文档库 最新最全的文档下载
当前位置:文档库 › 向量组的线性相关性的判定

向量组的线性相关性的判定

向量组的线性相关性的判定
向量组的线性相关性的判定

向量组的线性相关性的判定

摘 要:向量组的线性相关性是线性代数中的一块基石,在它的基础上我们推导和衍生出其它许多理论.本文利用线性相关性的定义,行列式的值,矩阵的秩,齐次线性方程组的解,弗朗斯基判别法等知识对向量组的线性相关性进行了判定,并比较了几种不同判定方法的适用条件.

关键词:向量组;线性相关;行列式

引言

向量组的线性相关性在线性代数中起到贯穿始终的作用.线性相关性这个概念在许多数学专业课程中都有体现,如微分几何,高等代数和偏微分方程等等.它是线性代数理论的基本概念,它与向量空间(包括基,维数),子空间等概念有密切关系,同时在微分几何以及偏微分方程中都有广泛的应用.因此,掌握线性相关性这个概念有着非常重要的意义,也是解决其它问题的重要理论依据.

向量组的线性相关与线性无关判定方法是非常灵活的.本文参考文献[2]介绍了线性相关的定义及其性质,并给出了证明.文献[1]、[3]、[4]、[5]则是介绍了关于向量组线性相关判定的几种方法,给出了证明并举出了几个例子.

本文从线性相关性的定义出发,分别运用了定义法、线性关系、向量空间的性质、矩阵的秩、行列式的值、反证法、线性变换的性质等几种方法对向量组的线性相关性进行了判定.如果向量组是函数,那么可用弗朗斯基判别法判定.特别是反证法,线性变换的性质,弗朗斯基判别法运用于一些复杂和特殊的题目,是比较方便的.

1.向量组线性相关性的相关定义及性质

定义 1.1]1[ 定义在P 上的线性空间V ,对于给定的一组向量12,,,n x x x L ,如果存在n 个不全为0的数12,,,n λλλL ,使得

11220n n x x x λλλ+++=L .

那么称12,,,n x x x L 是线性相关的.否则称12,,,n x x x L 是线性无关的.

性质1.1 若12,,,n x x x L 线性相关,则其中至少有一个向量可由其余1n -个向量线性表示.

证明 )?若这n 个向量线性相关,那么

11220n n x x x λλλ+++=L ,

其中i λ不全为0,不妨设0i λ≠,那么可解得

1

1n i n i i

x x x λλλλ=-

--L .

所以该结论是成立的.

)?如果其中一个向量可由其余向量线性表示,那么这n 个向量是线性相关

的.这是因为如果设

11221111i i i i i n n x k x k x k x k x k x --++=+++++L L ,

那么移项得

11221111()0i i i i n n i k x k x k x k x k x x --+++++++++-=L L .

显然,i x 的系数为-1,那么由线性相关的定义知,这n 个向量是线性相关的.

性质1.2 含有零向量的向量组必是线性相关的.

性质1.3 单个向量线性相关的充要条件是这个向量是零向量.

性质1.4 若向量组12,,,n αααL 线性无关,12,,,,n αααβL 线性相关,那么β可由12,,,n αααL 线性表示.

性质1.5 如果向量组12,,,m βββL 的部分组

1

2

,,,({1,2,,})m

k k k j k n βββ∈L L

线性相关,那么12,,,n βββL 也一定是线性相关的.即部分组线性相关,则整体线性相关.

向量组的线性相关与线性无关的概念也可应用于线性方程组.当方程组中有某个方程是其余方程的线性组合时,这个方程就是多余的,那么称方程组是线性相关的.反之,它们是线性无关的.

2.向量组线性相关性的判定方法

2.1 定义法

定义法是判定向量组的线性相关性的最基本的方法.对给定的n 个向量

12,,,n x x x L ,只需令

11220n n x x x λλλ+++=L .

根据题中的条件去求12,,,n λλλL 即可.

当12,,,n λλλL 不全为0时,12,,,n x x x L 是线性相关的.当12,,,n λλλL 全为0时,12,,,n x x x L 是线性无关的.

例1 设123,,ααα线性无关,证明122331,,αααααα+++也线性无关.

证明 设对于任意的123,,k k k ,有

112223331()()()0k k k αααααα+++++=.

整理得

131122233()()()0k k k k k k ααα+++++=.

由于123,,ααα线性无关,得

131223

0,

0,0.k k k k k k +=??

+=??+=? 解得

123

0,0,0.k k k =??

=??=? 所以122331,,αααααα+++也线性无关.

例2 设21,1,1[]n x x P x ++∈,判断它们的线性相关性.

解 设123,,k k k P ∈,令

2123(1)(1)0k k x k x ++++=,

整理得

212323()0k k k k x k x ++++=,

所以有

123230,0,0.k k k k k ++=??

=??=?

解得

1230k k k ===.

从而21,1,1x x ++是线性无关的.

2.2 利用向量空间的性质进行判定

利用向量组的线性相关性的性质也可以判定很多题目.

例3 判断1231010,2,1000ααα??????

? ? ?

=== ? ? ? ? ? ???????

的相关性.

证明 由题意可得

3121

2

ααα=+,

那么由性质1.1知,123,,ααα是线性相关的.

这种判定方法适用于具体的题目,一般不用于理论分析.

定理2.2.2 n 维向量空间中任意1n +个向量是线性相关的.

例4 设V 是P 上的线性空间,σ是V 上的线性变换.证明2

2,,,n σσσL 是线

性相关的.

证明 设()L V 是V 上所有的线性变换组成的集合,()L V 关于线性变换的加法和数乘运算构成一个向量空间.而()L V 的维数为2n ,又因为

2

2,,,()n L V σσσ∈L ,

所以由定理2.2.2知2

2,,,n σσσL 是线性相关的.

从上面的例题可以看出,运用线性相关性的性质判断相关性是比较方便的,因此熟练地掌握线性相关性的性质显得尤其重要.

2.3 利用齐次线性方程组的解进行判定

在应用定义法解一个齐次线性方程组时,需由该方程组的解去判定这个向量组的相关性.即用定义法的同时也应用了齐次线性方程组的解进行了判定.

