文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程根的判别式综合应用 2014

一元二次方程根的判别式综合应用 2014

一元二次方程根的判别式综合应用      2014
一元二次方程根的判别式综合应用      2014

一元二次方程根的判别式 2014-5-30

1.已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( )

A .有两个不相等的实数根

B .有两个相等的实数根

C .没有实数根

D .有两个实数根

2.已知关于x 的方程()0112

=--+x k kx ,下列说法正确的是( ). A.当0=k

时,方程无解 B.当1=k

时,方程有一个实数解 C.当1-=k

时,方程有两个相等的实数解 D.当0≠k 时,方程总有两个不相等的实数解

3.关于x 的一元二次方程mx 2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m 的值及该方程的

根.

4.已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求

4

)2(222

-+-b a ab 的值。

5.已知n m ,是方程0122

=--x x 的两根,且8)763)(147(22=--+-n n a m m ,求a 的值

6.若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.

7.已知:关于x 的一元二次方程2220kx x k ++-=(1k ≥). (1)求证:方程总有两个实数根;

(2)当k 取哪些整数时,方程的两个实数根均为整数.

8.如果关于x 的一元二次方程2

10kx +=x+1=0有两个不相等的实数根,求k 的取值范围和整数k 的值。

9. 已知:关于x 的方程()0322=-+-+k x k x

⑴求证:方程()0322=-+-+k x k x 总有实数根;

⑵若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值;

10. 已知:关于x 的一元二次方程23(1)230mx m x m --+-= ()m 为实数

(1) 若方程有两个不相等的实数根,求m 的取值范围;

(2)求证:无论m 为何值,方程总有一个固定的根;

(3)若m 为整数,且方程的两个根均为正整数,求m 的值.

11.已知:关于x 的一元二次方程2

(21)20x m x m +++=.

(1)求证:无论m 为何值,此方程总有两个实数根;

(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值.

12.求证:方程(m 2+1)x 2-2mx +(m 2+4)=0没有实数根.

13.已知关于x 的方程221(1)04

x a -++=有实根. (1)求a 的值;

解:

(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值. 解:

一元二次方程根的判别式知识点

一元二次方程根的判别 式知识点 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

一元二次方程根的判别式知识点及应用 1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式定理:在一元二次方程 ax2+bx+c=0(a≠0)中,Δ=b24ac 若△>0则方程有两个不相等的实数根 若△=0则方程有两个相等的实数根 若△<0则方程没有实数根 2、这个定理的逆命题也成立,即有如下的逆定理: 在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac 若方程有两个不相等的实数根,则△>0 若方程有两个相等的实数根,则△=0 若方程没有实数根,则△<0 特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。 一、不解方程,判断一元二次方程根的情况。 二、例1、判断下列方程根的情况 三、2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、?已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0有两个实数根? 三、?证明方程根的性质。 例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 四、?判断二次三项式能否在实数范围内因式分解。 例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 五、?判定二次三项式为完全平方式。 例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

判别式的八种应用

判别式的八种应用 一、求方程(组)的解及解的取值范围 例1若x2+2x+y2-6y+10=0,x,y为实数.求x,y. 解:将方程看成是关于x的一元二次方程,由于x,y为实数. ∴ Δ=22-4(y2-6y+10)=-4(y-3)2≥0. 即(y-3)2≤0,于是y=3,进而得x=-1. 例2已知a,b,c为实数,满足a+b+c=0,abc=8,求c的取值范围.(第一届“希望杯”全国数学竞赛题) 解:∵a+b+c=0,abc=8, 例3已知实数x,y,z满足x=6-y,z2=xy-9,求x,y的值. 证明:∵x+y=6,xy=z2+9则x,y是一元二次方程a2-6a+z2+9=0的两个实数根, 则有Δ=36-4(z2+9)=-4z2≥0,即z2≤0. 因z为实数,∴z=0,从而Δ=0, 故上述关于a的方程有相等实根,即x=y=3. 二、判断三角形形状 例4若三角形的三边a,b,c满足a(a-b)+b(b-c)+c(c-a)=0.试判断三角形形状. 证明:将原式变形为b2-(a+c)b+a2+c3-ac=0,由于a,b,c为实数,关于b的一元二次方程有实根, ∴Δ=(a+c)2-4(a2+c2-ac)≥0. 整理得-3(a-c)2≥0,

