.

[94] G. Kresse and J. Hafner. Ab initio molecular dynamics for open-shell transition

metals. Phys. Rev. B, 48:13115–13118, Nov 1993.

[95] G. Kresse and J. Furthm¨uller. Efficiency of ab-initio total energy calculations

for metals and semiconductors using a plane-wave basis set. Computational

Materials Science, 6(1):15 – 50, 1996.

参考文献101

[96] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source

software project for quantum simulations of materials. Journal of Physics:

Condensed Matter, 21(39):395502, 2009.

[97] Xavier Gonze, B Amadon, P-M Anglade, Beuken, et al. ABINIT: Firstprinciples

approach to material and nanosystem properties. Computer

Physics Communications, 180(12):2582–2615, 2009. Code is available at the website https://www.wendangku.net/doc/b41873124.html,.

[98] D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a

Stochastic Method. Phys. Rev. Lett., 45:566–569, Aug 1980.

[99] J. P. Perdew and Alex Zunger. Self-interaction correction to densityfunctional

approximations for many-electron systems. Phys. Rev. B,

23:5048–5079, May 1981.

[100] David C. Langreth and John P. Perdew. Theory of nonuniform electronic

systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B, 21:5469–5493, Jun 1980.

[101] A. D. Becke. Density-functional exchange-energy approximation with correct

asymptotic behavior. Phys. Rev. A, 38:3098–3100, Sep 1988.

[102] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron

density. Phys. Rev. B, 37:785–789, Jan 1988.

[103]

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

第一性原理计算方法讲义

第一性原理计算方法讲 义 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的密度泛函理论(Density Functional Theory, DFT)。它建立在非均匀电子气理论基础之上,以粒子数密度()r 作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA)、广义梯度近似(GGA)等的提出,以及以密度泛函理论为基础的计算方法(赝

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

第一性原理计算

实验一、第一性原理计算 1. 实验目的 (1) 掌握第一性原理和密度泛涵的计算方法; (2) 学会使用Visualizer 的各种建模和可视化工具; (3) 熟悉CASTEP 模块的功能。 2. 实验原理 CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。 密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。可以归纳为两个基本定理: 定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。 定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。不计自旋的全同费米子的哈密顿量为:H T U V =++ 其中动能项为:()()T dr r r ψψ+=??? 库仑作用项为:11'()(')()(')2 ' U drdr r r r r r r ψψψψ++=-? V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=?粒子数密度函数为: ()()()r r r ρψψ+=ΦΦ 对于给定的()r υ,能量泛函[]E ρ定义为: []()()E dr r r T U ρυρ=+Φ+Φ ?;[]F T U ρ=Φ+Φ系统基态的能量: ' ''''[]''''[][]()()[][]()()[] E T U V G E F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>?=+=? 3. 实验内容 材料的电子结构计算; 4. 实验设备和仪器 (1) 硬件:多台PC 机和一台高性能计算服务器。 软件:主要利用Materials studio 软件包里的Materials Visualizer 和CASTEP 模块 5. 实验步骤