一般地,要判断一个向量组

12(,,,)i i i in a a a α=L

是否线性相关就是看方程

11220n n x x x ααα+++=L (1)

有无非零解.从这里可以看出,如果向量组线性无关,那么在每一个向量上添加一个分量得到的1n +维的向量组121(,,,,)i i i in in a a a a β+=L 也是线性无关的.

把(1)写出来就是

1112121121222211220,

0,0.

n n n n

n n n nn x a x a x a x a x a x a x a x a x a +++=??+++=??

??+++=?L L L L (2),

因之,(1)线性相关的充要条件是(2)有非零解[2].

因此具体判断一个向量组是线性还是线性无关的问题可以归结为解方程组的问题.

例5 设123(1,1,1),(2,1,2),(1,2,1)x x x =-=-=--,试判断它们是否线性相关.

解 令

1122330k x k x k x ++=.

1231231

2320,20,20.

k k k k k k k k k ---=??

++=??+-=? 解得

123

0,0,0.k k k =??

=??=? 故123,,x x x 是线性无关的.

2.4 利用矩阵的秩判定向量组的线性相关性

定理2.4.1 设向量组12,,,m αααL 是由m 个n 维列向量所组成的向量组,则向量组12,,,m αααL 的线性相关性可由该向量组所构成的矩阵

12,,(),m A ααα=L

的秩来决定[3].

(1)若()R A m =, 12,,,m αααL 是无关的;

(2)若()R A m <,那么12,,,m αααL 就是相关的.

定理 2.4.2[4] 设B 是阶梯型矩阵,矩阵A 经过一系列的行消法变换之后得到B ,即

12...T T T T m A B ααα??

? ?

=→ ? ? ???

.

那么n 元向量组12,,,m αααL 线性相关的充要条件是矩阵B 中出现零行..

推论[6] 向量组12,,,m αααL 线性无关的充要条件是矩阵B 中不出现零行.

对矩阵T A 进行初等行变换化为阶梯型矩阵B 的过程,实质上是对

12,,,m αααL 进行行向量的线性运算.如果B 中出现零行,那么12,,,m αααL 中一定有某个向量能被其余的1m -个向量线性表示,即12,,,m αααL 线性相关.相反地,若B 中无零行,那么可知12,,,m αααL 是线性无关的.

例 6 判断向量组123(1,3,4,6,2),(2,4,5,3,2),(4,6,7,8,3)βββ=-=-=-的相关性.

解 将123,,βββ以行排成矩阵,且经过一系列行消法变换,即

1231346213462245320229246783003111A βββ--??????

? ? ?==-→--- ? ? ? ? ?

?-?

?????.

由于矩阵A 化为阶梯型之后没有出现零行,所以它们线性无关.

例7 设

124(2,1,2,2,4),(1,1,1,0,2),(0,1,2,1,1),(1,1,1,1,1),(1,2,1,1,1)ααααα=-=-=-=----=35,试判断它们的线性相关性并求它们的一个极大无关组.

解 将,ααααα1

2345,,,写成列向量,拼成一个矩阵,并进行初等行变换,将此矩阵化为阶梯型.

.

????

?

?

? ? ? ?→→

?

?

? ? ? ?????

????

?

?

? ? ? ?→ ?

?

? ? ? ?????

2

10

-111

11-1

2111-120-1-21-32-12-110

-2200201-110

-1100-42-1110

21-13111-121

11-1201-10001-1000031-30

031-300-31-30

0000000000

0000

所以,ααααα12345,,,是线性相关的,从最后一个矩阵可以看出,123,,ααα为向

量组的一个极大无关组.

本方法把对向量组相关性的判别方法转化为矩阵的初等行变换,简单易懂.但该方法只适用于对n P 中的向量组进行判定,有很大的局限性.

2.5 利用行列式的值来判定向量组的线性相关性

定理2.5.1 如果向量组12,,,n αααL 是由n 个n 维列向量所组成的向量组,且向量组所构成的矩阵12,,(),n A ααα=L ,也就是说,A 为n 阶方阵,那么

(1)若0A =,则向量组12,,,n αααL 是线性相关的;

(2)若0A ≠,则向量组12,,,n αααL 是线性无关的.

例8 已知1231211,3,4142ααα??????

? ? ?

=== ? ? ? ? ? ???????

,试讨论它们的线性相关性.

证明 由于

123,,A ααα=

121

121

134013142021==

12101

35005

==--,

所以123,,ααα线性无关.

行列式的值的判定性质实质上是根据克莱姆法则判定以向量组作为系数向量的齐次线性方程组是否有非零解,然后再对向量组的线性相关性作出判定.但是该方法的局限性在于只有符合向量组的个数和单个向量的分量个数相等的条件时才用此法.

2.6 反证法

在有些题目中,直接的给出证明结论往往比较困难,而从结论的反面入手却

很容易推出一些与已知条件或已知的定义,定理,公里相悖的结果,从而说明原结论成立.

例9 设向量组12,,,n αααL 中任一向量不是它前面向量的线性组合,且

10α≠,证明向量组12,,,n αααL 是线性无关的.

证明 如果此向量组线性相关,则存在不全为0的n 个数,使得

11220n n k k k ααα+++=L .

假设0n k ≠,那么由上式可得

112121n n n n n n

k k k

k k k αααα--=-

---L .

即可由它前面1n -个向量线性表示,.故与题设矛盾,所以

0n k =

1122110n n k k k ααα--+++=L .

同理可得

1220n n k k k --====L ,

所以有110k α=.由于10α≠,所以10k =,即

120n k k k ====L .

这与i k 不全为0相矛盾.所以该向量组是线性无关的.

2.7 利用线性变换的性质进行判定

引理 2.7.1 设V 是数域P 上的线性空间,σ是V 上的一个线性变换,

12,,,n V ααα∈L ,若12,,,n αααL 线性相关,则12(),(),,()n σασασαL 也是线性相关的.

证明 由于12,,,n αααL 线性相关,那么存在不全为0的数12,,,n k k k L 使得

11220n n k k k ααα+++=L .

由于σ是V 上的线性变换,那么有

1122()0n n k k k σααα+++=L .

1122()()()0n n k k k σασασα+++=L .

因此,12(),(),,()n σασασαL 是线性相关的.