即(a-c)2≤0,故a=c, 把a=c代入原式,得b=c,从而有a=b=c, 所以三角形为等边三角形. 三、求某些字母的值. 例5 k为何值时,(x+1)(x+3)(x+5)(x+7)+k是一完全平方式. 解:原式=(x2+8x+7)(x2+8x+7+8)+k =(x2+8x+7)2+8(x2+8x+7)+k 令(x2+8x+7)2+8(x2+8x+7)+k=0,因原式是完全平方式,则其根的判别式, Δ=82-4k=0,即k=16. 例6如果x2-y2+mx+5y-6能分解成两个一次因式的积,试求m的值.解:令x2+mx-(y2-5y+6)=0,则关于x的方程的根的判别式Δ=4y2-20y +m2+24. 欲使原式能分解成两个一次因式乘积,必须“Δ”是一完全平方式, 从而有4y2-20y+m2+24=0的根的判别式 ∴m2=1,即m=±1. 例7a为有理数,问:b为何值时,方程x2-4ax+4x+3a2-2a+4b=0的根是有理数. 解:方程整理为x2+4(1-a)x+(3a2-2a+4b)=0. 它的判别式Δ=4(a2-6a-4b+4),由于4(a2-6a-4b+4)是有理数a的二次三项式. 即4(a2-6a-4b+4)=0的根的判别式 四、证明不等式

九年级数学上册专题一根的判别式的应用同步测试新人教版

九年级数学上册专题一根的判别式的应用同步测试新人教 版 (教材P17习题21.2第13题) 无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出答案并说明理由.解:x2-5x+6-p2=0, Δ=(-5)2-4×1×(6-p2)=25-24+4p2=4p2+1>0, 所以方程(x-3)(x-2)-p2=0总有两个不等的实数根. 【思想方法】一元二次方程根的判别式Δ=b2-4ac可以用来判断根的情况,也可以根据一元二次方程根的情况,确定方程中的未知系数. 一判断一元二次方程根的情况 方程x2+7=8x的根的情况为(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.只有一个实数根 D.方程没有实数根 对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为(C) A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法确定 下列对关于x的一元二次方程x2+2kx+k-1=0的根的情况描述正确的是(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.方程没有实数根 D.无法确定 已知关于x的一元二次方程x2+(m+3)x+m+1=0.求证:无论m取何值,原方程总有两个不相等的实数根. 证明:Δ=(m+3)2-4(m+1)=(m+1)2+4. ∵无论m取何值时,(m+1)2+4的值恒大于0, ∴原方程总有两个不相等的实数根. 已知关于x的方程x2-(m+2)x+(2m-1)=0. (1)求证:方程恒有两个不相等的实数根; (2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长. 【解析】(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论; (2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是1,3时,由勾股定理得斜边的长度为10;②当该直角三角形的直角边和斜边分别是1,3时,由勾股定理得该直角三角形的另一直角边为22;再根据三角形的周长公式进行计算. 解:(1)∵b2-4ac=[-(m+2)]2-4×1×(2m-1)=m2-4m+8=(m-2)2+4>0, ∴方程恒有两个不相等的实数根; (2)把x=1代入方程x2-(m+2)x+(2m-1)=0中,解得m=2,

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

第02讲 判别式及其应用

第2讲判别式及其应用 当数学家导出方程式和公式,如同看到 雕像、美丽的风景,听到优美的曲调等等一 样而得到充分的快乐。 —— 柯普宁 知识方法扫描 在一元二次方程ax2+bx+c=0中,△=b2-4ac称为根的判别式。当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。 我们利用判别式主要解决以下两个方面的问题:一是根据方程或题目所给的条件,确定方程根的性质;二是根据给定的方程的条件,确定字母的取值或取值范围。 此外,要注意判别式在以下几个方面的应用: ①在解答关于整系数的一元二次方程方程有整数根一类问题时,要注意它的判别式应该为完全平方数; ②当出现了形如一个平方式与两个代数式的积之差形式的问题时,可以考虑利用这种结构构造一个一元二次方程,再用一元二次方程的理论去解答问题; ③在一些求某个字母(参数)的取值范围的问题中,常可先利用根的定义或根与系数的关系构造二次方程,再用判别式求出其中参数的范围。 经典例题解析 例1(1987年全国初中数学联赛试题)当a、b为何值时,方程x2+2 (1+a)x+ (3a2+4ab+4b2+2)=0有实根? 解因为方程有实数根,所以判别式 △= 4[(1+a)2-(3a2+4ab+4b2+2) = 4( -1+2a-2a2-4ab-4b2) = -4[(1-2a+a2)+(a2+4ab+4b2)] = -4[(1-a)2+(a+2b)2] ≥0 ∵-4[(1-a)2+(a+2b)2] ≤0,∴-4[(1-a)2+(a+2b)2] =0. ∴ 1-a=0, 且a+2b=0; 即a=1,b=. ∴当a=1, b=时,方程有实数根。 例2 (1987年武汉,广州,福州,重庆,西安五市初中数学联赛试题)已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二

