文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程根的判别式的意义及应用

一元二次方程根的判别式的意义及应用

一元二次方程根的判别式的意义及应用
一元二次方程根的判别式的意义及应用

教学目标

(一)使学生掌握一二次方程的根的判别式。

(二)使学生会运用根的判别式,在不解方程的前提下判别根的情况。教学重点和难点

重点:一元二次方程的根的判别式的运用。

难点:对一元二次方程的根的判别式的结论的理解。

教学过程设计

(1)(一)复习提问,引入新课

1.什么元二次方程ax2+bx+c=0的求根公式?

2.公式适用条件是什么?

(二)新课

1. 1.根的判别式念

在一元二次方程ax2+bx+c=0(a≠0)中,代数b2-4ac起着重要的作用,我们把它叫做根的判别式,通常用记号△表示,即

△=b2-4ac (注意不是△=)

2. 2.根的判别式的应用

(实际上就是定理)用三个定理来表示(我们通常把记号A B表示为A是命题的条件,B是命题的结论)于是有:

定理1ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根

定理2ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根

定理3ax2+bx+c=0(a≠0)中,△<0方程没有实数根

注意:根据课本P27第8行的“反过来也成立”,得另三个定理,那就是定理4 ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0

定理5ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0

定理6ax2+bx+c=0(a≠0)中,方程没有实数根△<0

显然,定理1与定理4,互为逆定理,定理2与定理5,互为逆定理,定理3与定理6,互为逆定理。

定理1,2,3的作用是用已知方程的系数,来判断根的情况。

定理4,5,6的作用是已知方程根的情况,来确定系数之间的关系,进而求出系数中某些字母的值。

(三)应用举例

例1 不解方程,判别下列方程根的情况。

(1)2x2+3x-4=0; (2)16y2+9=24y; (3)5(x2+1)-7x=0

解:(1)因为△=32-4×2(-4)=9+32>0;所以原方程有两个不相等的实数根。

(注意:①老师的板书及要求学生作业的写法都按照课本的格式。②只

要知道△>0,△=0,△<0就可以了,所以课本没有算出9+32=41)(2)原方程变形为16y2-24y+9=0,因为△=(-24)2-4×16×9=576-576=0,所以原方程有两个相等实数根。

(3)原方程变形为5x2-7x+5=0,因为△=(-7)2-4×5×5=49-100<0,所以原方程没有实数根。

例2 已知方程2x2+(k-9)x+(k2+3k+4)=0有两个相等的实数根,求k 值,并求出方程的根。

解:因为方程有两个相等实数根,所以△=0,即(k-9)2-

8(k2+3k+4)=0,k2-18k+81-8k2-24k-32=0,化简,得k2+6k-7=0,(k+7)(k-1)=0. 所以k1=-7,k=1.

当k=-7时,原方程为2x2-16x+32=0,得x1=x2=4;

当k=1时,原方程为2x2-8x+8=0,得x3=x4=2.

(问:本题的算理是什么?答:是定理5)

例3 若关于x的方程x2+2(a+1)x+(a2+4a-5)=0有实数根,试求正整数a 的值。

分析:要注意两个条件:①有实数根,②a是正整数。

解:由方程有实根△≥0,得[2(a+1)]2-4×1×(a2+4a-5)≥0,不等式两边同除以正数4,不等号的方向不变,得a2+2a+1-a2-

4a+5≥0,-2a+6≥0,所以a≤3

因为a是正整数,所以a=1,2,3

(注意:本题的算理是根据定理4,5,而不是定理1,2)

(四)课堂练习

1.关于x的一元二次方程k x2-2x-1=0有两个不相等实数根,则k的取值范围是______________.

2.当a2-1且k≠0; 2.无实数根)

(五)小结

1.根的判别式是用来判断一元二次方程的根的情况:方程有没有实数根;如果有实根,是两个相等实根,还是不相等实根。

2.运用根的判别式解题时,必须先把方程化为一元二次方程的一般形式,并认准a,b,c的值.

3.在解题时,应明确何时用定理1,2,3何时用定理4,5,6.