但是该定理反过来不一定成立.即12(),(),,()n σασασαL 线性相关,

12,,,n αααL 并不一定也是线性相关的.若σ为零变换,假设12,,,n αααL 是线性无关的,零变换把12,,,n αααL 全部变成零向量,它们是线性相关的,从而满足该条件,但是12,,,n αααL 是线性无关的.

推论 设V 是数域P 上的线性空间,σ是V 上的一个线性变换,若

12(),(),,()n σασασαL 是线性无关的,那么12,,,n αααL 也是线性无关的.

定理2.7.1 设V 是数域P 上的线性空间,σ是V 上的一个线性变换,且σ是V 中可逆的线性变换,线性空间V 中的向量组12,,,n αααL 线性相关的充要条件是它们的象12(),(),,()n σασασαL 线性相关.

证明 )?若12,,,n αααL 线性相关,则存在不全为0的数12,,n k k k L ,使得

11220n n k k k ααα+++=L .

那么

1221)))0(((n n k k k σαασσα+++=L .

所以12),),(,)((n σσσαααL 是线性相关的.

)?若12),),(,)((n σσσαααL 线性相关,则存在不全为0的数12,,n k k k L ,使

1221)))0(((n n k k k σαασσα+++=L ,

由于σ是可逆的,那么有

1122()0n n k k k σααα+++=L ,

从而

11220n n k k k ααα+++=L .

所以12,,,n αααL 也是线性相关的.

综上所述,该定理是成立的.

2.8 运用弗朗斯基判别法进行判定

如果向量组是由函数组成的话该怎么判定呢?而弗朗斯基判别法主要是判定多项式的相关性的.

定理2.8.1(弗朗斯基判别法) 设(),(),(),()f x g x h x w x L 是n 个1n -次可导的函数,若

''''(1)(1)(1)(1)()()()...()()()()...()0...

...

...

...

...

()()()...()

n n n n f x g x h x w x f x g x h x w x f x g x h x w x ----≠,

则(),(),(),...()f x g x h x w x 就是线性无关的.

例10 判断1,cos ,sin x x 的相关性.

解 可以用弗朗斯基判别法进行判别.具体判断如下;

因为

1cos sin 0

sin cos 100cos sin x x

x

x x x

-=-≠--,

所以它们是线性无关的.

运用弗朗斯基判别法的一个缺点就是所要判定的函数必须具有高阶的导数才能判定,缺少了这个条件是不能判定的.

结束语

本文主要对向量组线性相关性的定义以及性质进行了分析,并且给出了一些

判定方法,由于向量组的线性相关性是一个基础和重点问题,仅限于这些讨论是远远不够的,还有待我们作进一步的研究.

参考文献

[1]杨燕新,王文斌.关于向量组线性相关的几种判定[J].山西农业大学学报, 2005(8151):

292-294.

[2]罗秀芹,董福安,郑铁军.关于向量组的线性相关性的学习探讨[J].高等数学研究,2005(9):18-19.

[3]李先富,胡劲松.判断向量组线性相关性的另一种方法[J].四川理工学院学报(自然科学

版),2005(9):94-95.

[4]肖艾平.向量组线性相关性的几种判定方法[J].伊犁师范学报(自然科学版),2008(3):

58-59.

[5]栾召平.证明向量组线性相关性的几种方法[J].山东电大学报,2002(2):61-62

[6]张文彬,余建坤.利用初等变换求极大线性无关组[J].云南民族学院学报(自然科学版),

2003(1):12-15.

[7]同济大学应用数学系.线性代数[J].北京:高等教育出版社,2004.89:

[8]北京大学数学系几何与代数教研室代数小组.高等代数[M].(第2版)北京:高等教育出

版社,1988,271:

[9]王洪林,王春梅.相同的线性相关性在线性代数中的应用[J].河北工程技术高等专科学校

学报,2001(1):43-45.

[10]彭立新,将熟练.单参变量向量组线性相关性的一个判定条件[J].荆门职业技术学院学

报,2009(1):92-96.

向量组的线性有关性归纳

第四章 向量组的线性相关性 §1 n 维向量概念 一、向量的概念 定义1 n 个有次序的数12,, ,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数 i a 称为第i 个分量. 注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式() 12,, ,n a a a a =,出可以写成一列的形式 12n a a a a ?? ? ? = ? ??? ,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ?矩阵,故又称行矩阵;而列向量可看作一个1n ?矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置. 注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-. 解 12v v -(1,1, 0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =- 12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+- (31203,31214,30210)T =?+?-?+?-?+?- (0,1,2)T = 定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。 §2 向量组的线性相关性 一、向量组的线性组合 定义3 给定向量组A :12,, ,m a a a ,对于任何一组实数12,,,m k k k ,称向量 1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,, ,m k k k 称为这个线性组合的系数. 定义4 给定向量组A :12,, ,m a a a 和向量b ,若存在一组实数12,, ,m λλλ,使得 1122m m a a a b λλλ=++ +

线性相关和线性无关的结论

§3.2性质定理总结: 一、线性相关的判别: 1、m ααα ,,21线性相关?存在不全为零的数m k k k ,,,21 ,使得 1122m m k k k .ααα++= 0 2、1α线性相关? 1α=0. 3、12,αα线性相关? 1α与2α的对应分量成比例. 4、m ααα ,,21线性相关?其中至少有一个向量能用其余向量线性表示. 5、n 个n 维向量线性相关?它们构成的行列式等于零. 6、m ααα ,,21线性相关 ?m ααα ,,21的秩小于m . 7、对调坐标不改变向量组的线性相关性. 8、部分相关?整体相关. 9、m 个n 维 (m >n ) 向量线性相关. 二、线性无关的判别: 1、m ααα ,,21线性无关?如果1122,m m k k k ααα++= 0则有 .021====m k k k 2、整体无关?部分无关. 3、无关则加长无关 三、线性相关的性质: m ααα ,,21线性无关,12m ,,,αααβ 线性相关?β可由m ααα ,,21线性表 示,且表示法唯一. 四、线性无关的性质: 1、若向量组Ⅰ能由向量组Ⅱ线性表示,且向量组Ⅰ线性无关,则Ⅰ的元素个数≤Ⅱ的元素个数. 2、等价线性无关向量组的向量个数相同.