“根的判别式”的种种应用

“根的判别式”的种种应用 学习了一元二次方程的求根公式以后,为了研究问题的方便,我们把一元二 次方程ax2+bx+c=0(a≠0)的求根公式x= a ac b b 2 4 2- ± - 中的b2-4ac称做为根的判别式,用符号“Δ”来表示,即Δ=b2-4ac.至此,我们一般只知道:当Δ>0时,方程有两个不相等的实数根,当Δ=0时,方程有两个相等的实数根,当Δ<0时,方程没有实数根.反之也成立.至此,我们可以不解方程,利用根的判别式来判别根的情况.而事实上,一元二次方程根的判别式还许多其它的应用,为方便同学们的学习,现举例说明. 一、不解方程,判断根的情况 例1已知关于x的一元二次方程x2-mx-2=0.…① (1)若x=-1是方程①的一个根,求m的值和方程①的另一根; (2)对于任意实数m,判断方程①的根的情况,并说明理由. 解(1)因为x=-1是方程①的一个根,所以1+m-2=0,解得m=1. 所以原方程为x2-x-2=0,解得x1=-1,x2=2.所以方程的另一根为x=2. (2)Δ=b2-4ac=m2+8,因为对于任意实数m,m2≥0,所以m2+8>0, 所以对于任意的实数m,方程①有两个不相等的实数根. 说明运用根的判别式时,必须注意化方程为一元二次方程的一般形式,明确a,b,c的值. 二、确定字母系数的范围 例2已知关于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,则k的取值范围是___. 解因为于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,所以满足Δ=22-4×(k+1)×(-1)>0,且k+1≠0,解得k>-2,且k≠-1. 说明利用根的判别式解题时,若原一元二次方程的二次项含有字母系数,则必须保证二次项系数不等于0这一隐含条件的限制. 三、字母系数的值 例3当m为何值时,关于x的一元二次方程x2-4x+m-1 2 =0有两个相等的 实数根?此时这两个实数根是多少?

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程根的判别式的综合应用

一元二次方程根的判别式的综合应 用 一、知识要点: 1.一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac。 定理1 ax2+bx+c=0(a0)中,>0方程有两个不等实数根. 定理2 ax2+bx+c=0(a0)中,=0方程有两个相等实数根. 定理3 ax2+bx+c=0(a0)中,<0方程没有实数根. 2、根的判别式逆用(注意:根据课本反过来也成立)得到三个定理。 定理4 ax2+bx+c=0(a0)中,方程有两个不等实数根>0. 定理5 ax2+bx+c=0(a0)中,方程有两个相等实数根=0.

定理6 ax2+bx+c=0(a0)中,方程没有实数根<0. 注意:(1)再次强调:根的判别式是指=b2-4ac。(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。 (3)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac0切勿丢掉等号。(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a0. 二.根的判别式有以下应用: ①不解一元二次方程,判断根的情况。 例1.不解方程,判断下列方程的根的情况: (1)2x2+3x-4=0(2)ax2+bx=0(a0) 解:(1) 2x2+3x-4=0 a=2, b=3, c=-4,

∵=b2-4ac=32-42(-4)=41 方程有两个不相等的实数根。 (2)∵a0,方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零, ∵=(-b)2-4a0=b2, ∵无论b取任何关数,b2均为非负数, 0,故方程有两个实数根。 ②根据方程根的情况,确定待定系数的取值范围。 例2.k的何值时?关于x的一元二次方程x2-4x+k-5=0(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根; 分析:由判别式定理的逆定理可知(1)>0;(2)=0;(3)<0;