(六)作业

1.下列方程中,有两个相等实数根的方程是( )

(A)7x2-x-1=0 (B)9x2=4(3x-1)

(C)x2+7x+15=0 (D)x2-x+1=0

3.若方程(k2-1)x2-6(3k-1)x+72=0 有两个不同的正整数根,则整数k 的值是( )。

4.若a,b,c互不相等,则方程

(a2+b2+c2)x2+2(a+b+c)x+3=0( )

(A)有两个相等的实数根 (B)有两个不相等的实数根

(C)没有实数根 (D)根的情况不确定

5.不解方程,判别下列方程的根的情况:

(1)2x2+4x+35=0; (2)4m(m-1)+1=0; (3)0.2x2-5=x;

(4)4(y2+0.09)=2.4y; (5) x2-=x; (6)2t=(t2+)

6.已知关于x的方程x2+(2m+1)x+(m-2)2=0. m取什么值时,

(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?

7.K取什么值时,方程4x2-(k+2)x+k-1=0有两个相等的实数根?并求出这时方程的根。

8.求证:关于x的方程x2+(2k+1)x+k-1=0有两个不相等的实数根。

课堂教学设计说明

1.为了很自然地引入新课的课题,在本节课开始请学生回忆上节课用求根公式法解一元二次方程的书写步骤,特别要问学生为什么在代入求根公式之前要先计算一下b2-4ac的值。由此引入b2-4ac的名称和作用。2.在新课中,提出一元二次方程ac2+bx+c=0(a≠0)中的b2-4ac叫做根的判别式后,提醒学生要注意两点:(1)根的判别式不是;(2)判别根的什么性质。

3.教学设计中,把根的判别式性质用三个原命题与三个相应的逆命题形式出现,把条件与结论划分得明确,使学生易于接受及记忆。

4.上述命题与逆命题的功能分为两类,一类是已知方程的系数,要判定方程根的情况,为此教学设计中,安排了例1;另一类是已知方程根的情况,要求方程的系数中所含字母的值或求字母间的关系式,为此教学设计中,安排了例2,例3。为了强化这两类问题的功能,在题目安排中,并提问了解题所依据的算理是什么。

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程的概念

一元二次方程的概念 知识点: 一、一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2,这样的整式方程称为一元二次方程。 识别一元二次方程必须抓住三个方面: (1)整式方程 (2)含有一个未知数 (3)未知数的最高次数是2次 【例】下列方程中哪些是一元二次方程?哪些不是?说说你的理由. (1)16x 2= (2)0125x 2=--x (3)032x 2=-+y (4)03x 1 2=-+x (5)0x 2= (6)052x 24=--x 二、一元二次方程的一般形式:02 =++c bx ax (a ≠0) 一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下的形式:02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式。其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项. 【整理】2ax 是二次项,a 是二次项系数, bx 是一次项,b 是一次项系数, c 是常数项. 例1.把6)4)(3(-=-+x x 化成一元二次方程的一般形式,并写出它的二次项系数,一次 项系数和常数项。 例2.指出 mx 2-nx-mx+nx 2=p 二次项,一次项,二次项系数,一次项系数, . 练习:把下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项,常数项。 ①()x x x x 3422 -=- ②()()2 21248-+=+x x x ③12132=+-x x ④ ()0p 2 2≠+-=++-n m q nx mx nx mx 小结:理解一元二次方程以下方面入手: (1)一元:只含有一个未知数,"元"的含义就是未知数 (2)二次:未知数的最高次数是2,注意二次系数不等于0. (3)方程:方程必须是整式方程,这是判断的前提。

九年级数学专训1一元二次方程的解法归类

2020-2021学年 专训1 一元二次方程的解法归类 名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、配方法、公式法和因式分解法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果. 限定方法解一元二次方程 形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解 1.方程4x2-25=0的解为( ) A.x=B.x= C.x=±D.x=± 2.用直接开平方法解下列一元二次方程,其中无解的方程为( ) A.x2-5=5 B.-3x2=0 C.x2+4=0 D.(x+1)2=0 当二次项系数为1,且一次项系数为偶数时,用配方法求解 3.用配方法解方程x2+3=4x,配方后的方程变为( ) A.(x-2)2=7 B.(x+2)2=1 C.(x-2)2=1 D.(x+2)2=2 4.解方程:x2+4x-2=0. 5.已知x2-10x+y2-16y+89=0,求的值. 能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法求解