五、向量组的秩的性质: 1、矩阵A的秩等于A的行(列)向量组的秩. A的不等于零的子式对应于A的行(列)向量组的线性无关组; A的行(列)向量组的线性无关组对应于A的不等于零的子式. 2、若向量组Ⅰ能由向量组Ⅱ线性表示,则Ⅰ的秩≤Ⅱ的秩. 3、等价向量组的秩相同. 六、矩阵的初等行(列)变换不改变列(行)向量组的线性关系.

向量组的线性相互与线性无关

向量组的线性相关与线性无关 1.线性组合 设12,,,n t a a a R ???∈,12,,,t k k k R ???∈,称1122t t k a k a k a ++???+为12,,,t a a a ???的一个线性组合。 【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k k k a k a k a a a a k ?? ? ?++???+=??? ? ???M 。这 样的表示是有好处的。 2.线性表示 设12,,,n t a a a R ???∈,n b R ∈,如果存在12,,,t k k k R ???∈,使得 1122t t b k a k a k a =++???+ 则称b 可由12,,,t a a a ???线性表示。 1122t t b k a k a k a =++???+,写成矩阵形式,即1212(,,,)t t k k b a a a k ?? ? ?=??? ? ???M 。因此,b 可由12,,,t a a a ???线性表示即线性方程组1212(,,,)t t k k a a a b k ?? ? ????= ? ???M 有解,而该方程组有解 当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ???=???。 3.向量组等价 设1212,,,,,,,n t s a a a b b b R ??????∈,如果12,,,t a a a ???中每一个向量都可以由 12,,,s b b b ???线性表示,则称向量组12,,,t a a a ???可以由向量组12,,,s b b b ???线性表示。 如果向量组12,,,t a a a ???和向量组12,,,s b b b ???可以相互线性表示,则称这两个向量组是等价的。

线性代数 向量组的线性相关性

第三节 向量组的线性相关性 分布图示 ★ 线性相关与线性无关 ★ 例1 ★ 例2 ★ 证明线性无关的一种方法 线性相关性的判定 ★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 定理3 ★ 定理4 ★ 定理5 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 内容要点 一、线性相关性概念 定义1 给定向量组,,,,:21s A ααα 如果存在不全为零的数,,,,21s k k k 使 ,02211=+++s s k k k ααα (1) 则称向量组A 线性相关, 否则称为线性无关. 注: ① 当且仅当021====s k k k 时,(1)式成立, 向量组s ααα,,,21 线性无关; ② 包含零向量的任何向量组是线性相关的; ③ 向量组只含有一个向量α时,则 (1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的; ④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面. 二、线性相关性的判定 定理1 向量组)2(,,,21≥s s ααα 线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示. 定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j =???? ?? ? ??=α 则向量组s ααα,,,21 线性相关的充要条件是: 是矩阵),,,(21s A ααα =的秩小于向量的个数s .

向量组的线性相关性 线性代数习题集

线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号 第一节 向量组及其线性组合 第二节 向量组的线性相关性 一.选择题 1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关 (C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有唯一解 (D )设),,,(s A ααα 21=,A 的行秩 < s . 2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 二.填空题: 1. 设T T T ),,(,),,(,),,(0431********===ααα 则=-21αα (1,0,1)T - =-+32123ααα (0,1,2)T 2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则=α (1,2,3,4)T 3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2 4. 设向量组),,(,),,(,),,(b a c b c a 000321===ααα线性无关,则c b a ,,满足关系式 0abc ≠ 三.计算题: 1. 设向量()11,1,1T αλ=+,2(1,1,1)T αλ=+,3(1,1,1)T αλ=+,2(1,,)T βλλ=,试问当λ为何值时 (1)β可由321ααα,,线性表示,且表示式是唯一? (2)β可由321ααα,,线性表示,且表示式不唯一? (3)β不能由321ααα,,线性表示? 线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号

第四章向量组的线性相关性目标测试题(参考答案)

第四章 向量组的线性相关性目标测试题 (参考答案) 一、填空题. 1. 设向量组) , ,0( ),0 , ,( ), ,0 ,(321b a c b c a ===ααα线性无关,则c b a ,,必满足关系式0abc ≠. 2. 已知向量组)1 ,1 ,3 ,4( ),2 ,6 ,2 ,4( ),0 ,2 ,1 ,3( ),1 ,3 ,1 ,2(4321-=-=-=-=αααα,则该向量组的秩为___2__. 3. 设三阶矩阵122212304A -?? ?= ? ???,三维向量11a α?? ?= ? ??? ,若向量A α与α线性相关,则a = -1 . 4. 已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)T T T t ααα=-==--的秩为2,则t = 3 . 5. 设321,,ααα线性无关,问=k __1_时,312312,,αααααα---k 线性相关. 6.设12,,s ηηηL 为非齐次线性方程组Ax b =的解,若1122s s k k k ηηη+++L 也是方程组Ax b =的解, 则12s k k k L ,,,应满足条件12s + 1k k k ++=L . 二、选择题. 1.设有向量组 ),0 ,2 ,2 ,1( ),14 ,7 ,0 ,3( ),2 ,1 ,3 ,0( ),4 ,2 ,1 ,1(4321-===-=αααα),10 ,5 ,1 ,2(5=α 则该向量组的最大线性无关组( B ). (A ) 321 , ,ααα, (B ) 421 , ,ααα, (C ) 521 , ,ααα, (D ) 5421 , , ,αααα. 2. 设向量组321,,ααα线性无关,则下列向量组线性相关的是(C ). (A ) 21αα+,,32αα+13αα+, (B ) ,1α21αα+,321a ++αα, (C ) 21αα-,,32αα-13αα-, (D ) 21αα+,,231αα+133αα+.