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

第一性原理计算

钙钛矿型PbZrO3电子能带结构的第一性原理计算 班级:s1467 姓名:学号:201421801014 锆酸铅(PbZrO3)是最早发现的反铁电体之一,在工业上的一个重要应用是其固溶物Pb(Zr,Ti)O3。由于反铁电材料在相开关、电荷存储、电流源、电容、微电子及微型机电设备等方面有重要应用,其电子结构和物理特性一直为人们所关注。PbZrO3的有三个不同的相,在233℃以上为立方顺电相,具有钙钛矿结构,所属的空间群为Pm3m;当晶体处于233℃以下,将发生氧八面体的扭曲畸变和阳离子相对于O的移动,形成结构相变;230~233℃为正交铁电相,而230℃以下的基态为正交晶系,空间群为Pbam。基态正交相中离子移动主要由Pb、O之间的相对位移提供,由于相邻晶格之间Pb-O的位移相反,因此其为反铁电体。 1、原理及计算 采用第一性原理局域密度近似下的投影缀加平面波方法精确计算并比较了钙钛矿材料PbZrO3低温正交相(反铁电相)、高温立方相(顺电相)的电子能带结构,计算了PbZrO3材料正交相、立方相的电子结构。PbZrO3立方相的空间群为Pm3m,计算采用实验得到的晶格常量为a=4.11nm,Wyckoff坐标为Pb:(0,0,0),Zr:(0.5,0.5,0.5),O:(0.5,0.5,0)。正交相的空间群为Pmam,采用的晶格常数a=5.9411nm,b=11.8024nm,c=8.2564nm,各原子坐标见表1。正交相和立方相的多面体结构模型如图1所示。平面波截断能取为500eV,布里渊区积分分别采用5×5×5及7×3×5的K点网格,高斯展宽因子为0.1eV。 表1 正交相PbZrO3原胞内的原子位置

第一性原理计算方法讲义

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有?1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei 近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock 近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的 密度泛函理论(Density Functional Theory, DFT )。它建立在非均匀电子气理论基础之上,以粒子数密度(『)作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理 论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA、广义梯度近似(GGA 等的提出,以及以密度泛函理论为基础的计算方法(赝势方法、全电子线形缀加平面波方法(FLAPW)等、的提出,使得密度泛函理论在化学和固体物理中的电子结构计算取得了广泛的应用,从而使得固体材料的研究取得长足的进步。 第一性原理计算方法的应用 1、体系的能量

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

第一性原理简介

1什么是第一性原理? 根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,称为第一性原理。广义的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和密度泛函理论(DFT)计算。 从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock自洽场、密度泛函理论等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。密度泛函计算的一些

结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用? 目前我所学到的利用第一性原理的软件为Material Studio、V ASP软件。其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。 Discover: Materials Studio的分子力学计算引擎。使用多种分子力学和动力学方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

第一性计算原理

Vasp 我所用第一原理是基于密度泛函(DFT)的从头计算,是以电子密度作为基本变量(HK定理),通过求解kohn-sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质。还有一种是基于hartree-fock自洽计算,通过自洽求解HF方程,获得体系的波函数,求基态性质。KS方程的计算水平达到了HF水平,同时还考虑了电子间的交换关联作用。关于DFT中密度泛函的Function其实是交换关联泛函,包括LDA,GGA,杂化泛函等等。一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PE.RPBE等方案。 在处理计算体系中原子的电子态时有两种方法,一种是考虑所有电子叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);另一种是只考虑价电子而把芯电子和原子核构成离子实放在一起考虑即赝势法,一般贋势法是选取一个截断半径,截断半径以内波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且贋势法得到的本征值和全电子法应该相同。贋势的测试标准应是贋势与全电子法计算结果的匹配度,而不是贋势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 关于Ecut的收敛测试。一般情况下,总能相对于不同Ecut做计算,当截断能增大时总能变化不明显即可。但是在需要考虑体系应力时,还需要对应力进行收敛测试,而且应力相对于截断能要比总能更为苛刻。也就是某个截断能下总能已经收敛了,但应力未必收敛。(力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。) K点也是需要经过测试的。 何时需要考虑自旋?例如BaTiO3中,三个元素分别为=+2,+4,-2价,离子全部为各个轨道满壳层的结构,此时就不必考虑自旋了。对于BaMnO3中,由于Mn+4价时d轨道还有电子但未满,因此需要考虑Mn(4s23d5)的自旋,Ba和O就不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用。 几何优化包括晶格常数和原子位置的优化,一般情况下也有不优化几何结构直接计算电子结构的,但是对于缺陷形成的计算则往往要优化。 软件大致分为基于平面波的软件,如CASTEP,PWSCF.ABINIT等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件,比如openmx等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。 V ASP是使用贋势和平面波基组,进行从头量子力学分子动力学计算的软件包。V ASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pulay混合求解瞬时电子基态。这些技术可以避免元氏的Car-Parrinello 方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vanderbilt贋势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过度金属或第一行元素的每个原子所必须的平面波数量。V ASP可以很容易地计算力与张力,用于把原子衰减到其瞬时基态中。!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V ASP程序亮点: 1、使用PAW方法或超软贋势,因此基组尺寸非常小,描述材料一般需要原子不超过100 个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。 2、2. 在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前 因子足可忽略,导致关于体系尺寸的高效标度。因此可以在实空间求解势的非局域贡献,