6.(中考·宁夏)一元二次方程x(x-2)=2-x的根是( ) A.-1 B.0 C.1和2 D.-1和2 7.解下列一元二次方程: (1)x2-2x=0; (2)16x2-9=0; (3)4x2=4x-1. 如果一个一元二次方程易于化为它的一般式,则用公式法求解8.用公式法解一元二次方程x2-=2x,方程的解应是( ) A.x=B.x= C.x=D.x= 9.用公式法解下列方程. (1)3(x2+1)-7x=0; (2)4x2-3x-5=x-2. 选择合适的方法解一元二次方程 10.方程4x2-49=0的解为( ) A.x=B.x=

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程的意义及解法

一元二次方程的解法探究 目标链接: 1、 掌握用直接开平方法、因式分解法、配方法、求根法等方法解一元二次方程。 2、 通过对一元二次方程的解法,体会数学中有简单到复杂,再由复杂到简单的转化思想。 知识要点: 知识点1:直接开方法 形式:形如(x+h )2=k 2(k 是常数)的方程 知识点2:配方法 配方法是一元二次方程的重要方法,熟练地掌握完全平方式是配方法解题的基础。对于二次项系数为1的方程,在方程两边同时加上一次项系数一半的平方即可配方。若二次项系数不为1,一般应先将二次项系数变为1,然后配方比较简便。 知识点3:一元二次方程的球根公式 形如ax 2+bx+c=0(a ≠0),当b 2 -4ac ≥0时,x=a ac b b 242-±- b 2-4ac <0时,原方程无解 知识点4:用公式法解一元二次方程的一般步骤 (1) 化为一般式(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值(4)代入公式求解。 知识点5:一元二次方程的根的判别式。 代数式b 2-4ac 叫做一元二次方程ax 2+bx+c=0的根的判别式,通常用“△”表示。 知识点6:因式分解法 这种方法的依据是,若a-b=0,则a=0或b=0其形式就是把已知方程通过因式分解把它们化成A-B=0的形式。例如(x-2)(x+1)=0可用此法解之,其步骤: (1)将方程右边化为零(2)将左边分解因式(3)令每个因式为零(4)解每一个一元一次方程,它的解就是原方程的解。 典型例题: 例1 用直接开平方法解下列方程 (1)x 2-9=0 (2)4(x-2)2-36=0 (3)2 1(x+3)2=4 例2 用配方法解下列方程 (1)x 2-4x-3=0 (2)x 2+3x-1=0 例3 用公式法解下列方程 (1)2x 2+7x=4 (2) 21x 2+ 2 1x=81 (3)x 2+3=22x 例4 不解方程,判别下列方程根的情况。

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程试题及答案

一元二次方程根与系数的关系 一、选择题 1. (2011?南通)若3是关于方程x 2-5x +c =0的一个根,则这个方程的另一个根是( ) A 、﹣2 B 、2 C 、﹣5 D 、5 分析:由根与系数的关系,即3加另一个根等于5,计算得. 解答:解:由根与系数的关系,设另一个根为x ,则3+x=5,即x=2.故选B . 点评:本题考查了根与系数的关系,从两根之和出发计算得. 2. (2011南昌,9,3分)已知x =1是方程x 2+bx ﹣2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.﹣2 D.﹣1 分析:根据根与系数的关系得出x 1x 2= a c =﹣2,即可得出另一根的值. 解答:解:∵x =1是方程x 2+bx ﹣2=0的一个根,∴x 1x 2==﹣2,∴1×x 2=﹣2,则方程的另一个根是:﹣2,故选C . 点评:此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键. 3. (2011湖北荆州,9,3分)关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( ) A 、1 B 、-1 C 、1或-1 D 、2 分析:根据根与系数的关系得出x 1+x 2=- ba ,x 1x 2= ca ,整理原式即可得出关于a 的方程求出即可. 解答:解:依题意△>0,即(3a+1)2-8a (a+1)>0, 即a 2-2a+1>0,(a -1)2>0,a≠1, ∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a , ∴x 1-x 1x 2+x 2=1-a , ∴x 1+x 2-x 1x 2=1-a , ∴ 3a+1a - 2a+2a=1-a ,