向量组以及线性相关性

资料考点大提纲 请按照编号顺序阅读,方便建立知识点结构。 注:本资料只有技巧总结,不涉及概念性的基础类总结.若要复习基础性概念请查阅教材. 主要掌握: 1.向量的基本概念:(注意:不加说明的向量α是指列向量) 2.向量组的基本概念. 3.向量的基本运算:( 加减、数乘 ) 4.向量的线性相关性的概念: i. 线性组合的概念 ii. 线性表出的概念 iii. 线性相关和线性无关的概念. 5.矩阵秩的概念、向量组秩的概念. 4.向量的线性相关无关的基本判定方式: i. 向量β可以由向量组α1,α2,……,αn 线性表出 ? 非齐次线性方程组 []βαα=????? ?????????n n x x x a 2121,,,有解 ?.],,,,[],,,[2121βααααααn n r r ??=?? ii 向量组α1,α2,…,αn 线性相关?齐次线性方程组 0],,,[2121=???? ? ????????n n x x x ααα有解?n r n =n )必定相关. r(A)

第六讲 向量的线性相关性

第六讲 向量的线性相关性 教学目的: 1. 介绍向量及其线性运算; 2. 讲解向量的线性相关性的概念及判别法;这是重点中之重点。 教学内容: 第三章 向量的线性相关性与秩:§ 3.1 n 维向量及其线性运算; § 3.2 向量的线性相关性 教材相关部分: 第三章 向量的线性相关性与秩 § 3.1 n 维向量及其线性运算 一、n 维向量的概念 在中学物理中,力是一个有方向的量。如果让所有的力都从原点发出,决定其性质的便只有方 向和大小两个要素了。还有位移、速度、加速度等等,也都是同时具有大小和方向两个要素的量。这种量称为向量,可以用点的坐标来表示。 一个实数,是一维坐标,也表示一个实数轴上的向量,如5,也表示从0到5的一个向量, 称其为一维(实)向量(如图3.1)。一维向量的全体,记作{}R x x R ∈=|1 , 即实数轴。 x ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ -1 0 1 2 3 4 5 6 7 ( 图3.1 ) 一对实数,是二维坐标,也表示一个实平面上的向量,例如(1,2)也表示从原点到点(1,2)的一个向量,称其为二维(实)向量(如图 3.2)。二维向量的全体,也就是二维实平面,记作 {}R x x x R i ∈=|),(212。 三元实数组),,(k j i ,是一个三维坐标,也表示一个三维(实)向量(如图3.3)。三维向量的 全体,记作{}R x x x x R i ∈=|),,(3213 ,就是立体几何中的三维实空间。 ) 0 1 x ( 图3. 2 ) 1x ( 图3.3 ) 一般地我们有:

定义 3.1 由n 个数组成的n 元有序数组),,,(21n x x x ,称为一个n 维向量,其中i x 称为它的第i 个分量。如果n 个分量都是实数,便称为n 维实向量。 向量通常记作),,,(21n x x x X =或),,(1n a a =α。全体n 维实向量的集合记作 {}R x x x x X R i n n ∈==|),,,(21 。 (3.1) 今后如不加说明,本书中所说的向量都指实向量。n 维向量也可以写成列的形式,如 ? ?? ? ? ??=n x x X 1、????? ??=m y y Y 1、????? ??=n a a 1α 等,不过行的形式和列的形式不能混写。 特别地,将所有分量全为0的向量称为零向量,记作)(0,,0 =θ或???? ? ??=00 θ。 我们规定:两个向量相等,当且仅当二者的所有分量一一对应相等。写作: Y X = 当且仅当 i i y x i =?,。 例 3.1 ? ???? ??=0011e 、????? ??=m y y Y 1、??? ?? ??=n x x X 1、????? ??=)()()(1X f X f X f m 、)1,3(-=v 、 )0,1,0(2=ε、),,,(21n a a a =α,分别是三维、m 维、n 维、m 维、二维、三维、n 维(列或行)向量。而 )(X f Y = 则意味着m i x x f X f y n i i i ,,2,1),,,()(1 ===,即由m 个n 元函数组成的一个从向量到向量的多元映射。 二、向量的线性运算 定义3.2 设? ?? ? ? ??=n x x X 1、????? ??=n y y Y 1为两个n 维实向量,R l k ∈,为任意实数,定义向量的加 法和数乘为: ? ?? ?? ??++=+n n y x y x Y X 11、 ??? ? ? ??=n kx kx kX 1。 (3.2 ) 或者更一般地,将两个定义式合写作 ? ?? ?? ??++=+n n ly kx ly kx lY kX 11 (3.3 ) 称为向量X 和Y 的线性运算。当1==l k 或0=l 时,(3.3)式便分别是(3.2)的两个式子。

向量组线性相关性判定

安阳师范学院本科学生毕业论文向量组线性相关性的判定方法 作者 院(系)数学与统计学院 专业数学与应用数学 年级2011级 学号 指导教师郭亚梅 论文成绩 日期2015年月日

学生诚信承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期: 导师签名:日期: 院长签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:

向量组线性相关性的判定方法 (安阳师范学院 数学与统计学院 河南 安阳 455002) 摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他 许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.本文将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组 线性相关 线性无关 判定方法 1 引言 线性相关性的内容是线性代数课程中的重点和难点,线性相关性的有关结论,对我们来说是很难理解的.本文总结出了判定向量组线性相关和线性无关的几种方法. 2.1 n 维向量的定义 (一维、二维、三维向量,推广到n 维向量) 定义: n 个有次序的数12,a ,,a n a 所组成的数组12(a ,a ,)n a 或12(a ,a ,)T n a 分别称为n 维行向量或列向量.这n 个数称为向量的n 个分量, 第i 个数i a 称为第i 个分量.显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母,αβ等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 2.2 向量的线性运算 行向量与列向量都按矩阵的运算规则进行运算. 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n 维向量的集合关于线性运算是封闭的,我们将该集合称为n 维向量空间(或线性空间). 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n 次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性的定义 3.1向量组 有限个或无限个同维数列向量(或同维数的行向量)所组成的集合称为一个向量组. 例如一个m n ?矩阵对应一个m 维列向量组, 也对应一个n 维行向量组

向量组线性相关性判定

向量组线性相关性判定 安阳师范学院本科学生毕业论文向量组线性相关性的判定方法作者院数学与统计学院专业数学与应用数学年级2011级学号指导教师郭亚梅论文成绩日期2015年月日学生诚信承诺书本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期:导师签名:

日期:院长签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:向量组线性相关性的判定方法摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组线性相关线性无关判定方法 1 引言线性相关性的内容是线性代数课程中的