一元二次方程判别式及韦达定理

一元二次方程判别式及韦达定理 一、选择题 1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( ) A .2 B .3 C .4 D .8 2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则 2112 x x x x +的值为( ) A .5 B .-5 C .1 D .-1 4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0 B .x 2+2x =0 C .(x +1)2=0 D .(x +3)(x -1)=0 5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断 7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

九年级数学上册专题突破讲练根的判别式的深化应用试题新版青岛版

根的判别式的深化应用 一、一元二次方程根的判别式 对于一元二次方程ax 2+bx +c =0(a ≠0),它的解的情况由b 2-4ac 的取值决定,我们 通常用“?2-,即ac b 42 -=?。 方程ax 2+bx +c =0(a ≠0)的根的情况 =?b 2-4ac >0 两个不相等的实数根 =?b 2-4ac =0 两个相等的实数根 =?b 2-4ac <0 没有实数根 方法归纳:用b -4ac 可以判断方程根的情况,反过来,若已知方程根的情况,则可确定b 2-4ac 的取值。 二、根的判别式的应用 1. 判断一元二次方程根的情况。 2. 确定一元二次方程中字母系数的取值范围。 3. 确定一元二次方程根的某些特性,如是不是有理根。 方法归纳:(1)计算=?b 2-4ac 时注意a 、b 、c 表示各项系数,包括它们前面的符号; (2)关于根的判别式=?b 2-4ac 的正、负号的判定涉及代数式的恒等变形,一般地,将表 示=?b 2-4ac 的代数式进行配方,利用非负数、非正数的概念,确定=?b 2-4ac 的正、负号。 总结: 1. 会讨论方程的根的情况,包括一元一次方程和一元二次方程。 2. 能利用一元二次方程根的判别式判断方程的根的特性,如:有理根、整数根等。 例题1 关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定 解析:这是含字母系数的一元二次方程,将字母视为数字即可。这里a =1,b =-m ,c =m -2。因为b 2-4ac =(-m )2-4×1×(m -2)=m 2-4m +8=m 2-4m +4+4=(m -2)2+4>0,所以方程有两个不相等的实数根。 答案:A 点拨:判断b 2-4ac 的正、负情况时,通常有两种情形,(1)已知判别式中某些字母的 取值范围,依此确定判别式?的取值范围;(2)一般要将表示b 2-4ac 的代数式进行配方, 利用偶次幂的非负性确定b 2-4ac 的正、负号。 例题2 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们 称这个方程为“凤凰”方程,已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等 的实数根,则下列结论正确的是

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身文档设计者: 设计时间 : 文档类型: 文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载 1.如果2是一元二次方程x 2 +bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2 16(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型: 考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断, 注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接

1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2 ≥=a a x 或)0()(2 ≥=-a a b x 的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2 ()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)公式法:一元二次方程2 0(0)ax bx c a ++=≠的求根公式是 221,2 4(40)2b b ac x b ac a -±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程 的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. ◆典例精析 例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2 D .2- 【答案】A 【解析】本题考查了一元二次方程的根。因为x=3是原方程的根,所以将x=3代入原方程, 原方程成立,即06332 =--k 成立,解得k=1。故选A 。 例2(湖北仙桃)解方程:2 420x x ++= 【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解. 【答案】2 42x x +=-

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练 1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________. 3. (2010 江苏省苏州市) 若一元二次方程()2 220x a x a -++=的两个实数根分别是3b 、,则a b +=_________. 4. (2010 江苏省苏州市) 下列四个说法中,正确的是( ) A .一元二次方程22 452 x x ++=有实数根; B. 一元二次方程23 452 x x ++=有实数根; C. 一元二次方程25 453x x ++= 有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根. 5. (2010 湖南省益阳市) 一元二次方程 )0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42 -满足的条件是 A.ac b 42 -=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= . 7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, 求m 的值及方程的根. 8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根? 9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根. 10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0 ))(021<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