一元二次方程及解法归类

寒假培训八年级下数学资料 一、一元二次方程及其相关概念 1、只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元 二次方程。 2、一元二次方程的一般形式是ax 2+bx+c=0(a,b,c 是已知数且0≠a ),其中ax 2叫做 ________, bx 叫做_______, a 叫做___________系数,b 叫做___________系数,c 叫做_________. 典型例题: 1. 下列方程是一元二次方程的有___________ (1) 215)25(3x x x =-.(2) 035)12(22=---x x ; (3) 2 33432-+x x =0; 【变式练习】下列方程不是一元二次方程的是( ) A. x 2+2x+1=0 B. x 2=1-3x C. +1=0 D. x 2+x=(x+1)(x-2) 2. 方程4x 2=13-2x 化为一般形式为_____________,它的二次项系数是______, 一次项系数是 ________,常数项是______. 【变式练习】把一元二次方程(1-3x )(x+3)=2x 2+1化成一般形式是:______________; 它的二次项系 数是_______;一次项系数是_________; 常数项是_________. 3. ; 4. 当m=______时,关于x 的方程(m-2)x 2+mx=5是一元一次方程;当m______时,关于x 的方程 (m-2)x 2+mx=5是一元二次方程。 【变式练习】已知m 是方程012=--x x 的一个根,则m m -2=( ) A. -1 B. 0 C. 1 D. 2 5. 关于x 的方程01)1(1=+++-kx x k k 是一元二次方程,则k 的值为________ 【变式练习】已知关于x 的一元二次方程01)1(22=-++-k x x k 的一个根是0,则k=_______ 二、直接开平方法 若x 2 =25,由平方根定义可以知:5±=x , 即x 1=5, x 2=-5; 若(2x-1)2=5,那么2x-1=±______, 即2x-1=______, 2x-1=_____; 从而可以得到方程两根为:x 1=______, x 2=_______ 、 解下列方程:(1)1) 3(2=+x (2)18)54(22=-x 三、配方法 用配方法解一元二次方程的一般步骤: ① 化二次项系数为1; ② 移项,使方程左边为二次项和一次项,右边为常数项;

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身文档设计者: 设计时间 : 文档类型: 文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载 1.如果2是一元二次方程x 2 +bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2 16(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型: 考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断, 注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接

1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2 ≥=a a x 或)0()(2 ≥=-a a b x 的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2 ()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)公式法:一元二次方程2 0(0)ax bx c a ++=≠的求根公式是 221,2 4(40)2b b ac x b ac a -±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程 的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. ◆典例精析 例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2 D .2- 【答案】A 【解析】本题考查了一元二次方程的根。因为x=3是原方程的根,所以将x=3代入原方程, 原方程成立,即06332 =--k 成立,解得k=1。故选A 。 例2(湖北仙桃)解方程:2 420x x ++= 【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解. 【答案】2 42x x +=-

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

(完整版)一元二次方程知识点及其应用

一、相关知识点 1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 (1)明确只有当二次项系数0≠a 时,整式方程02 =++c bx ax 才是一元二次方程。 (2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程 3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法 1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解; 2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: (1)开平方法:对于形如n x =2 或)0()(2 ≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2 的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==;

一元二次方程的解法归纳总结

一元二次方程综合一元二次方程的解法归纳总结 一元二次方程的解法是每一个中学生都必须掌握的,共有5种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法. 在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法. 我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解. 一、直接开平方法 解形如(≥0)和(≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤: (1)把一元二次方程化为(≥0)或(≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程; (3)分别解这两个一元一次方程,得到一元二次方程的两个解. 注意: (1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解; (2)对于一元二次方程,当时,方程无解; (3)对于一元二次方程: 当时,一元二次方程有两个不相等的实数根; 当时,一元二次方程有两个相等的实数根; 当时,一元二次方程没有实数根. 例1. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.