重点和难点,线性相关性的有关结论,对我们来说是很难理解的.总结出了判定向量组线性相关和线性无关的几种方法. n维向量的定义定义:n个有次序的数a1,a2,?,an所组成的数组(a1,a2,?an)或(a1,a2,?an)T分别称为n维行向量或列向量.这n个数称为向量的n 个分量? 第i个数ai称为第i个分量?显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母?,?等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 向量的线性运算行向量与列向量都按矩阵的运算规则进行运算? 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n维向量的集合关于线性运算是封闭的,我们将该集合称为n维向量空间. 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性

向量组的线性相关性

线性相关性 一、填空题 例设向量组1234(1,2,1),(2,3,1),(,3,1),(2,,3),T T T T x y αααα====的秩为2,则x = 2 , y = 5 . 例已知向量组()11,2,1T α=-,()22,0,T t α=,()30,4,5T α=-线性相关,则t = 3 . 例若向量组123(1,2,3),(2,3,4),(3,4,)T T T t ααα===线性相关,则t =5. 二、 选择题 例设矩阵A 、B 、C 均为n 阶方阵,若AB C =,且B 可逆,以下正确的是【B】. (A) 矩阵C 的行向量组与矩阵A 的行向量组等价; (B )矩阵C 的列向量组与矩阵A 的列向量组等价; (C 矩阵C 的行向量组与矩阵B 的行向量组等价; (D )矩阵C 的列向量组与矩阵B 的列向量组等价. 例1234123400110,1,1,1C C C C αααα-???????? ? ? ? ? ===-= ? ? ? ? ? ? ? ????????? ,其中1234,,,C C C C 为任意常数,则下列向量组线性相 关的为( C ) (A ) 123,,ααα;(B )124,,ααα; (C) 134,,ααα; (D) 234,,ααα. 例设12,,,s a a a 均为n 维列向量,下列选项不正确的是【B 】. (A )对于任意一组不全为0的数12,,,s k k k 都有s s k a k a k a 1122,0+++≠ ,则12,,,s a a a 线性无关; (B )若12,,,s a a a 线性相关,则对于任意一组不全为0数12,,,s k k k 都有 s s k a k a k a 1122,0+++= ; (C )12,,,s a a a 线性无关的充分必要条件是此向量组的秩为s ; (D )若12,,,s a a a 线性无关的必要条件是其中任意两个向量线性无关. 例设12,,,s a a a 均为n 维列向量,A 是m n ?矩阵,下列选项正确的是【A 】. (A )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性相关; (B )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性无关;

向量组的线性相关性教案

第四章 向量组的线性相关性 1.教学目的和要求: (1)理解n 维向量、向量的线性表示的概念. (2)理解向量组线性相关、线性无关的定义,了解并会用向量组线性相关、线性无关的 有关性质及判别法. (3)了解向量组的极大线性无关组和向量组秩的概念,会求向量组的极大线性无关组及 秩. (4)了解向量组等价的概念以及向量组的秩与矩阵秩的关系. (5)理解线性方程组解的性质. (6)理解齐次线性方程组的基础解系及通解的概念。掌握齐次线性方程组的基础解系和 通解的求法. (7)理解非齐次线性方程组的解结构系及通解的概念. (8)会用初等行变换求解线性方程组. 2.教学重点:向量组的线性相关性、向量组的秩、线性方程组的解的结构. 3.教学难点: (1)向量组的线性相关性中相关定理的证明. (2)求向量组的秩及最大线性无关组. (3)线性方程组的解的结构定理及其应用. 4.教学容: §1 向量组及其线性组合 定义1 n 个有次序的数n α α,,1 Λ所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数称为第i 个分量. 定义2 对n 维向量β及m αα,,1Λ, 若有数组m k k ,,1Λ, 使得m m k k ααβ++=11Λ, 称β为m αα,,1Λ的线性组合,或β可由m αα,,1Λ线性 表示. 例1 设 ??????????-=1011β, ??????????=1112β, ??????????-=1133β, ????? ?????=1354β 试判断4β可否由321,,βββ线性表示? 解 设 3322114ββββk k k ++=,比较两端的对应分量可得 ??????????????????? ?--32111111031 1k k k ?? ????????=135, 求得一组解为??????????=??????????120321k k k 于是有3214 120ββββ++=, 即4β可由321,,βββ线性表示.

向量组的线性关系

第十讲 向量组的线性关系 一、考试内容与考试要求 考试内容 向量的概念;向量的线性组合与线性表示;向量组线性相关与线性无关. 考试要求 (1)理解n 维向量的概念; (2)理解向量的线性组合与线性表示的概念; (3)理解向量组线性相关与线性无关的概念; (4)掌握向量组线性相关与线性无关的有关性质及判别法; 注 适合于第十讲和第十一讲. 二、知识要点 引入 学习向量组的线性相关和线性无关,直接的目的是为探讨当方程组Ax o =(Ax b =)有无穷解时,它的所有解能否用有限个解表示出来?且这些有限个解之间的关系是什么? 线性表示(线性组合):探讨消除线性方程组中的多余方程(即无效方程); 矩阵秩:探讨矩阵所对应的线性方程组中的有效方程个数; 线性相关:方程组Ax o =有无穷解时,能否用有限个解表示出来; 线性无关:这有限个解之间的关系,引出基础解系和最大线性无关向量组. 复习 (1)非齐次方程组Ax b =有解的条件:()(,)R A R A b m =≤ 其中A =(12,,,m αααL ),要特别注意m 是未知量个数,也是向量组12,,,m αααL 中向量的个数. (2)齐次方程组Ax o =?? ?唯一零解 无穷解(有非零解) ,o 是向量. 1.线性组合(线性表示) 定义1 线性组合(线性表示) 给定向量12,,,,m βαααL ,如果存在数12,,,m k k k L ,使关系式成立 1122m m k k k βααα=+++L