一元二次方程根的判别式的多种应用

一元二次方程根的判别式的多种应用 一元二次方程根的判别式用来判断一元二次方程根的情况,能帮助我们解一元二次方程,也是以后学习一些知识的基础,在解题中应用很多,举例如下: 一、不解方程,判断一元二次方程根的情况。 例1、判断下列方程根的情况 2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根? 简解:当Δ=[-(2m-1)]2-4(m-4)m≥0时,原方程有两个实数根, ∴4m2-4m+1-4m2+16m≥0,解得m≥- 又∵m-4≠0 ∴m≠4 ∴当m≥- 且m≠4时,原方程有两个实数根。 例3、当m分别取何值时关于x的方程(m-1)x2+(2m-1)x+m-1=0 l 有两个不相等的实数根 l 有两个相等的实数根 l 有两个实数根 l 有一个实数根 l 有实数根 l 无实数根 评析:初中阶段的根的判别式Δ=b2-4ac是相对于一元二次方程而言的,而ax2+bx+c=0当a=0时是一元一次方程不能用判别式,所以例2中一定要考虑二次项系数m-4≠0;例3则一定要做分类讨论。 三、证明方程根的性质。 例4、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。简解:∵Δ=(m2+3)2-4╳0.5(m2+2)=m4+4m2+5=(m2+2)2+1>0 ∴无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 评析:这种应用有两个难点:(1)是容易与(二)中求字母取值混淆,即用Δ≥0求m的取值范围;(2)是用配方法证明二次三项式的特性。 四、判断二次三项式能否在实数范围内因式分解。 例5、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 简解:当Δ=[-2(m+2)]2-4m(m+5)≥0时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。 ∴m≥4且m≠0。 评析:对于系数是有理数的二次三项式ax2+bx+c(a≠0)的因式分解,其方法是先求ax2+bx+c=0(a≠0)的根然后再代入公式,所以,判别式决定了二次三项式能否在实数范围内因式分解,即: Δ<0时不能在实数范围内因式分解; Δ≥0时能在实数范围内因式分解;进而当Δ为完全平方数时能在有理数范围内因式分解; 再进而当Δ=0时ax2+bx+c=a(x-x1)(x-x2)=a(x-x1)2(a≠0),所以此时可以说它是完全平方式。五、判定二次三项式为完全平方式。 例6、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例7、当m为何值时,代数式(5m-1)x2-(5m+2)+3m—2是完全平方式。 六、利用判别式构造一元二次方程。 例8、已知:(z-x)2-4(x-y)(y-z)=0(x≠y) 求证:2y=x+z

一元二次方程根与系数关系及应用题(讲义及答案)

一元二次方程根与系数关系及应用题(讲义) 一、知识点睛 1.从求根公式中我们发现12x x +=_______,12x x ?=_________, 这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是_________________. 2.一元二次方程应用题的常见类型有: ①______________;②______________;③______________. 增长率型 例如:原价某元,经过两次连续降价(涨价); 1人患了流感,经过两轮传染. 经济型 例如:“每涨价××元,则销量减少××件”. 3.应用题的处理流程: ① 理解题意,辨析类型; ② 梳理信息,建立数学模型; ③ 求解,结果验证. 二、精讲精练 1. 若x 1,x 2是一元二次方程2274x x -=的两根,则x 1+x 2与12 x x ?的值分别是( ) A .7,4 B .72-,2 C .72,2 D .7 2,-2 2. 若x 1=23-是一元二次方程210x ax ++=的一个根,则 该方程的另一个根x 2=_________,a =________. 3. 若关于x 的方程2210x x a ++-=有两个负根,则a 的取值范 围是____________________. 4. 若关于x 的方程2220x x m +-=的两根之差的绝对值是25, 则m =________. 5. 某商品原售价289元,经过连续两次降价后售价256元.设 平均每次降价的百分率为x ,则下面所列方程正确的是( ) A .2289(1)256x -= B .2256(1)289x -= C .289(12)256x -= D .256(12)289 x -= 6. 据调查,某市2013年的房价为6 000元/米2,预计2015年将 达到8 840元/米2,求该市这两年房价的年平均增长率.设年平均增长率为x ,根据题意,所列方程为_______________. 7. 有一人患了流感,经过两轮传染后共有121人患了流感,则 每轮传染中平均一个人传染了________________个人.

相关文档
相关文档 最新文档