解:(1) ∴; (2) ∴. 例2. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解. 解:(1) ∴或 ∴; (2) ∴ ∴或 ∴. 习题1. 下列方程中,不能用直接开平方法求解的是【】(A)(B) (C)(D) 习题2. 若,则_________.

一元二次方程根与系数关系及应用题(讲义及答案)

一元二次方程根与系数关系及应用题(讲义) 一、知识点睛 1.从求根公式中我们发现12x x +=_______,12x x ?=_________, 这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是_________________. 2.一元二次方程应用题的常见类型有: ①______________;②______________;③______________. 增长率型 例如:原价某元,经过两次连续降价(涨价); 1人患了流感,经过两轮传染. 经济型 例如:“每涨价××元,则销量减少××件”. 3.应用题的处理流程: ① 理解题意,辨析类型; ② 梳理信息,建立数学模型; ③ 求解,结果验证. 二、精讲精练 1. 若x 1,x 2是一元二次方程2274x x -=的两根,则x 1+x 2与12 x x ?的值分别是( ) A .7,4 B .72-,2 C .72,2 D .7 2,-2 2. 若x 1=23-是一元二次方程210x ax ++=的一个根,则 该方程的另一个根x 2=_________,a =________. 3. 若关于x 的方程2210x x a ++-=有两个负根,则a 的取值范 围是____________________. 4. 若关于x 的方程2220x x m +-=的两根之差的绝对值是25, 则m =________. 5. 某商品原售价289元,经过连续两次降价后售价256元.设 平均每次降价的百分率为x ,则下面所列方程正确的是( ) A .2289(1)256x -= B .2256(1)289x -= C .289(12)256x -= D .256(12)289 x -= 6. 据调查,某市2013年的房价为6 000元/米2,预计2015年将 达到8 840元/米2,求该市这两年房价的年平均增长率.设年平均增长率为x ,根据题意,所列方程为_______________. 7. 有一人患了流感,经过两轮传染后共有121人患了流感,则 每轮传染中平均一个人传染了________________个人.

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程的起源和应用

一元二次方程的起源与应用 一年七班 唐梦雷 一、定义:(quadratic equation of one variable )是指含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 二、 起源 在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。 埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。 希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。 公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。 在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a 、b 、c 为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。 韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。 我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。 我国数学家还在方程的研究中应用了内插法。 三、一元二次方程的广泛应用 例1:下列关于x 的方程,哪些是一元二次方程? (1)35 22=+x ;(2)062=-x x ;(3)5=+x x ;(4)02=-x ; (5)12)3(22+=-x x x ;(6)2273x x = ;(7)312=+ x x ;(8)522=+y x 注意点: ①二次项系数不为“0”; ②未知数指数为“2”; ③是整式方程;④只含有一个未知数. 例1:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

特殊的一元二次方程的解法—知识讲解.

一元二次方程及其解法(一) 特殊的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

一元二次方程的解法(消元)

消元一二元一次方程组的解法(四)教案 一、教学目标 1、知识与技能:熟练掌握代入消元法和加减消元法。 2、过程与方法:能根据方程组的特点选择合适的消元方法解方程组。 3、情感态度价值观:通过分析实际问题中的数量关系,建立方程组解决问题,进一步认识方程模型的重要性。 二、教学重难点 重点:能根据方程组的特点选择合适的方法解方程组。 难点:实际问题中的数量关系较复杂是本节课难点。 三、教学过程 (一)复习、引入课题 复习:解二元一次方程有多少种解法?共同点是什么?目的是什么? 引入:接下来继续深入探讨二元一次方程组的解法。 (二)探索新知 (1)解方程组 引导学生通过消y 与消x ,尝试不同的解法,培养学生发散思维,然后让学生归纳这样类型的二元一次方程组的解法。 小结1:当方程中同一个未知数的系数相等或相反时,用加减消元法较简便。 (2)请选择适当的方法解下列方程组: ① ② ③ 2x-2y=60 (2) 2x+2y=100 (1) 3.2x+2.4y=5.2 2x+y=1.5 4x+8y=12 3x-2y=5 5x-4y=2 2x+3y=10