则称β是向量组12,,,m αααL 的线性组合,或称β可以由向量组12,,,m αααL 线性表示: 注意1 (1)线性组合(或线性表示)对12,,,m k k k L 没有要求,可以全为零; (2)零向量可由任一同维的向量组线性表示; (3)判断β是否可由向量组12,,,m αααL 线性表示转化为求Ax β=是否有解,一个具体表示就是Ax β=有一个特解. (4)表示式可以不惟一,但若12,,,m αααL 线性无关时,表示式惟一; (5)任一n 维向量可由同维的单位坐标向量组12,,,n e e e L 线性表示; (6)向量组12,,,m αααL 中每个向量都可由自身向量组线性表示: 11100100j j j j m αααααα-+=?++?+?+?+?L L 定义2 向量组的等价 向量组(I ):12,,,s αααL 中每个向量都可由向量组(II ):12,,,t βββL 线性表示,而向量组(II )中每个向量都可由向量组(I )线性表示,则称两个向量组的等价,记为(I ):(II ). 向量组的等价具有 ① 反身性:每个向量组都和自身等价,即(I ):(I ); ② 对称性:若(I ):(II ),则(II ):(I ); ③ 传递性:若(I ):(II ),(II ):(III ),则(I ):(III ). 注意 2 记()12,,,s A ααα=L ,()12,,t B βββ=L ,则 (1)向量组(II )可以由向量组(I )线性表示的充分必要条件是()(,)R A R A B = 这是单个向量β可由向量组12,,,s αααL 线性表示的推广. (2)向量组(I )与向量组(II )等价的充分必要条件是()()(,)R A R B R A B == (3)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表示,则当r s >时,向量组(I )必线性相关; (4)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表

向量组线性相关性的判定方法开题报告

毕业设计(论文)开题报告 数理学院2016届 题目向量组线性相关性的判定方法 课题类型论文课题来源自拟课题 学生姓名学号 专业信息与计算科学年级班2012-1班 指导教师职称讲师 填写日期:2016 年1 月10 日 一、本课题研究的主要内容、目的和意义

主要内容: 本文从介绍向量组线性相关性的定义着手,然后论述了若干种判定向量组线性相关的方法,例如利用线性相关的定义、行列式的值、矩阵的秩、齐次线性方程组的解、克莱姆法则等知识运用于向量组的线性相关性的判定,并比较了不同判定方法的适用条件及范围。并且引入诸如线性相关性、秩、极大线性无关组等基本概念。使用了这些概念,不仅圆满地解决线性方程组的问题,使我们更深刻地认识了线性方程组。同时构建了一座通向向量组线性相关性判定方法的桥梁,使二者之间可以相互转化。 目的: 通过对向量组线性相关的定义及其重要性质的学习,能使我们更加深刻的了解向量组的线性相关。文中又给出了判定向量组线性相关的多种方法,在以后解决具体问题时有一定的帮助。在基于推出的判定向量组线性相关性的若干方法的基础上,运用这些知识我们可以在各种证明题和解答题中加以运用。 意义: 在高等代数中,向量组的线性相关性占到了举足轻重的作用。可以说高等代数这门课学得好不好,关键在于有关向量组线性相关性的内容掌握得怎么样。它可以将高等代数中的行列式、矩阵、二次型等知识联系在一起。熟练地掌握向量组的线性相关性则能更好的理解高等代数的各部分知识,能够理清高等代数的框架,做到融会贯通,灵活运用。 二、文献综述(国内外相关研究现况和发展趋向)

在高等代数中,向量组的线性相关性是一项非常重要的内容,同时它也是一个难点,向量组线性相关性的概念隙抽象,判定定理繁多,难以理解和把握,但是仔细研究也是有很多规律可循的,通过查找文献,可以熟悉一些理论知识。 在《浅谈向量组的线性相关性》、《高等代数》课本中都介绍了线性相关的定义:假设有向量组A:a1,a2,...am,如果存在不全为零的数 k1,k2,...,km , 使k1a1+ k2a2+ ... + kmam=0则称向量组A是线性相关的, 否则就称它是线性无关的。 在《向量组线性相关性的几种判定方法》和《高等代数中的典型问题与方法》等文献中介绍了几种判断向量组线性相关的方法,归纳总结主要有定义法、利用向量组内向量之间的线性关系判定向量组的线性相关性、利用齐次方程组的解判定向量组的线性相关性、利用矩阵的秩判定向量组的线性相关性、利用行列式的值判定向量组的线性相关性、反证法、利用极大线性无关组判定向量组的线性相关性等。不同的判定方法有不同的的优势和劣势,也有不同的适用范围。对于不同的问题,我们要选出最适合该题的一种方法。 总的来说,我所搜集的文献大部分都介绍了向量组线性相关性的若干判定方法,涵盖全面,论证详细,思路清晰,为课题的研究提供理论基础和研究思路,我将通过对主要文献进行分析、归纳整理、总结,力求使该部分内容更加完善,结构更加系统化,希望再为人们进一步探索上述问题提供一些有益思路。 三、拟采取的研究方法(方案、技术路线等)和可行性论证

向量的线性相关性及其应用

向量的线性相关性及其应用 摘 要:线性相关性的内容是线性代数课程中的重点和难点,线性相关性的有关结论,对学生来说是很难理解的。向量的相关性所反映的是在数域上的n 维向量空间中向量之间的关系。文章总结出了判断向量线性相关和线性无关的几种方法。同时给出了线性相关性的一些应用。 关键词:线性相关;线性无关;线性组合;极大无关组;坐标变换;过渡矩阵 一. 向量线性相关性及线性组合的基本概念 1. 向量的线性相关性是向量线性相关与线性无关的统称,它刻画的是数域F 上n 维向量 空间中向量之间的关系。在两个向量之间, 最简单的关系是成比例,即是否有一数k 使得k αβ=,而在多个向量之间,成比例的关系表现为线性组合。所谓线性组合,就是如果有数域F 中的数12,s k k k , 使得β =1122s s k k k ααα++ ,那么向量β称为向量组12,,s ααα 的一个线性组合,或说β可以由向量组12,,s ααα 线性表示。特别地,零向量是任一向量组的线性组合。于是,就引出了线性相关和线性无关的定义: 定义1:对s 个n 维向量12,,s ααα ,若存在一组不全为零的数12,s k k k ,使得 1122s s k k k ααα++= 0 ,则称向量组12,,s ααα 线性相关; 否则称向量组 12,,s ααα 线性无关 。即没有不全为0的数,使1122s s k k k ααα++= 0 ,就称为 线性无关。 定义2:对于向量组12,,s ααα 和向量β,如果存在s 个数12,s k k k 使得 1122s s k k k ααα++= β 则称向量β是向量组12,,s ααα 的线性组合 二. 关于线性相关性的几种判定 1. 利用定义来判断或证明, 这种方法的证明思路直观,也是证明向量线性相关时最常用 的一种方法。具体步骤是: ⑴可令1122s s k k k ααα++= 0 ,其中12,s k k k 为常数; ⑵ 把上式展开整理, 解相应的齐次线性方程组; ⑶ 若12,s k k k 不全为0 , 则原向量组12,,n ααα 线性相关; 若12,s k k k 全