第三节第一性原理计算简介

第一性原理计算简介 在物理学中,第一性原理计算或称从头计算是指,基于构建物理学的基础定理,不作任何假设,例如:经验模型和拟合参数,所进行的计算研究。特别地,在凝聚态物理中,指的是运用薛定愕方程在一定的近似情况下,但不包括拟合实验数据所得到的参数和模型,对物质的电子结构进行计算r 从而得到所研究物质的性质的一种研究方法。近些年,随着计算机技术的飞速发展,其运算能力越来越强大,使得人们可以处理更庞大更繁杂的物质结构体系,同时也使得计算物理成为了现代物理学,尤其是在凝聚态物理领域的一个重要分支。众所周知,固体是由相对重且带正电的粒子——原子核,以及相对轻且带负电的粒子——电子聚集在一起构成的。如果有个原子,需要处理的问题是包含有N+ZN(Z 为原子核所含的质子的个数)个粒子的电磁相互作用,是一个多体问题。另一方面,由于处理的是微观粒子的运动,所以需要运用量子力学来描述其基本的运动规律和相互作用。对于该系统,精确的多粒子哈密顿量可以写作: i 2i i i 1122R H M ?=--∑∑ Fuuuuuuuuj 其中位于為处的原子核的质量为M,.,位于巧处的电子的质量为m 一第一项是原子核的动能算符,第二项是电子的动能算符。后三项分别是描述电子与原子核,单个电子与其它电子以及单个原子核与其它原子核之间的库伦相互作用。很显然,直接精确求解(1.64)式几乎是不可能的。为了在合理的近似条件下得到体系的本征值,需要作不同层次的近似。 1.3.1波恩-奥本海默(Bom-Oppenheimer)近似 由于原子核的质量远大于电子质量,所以,原子核的运动速度远小于电子。因此,可以将原子“冻结”在固定的位置,并假设电子在瞬时与原子核是平衡的。或者说,只有电子在这个多体问题中是考察对象,原子核仅仅被当作一个带正电的外源场,相对于电子云是外在独立的。该近似被称为波恩-奥本海默(Bom-Oppenheimer)近似。原来的多体问题被简化成在原子的静电势下,瓜个带负电的粒子的相互作用。波恩-奥本海默认为,原子核不再运动,其动能为零,因此,(1.64)式的第一项被消除,最后一项退化为常数。(1.64)式简化为只含有电子气的动能,电 子与电子之间的相互作用所产生的势能,以及电子在可看作外源的原子核的势中的势能。(1.64)式可重写为: H = f + V + V^, 值得注意的是,(1.65)式中的动能以及电子与电子间的相互作用只取决于所处理的是系统是多电子系统,而不是多质子系统中强的原子内部作用力,并不依赖于特定的多电子系统本身,例如,Br2或者水分子,Cu 还是Fe, bcc-Fe 还是fcc-Fe,等等。因此,前两项是普适的,包含特定系统信息的部分均在第三项中。 1.3.2 密度泛函理论(Density functional theory) 在波恩-奥本海默近似后,该量子多体问题得到了极大的简化,但是,依然很难直接求解。存在许多方法将方程(1.65)进一步近似变为易于处理的形式,历史上非常重要的是Hartree-Fock 方法。该方法在处理原子以及分子时效果很好,因此在量子化学中被广泛使用。但对于处理固体问题,其精度不够高。本文中使用的是更为现代且可能更强大的方法:密度泛函理论。 密度泛函理论的建立可以追溯到1964年Hohenberg 和Kohn[7]提出的两条定理。 1.3. 2.1 Hohenberg-Kohn 定理 两条定理的原始表述如下: 第一定理:多电子体系(原子,分子,固体)基态时的电荷密度pOO 与外源的势之间存在着一一