通过这三个方程组的讨论,归纳出方程系数具有什么特征时选择什么消元法。 小结2:当方程组中有一个未知数的系数是1或-1时,用代入消元法较简便。 小结3:当两个方程中同一个未知数的系数成整倍数时,用加减消元法较简便。 小结4:当方程组中任何未知数的系数不是1或-1,是不成整倍数时,一般经过变形后利用加减消元法较简便。 老师小结:解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择恰当的方法可以减少走弯路,加快解题速度,使解题过程简洁,提高正确率。 (三)实际应用 例(教材104页):2台大收割机和5台小收割机工作2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷? 通过分步提问,引导学生分析 问题1:列方程组解应用题的关键是什么? 问题2:你能找出本题的等量关系吗? 问题3:怎么表示2台大收割机2小时的工作量呢 设:如果1台大收割机1小时收割小麦X公顷,1台小收割机1小时收割小麦Y公顷。 那么2台大收割机2小时收割小麦()公顷,5台小收割机2小时收割小麦()公顷。 根据“2台大收割机2小时的工作量+5台小收割机2小时的工作量=3.6公顷”可列方程: 4x+10y=3.6

浅谈一元二次方程的应用

浅谈一元二次方程的应用 姓名:宋永安 年级:2011 级 专业:数学应用 指导教师:王元会

浅谈一元二次方程的应用 (宋永安,2011级,数学应用本科) 文章摘要:一元二次方程在初中教学内容中,站着举足轻重的地位,学好一元二次方程,是学好二次函数不可或缺的捷径,也是学好高中数学的奠基工程。因此,本文将从函数入手,着重探讨一下一元二次方程的概念、形式、解法以及应用,以求对于一元二次方程有个深入的解析。 关键词:函数一元二次方程应用 一元二次方程是在学习《一元一次方程》、《二元一次方程》和分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程,是学好二次函数不可或缺的捷径,也是学好高中数学的奠基工程。应该说,一元二次方程是初中教学的重点内容。 一、函数 1、函数的概念 函数是描述客观世界变化规律的重要数学模型。 1755欧拉首次给出了函数变量定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后面的变量变化时,前者的这些量也随之变化,则将前面的变量称之为后一些变量的函数.由此演变为目前的函数的“变量说”,黎曼在1851定义:“我们假定z是一个变量,如果对它的每一个值,都有未知量W的

每一个值与之对应,则称W 是Z 的函数.1939年,布尔巴基学派主借用了笛卡儿积建立关系,进而定义函数: (1)对A 中每一个元素x ,存在y B ∈,使(),x y F ∈; (2)若()1,x y F ∈且()2,x y F ∈,则12y y =.数F 记作::F A B →. 分别称以上函数的定义为变量说、对应说和关系说. 2、函数概念的核心思想 数学的核心是研究关系,即数量关系、图形关系和随机关系.数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系.中有三点是重要的,一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号表示函数. 函数的表达方式一般有三种:解析式法,表格法,图像法. 解析式是最常用的方法,适用于表示连续函数或者分段函数.析式有利于研究函数性质,构建数学模型,但对初学者来说也是抽象的.表法适用于表达变量取值是离散的情况.用图像法可以直观地表述函数的形态,有利于分析函数的性质,但作图是比较困难的,用何种方法来表达函数因题而异. 3、中学数学研究的函数性质 数学中研究函数主要是研究函数的变化特征.学阶段主要研究函数的周期性,也涉及奇偶性;在高中阶段主要研究函数的单调性、周期性,也讨论某些函数的奇偶性. (1)函数的周期性 周期性反映了函数变化周而复始的规律.中学阶段学习函数的一个基本的性质.期函数是刻画周期变化的基本函数模型,使我们集中研究函数在一个周期里的变化,了解函数在整个定义域内的变化情况. (2)函数的奇偶性 函数的奇偶性也是我们在中学阶段学习函数时要研究的函数的性质,但它不是最基本的性质.偶性反应了函数图形的对称性质,可以帮助我们用对称思想来研究函数的变化规律. (3)函数的单调性

相关文档
相关文档 最新文档