向量组线性相关与线性无关解析

向量组线性相关与线性无关的判别方法 摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的 线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法. 关键词 向量组 线性相关 线性无关 矩阵 秩 1 引言 在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的. 2 向量组线性相关和线性无关的定义 定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数 12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域 P 中没有不全为零的数12 ,m k k k ,使 0332211=++++m m k k k k αααα , 称它是线性无关. 3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法 由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的. 命题1 一个向量线性相关的充分条件是它是一个零向量. 关于两个向量的线性相关性判断可以转化为向量的成比例判断. 命题2 两个n 维向量()n a a a ,,,21 =α, ()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.

第四章向量组的线性相关性线性代数含答案

第四章 向量组的线性相关性 4.4.1 基础练习 1. 设有n 维向量组12m ???ααα,, ,与???12m ββ,β,,若存在两组不全为零的数 12m λλλ???,,,和12k k k m ???,,,使 11111m m m k k k k 0m m m λλλλ??????1ααββ(+)++(+)+(-)++(-)= 则( ) (A )12m ???ααα,, ,和???12m ββ,β,,都线性相关 (B) 12m ???ααα,, ,和???12m ββ,β,,都线性无关 (C) 1m m 1m m ??????11αβαβαβαβ+, ,+,-,,-线性无关 (D) 1m m 1m m ??????11αβαβαβαβ+, ,+,-,,-线性相关 2. 设12s ???ααα,, ,与t ???12ββ,β,,为两个n 维向量组,且 12s t ()()r R R ???=???=12αααββ,β,,,,,,则( ) (A )当s t =时,两向量组等价; (B )两向量组等价; (C )12s t ()r R ??????12αααββ,β,, ,,,,=; (D )当向量组12s ???ααα,, ,被向量组t ???12ββ,β,,线性表示时,两个向量组等价. 3. 设A 是4阶方阵,且0A =,则A 中( ) (A) 必有一列元素全为零; (B )必有两列元素成比例; (C)必有一列向量是其余列向量的线性组合; (D )任一列向量是其余列向量的线性组合. 4. 设A 是矩阵,B 是矩阵,则( ) (A )当m n >时,必有0≠AB ; (B )当m n >时,必有0AB = (C )当m n <时,必有0≠AB ; (D )当m n <时,必有0AB = 5. 设向量组231ααα,,线性无关,向量1β可由231ααα,,线性表示,而向量2β不能由 231ααα,,线性表示,则对于任意常数k ,必有( )

向量组的线性相关性的判定

向量组的线性相关性的判定 摘 要:向量组的线性相关性是线性代数中的一块基石,在它的基础上我们推导和衍生出其它许多理论.本文利用线性相关性的定义,行列式的值,矩阵的秩,齐次线性方程组的解,弗朗斯基判别法等知识对向量组的线性相关性进行了判定,并比较了几种不同判定方法的适用条件. 关键词:向量组;线性相关;行列式 引言 向量组的线性相关性在线性代数中起到贯穿始终的作用.线性相关性这个概念在许多数学专业课程中都有体现,如微分几何,高等代数和偏微分方程等等.它是线性代数理论的基本概念,它与向量空间(包括基,维数),子空间等概念有密切关系,同时在微分几何以及偏微分方程中都有广泛的应用.因此,掌握线性相关性这个概念有着非常重要的意义,也是解决其它问题的重要理论依据. 向量组的线性相关与线性无关判定方法是非常灵活的.本文参考文献[2]介绍了线性相关的定义及其性质,并给出了证明.文献[1]、[3]、[4]、[5]则是介绍了关于向量组线性相关判定的几种方法,给出了证明并举出了几个例子. 本文从线性相关性的定义出发,分别运用了定义法、线性关系、向量空间的性质、矩阵的秩、行列式的值、反证法、线性变换的性质等几种方法对向量组的线性相关性进行了判定.如果向量组是函数,那么可用弗朗斯基判别法判定.特别是反证法,线性变换的性质,弗朗斯基判别法运用于一些复杂和特殊的题目,是比较方便的. 1.向量组线性相关性的相关定义及性质 定义 1.1]1[ 定义在P 上的线性空间V ,对于给定的一组向量12,,,n x x x L ,如果存在n 个不全为0的数12,,,n λλλL ,使得 11220n n x x x λλλ+++=L . 那么称12,,,n x x x L 是线性相关的.否则称12,,,n x x x L 是线性无关的.

第四章 向量组的线性相关性测试题

第四章 向量组的线性相关性测试题 一、选择题 1.下列向量组线性无关的是( )。 A. (1,-1,0,2),(0,1,-1,1),(0,0,0,0); B. (a,b,c),(b,c,d),(c,d,a),(d,a,b); C. (a,1,b,0,0),(c,0,d,1,0),(e,0,f,0,1); D. (1,2,1,5),(1,2,1,6),(1,2,3,7),(0,0,0,1)。 2.设向量组1234,,,αααα线性无关,则下列向量组线性无关的是( )。 A. 12233441,,,;αααααααα---- B. 12233441,,,;αααααααα++++ C. 12233441,,,;αααααααα++-- D. 12233441,,,.αααααααα+--- 3.设向量组β可由向量组12,,,m ααα线性表示,但不能由向量组 (I):121,, ,m ααα-线性表示,记向量组(II): 121,, ,,m αααβ-,则( )。 A. m α不能由(I)线性表示,也不能由(II)线性表示; B. m α不能由(I)线性表示,但能由(II)线性表示; C. m α能由(I)线性表示,也能由(II)线性表示; D. m α能由(I)线性表示,但不能由(II)线性表示。 4. 设向量组 (I):12,,,r ααα可由向量组(II):12,, ,s βββ线性表示,则 ( )。 A. 当 rs 时,向量组(II)必线性相关; C. 当 rs 时,向量组(I)必线性相关。 5. 下列向量组中,线性无关的是( )。

相关文档 最新文档