第一性原理计算及相关理论方法

第二章第一性原理计算及相关理论方法 固体能带理论是凝聚态物理中最成功的理论之一,是固体电子论的支柱。原则上固体能带理论能够阐明和解释固体的许多基本物理性质,如力学,电学,光学及磁学等性质。固体能带理论的主要任务是确定固体电子能级,也就是能带。而要确定固体电子能带,其出发点便是求解组成固体的多粒子系统的定态薛定愕方程。但是对固体这样有1029/m3数量级个原子核和电子的复杂的多粒子系统而言,其薛定愕方程是无法精确求解的,必须作近似简化求解:通过绝热近似将核运动和电子运动分开;通过Hartree-Fock 自洽场方法或更严格、更精确的密度泛函理论(DFT) 将多电子问题简化为单电子问题;通过将固体抽象为平移对称性的理想晶体,将多体问题归结为单电子在周期性势场中的运动。而上述的这些近似简化最终把求解薛定愕方程的全部复杂性都归入了所谓的交换关联泛函,可见交换关联泛函在密度泛函理论中占有重要地位。目前密度泛函理论已经成为探索具有重要应用背景的功能材料和结构材料的重要理论方法。基于密度泛函理论,根据基函数选取的不同有多种具体的计算方法,通常都称为第一性原理计算(ab initio calculation)。所谓第一性原理,即从最基本的物理规律出发,求解体系的薛定愕方程以获取材料性能的信息,从而理解材料中出现的一些现象,预测材料的性能。 第一性原理计算方法[79, 80]有着半经验(HF)方法不可比拟的优势,因为它只需要知道构成微观体系各元素的原子序数,而不需要任何可调(经验或拟合)参数,就可以基于量子力学来处理体系中的电子运动,来计算出该微观体系电子的波函数和对应的本征能量,从而求得系统的总能量、电子结构以及成键、弹性、稳定性等性质。它们被广泛应用于原子,分子,固体,固体表面,界面,超晶格材料,低维材料的电子结构和物理性质的计算,并取得了惊人的成功。随着最近几十年计算机技术的飞速发展,第一性原理的规模和效率都有了极大的提高。目前计算物理已经从解析理论物理和实验物理中完全独立了出来,成为物理学中不可缺少的一个独立分支– 计算物理学[81]。 能带理论的周期性表象为布洛赫(Bloch)表象,同时还存在着局域化的瓦尼(Wannier)表象,Marzari N.等人[82, 83]发展了一套构造最局域Wannier 函数的数值方法,使得Wannier 轨道与第一性原理很好的结合,在传统的化学键分析和最近比较热的拓扑体系的非平庸的表面态计算上都有很大的应用。 传统的半导体模型分析k · p 方法[84],对于分析有效质量和光学性质有很大的帮助,同时它也一直是很好的能带近似手段,能准确的抓住物理实质,便于解析理论分析。 本章的主要任务是对密度泛函理论[85, 86],以及相应的数值的Wannier 方法 [82, 83]和解析的k · p 能带[84]分析方法作简要介绍。 2.1 密度泛函理论(DFT) 对于简单的晶体模型,描述多粒子体系的多体薛定谔方程可以写成如下形式: (),(,)H r R E r R ψ=ψ (2.1)

第一性原理简介精选文档

第一性原理简介精选文 档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1什么是第一性原理? 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理 。广义的第一原理包括两大类,以Hartree-Fock 自洽场计算为基础的从头算和(DFT )计算。 从定义可以看出第一性原理涉及到量子力学、、 Hartree-Fock 自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。

2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用? 目前我所学到的利用第一性原理的软件为Material Studio、VASP软件。其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介

相关文档
相关文档 最新文档