文档库 最新最全的文档下载
当前位置:文档库 › 线性表及其应用实验报告

线性表及其应用实验报告

线性表及其应用实验报告
线性表及其应用实验报告

数据结构实验报告

实验名称:线性表及其应用

班级:12级电气本2

学号:2012081227

姓名:赵雪磊

指导教师:梁海丽

日期:2013年9月9日

数学与信息技术学院

一、实验目的

1、掌握线性表的概念,理解线性表的顺序、链式存储。

2、掌握线性表的基本操作,插入、删除、查找,以及线性表合并等运算在顺序存储结构和链接存储结构上的运算。

二、实验要求

1、建立顺序存储的线性表,并对之进行插入、删除操作。

2、建立链式存储的线性表,并对之进行插入、删除操作。;

三、算法描述

#include

#include

#include "myList.h"

using namespace std;

template class Link {

public:

T data; // 用于保存结点元素的内容

Link * next; // 指向后继结点的指针

Link(const T info, Link* nextValue = NULL) { // 具有两个参数的Link构造函数data = info;

next = nextValue;

}

Link(Link* nextValue = NULL) { // 具有一个参数的Link构造函数

next = nextValue;

}

}

// 【代码2.7】单链表的类型定义

template

class lnkList : public List {

protected:

Link* head, tail; // 单链表的头、尾指针

public:

lnkList(); // 构造函数

~lnkList(); // 析构函数

bool isEmpty(); // 判断链表是否为空

void clear(); // 将链表存储的内容清除,成为空表

int length(); // 返回此顺序表的当前实际长度

bool append(T value); // 在表尾添加一个元素value,表的长度增1 bool insert(int p, T value); // 在位置p上插入一个元素value,表的长度增1 bool delete(int p); // 删除位置p上的元素,表的长度减 1

int getPos(const T value); // 查找值为value的元素,并返回第1次出现的位置

Link setPos(int p); // 返回线性表指向第p个元素的指针值

}

template

class lnkList:: lnkList() {

head = tail = new Link;

}

template

class lnkList:: ~lnkList() {

Link tmp;

while (head != NULL) {

tmp = head;

head = head->next;

delete tmp;

}

}

template // 假定线性表的元素类型为T

Link lnkList :: setPos(int i) {

int count = 0;

Link *p;

if (i == -1) // i为-1则定位到"虚"头结点

return head;

p = head->next; // 若i为0则定位到第一个结点

while (p != NULL && count < i) {

p = p-> next;

count++;

};

return p; // 指向第 i 结点,i=0,1,…,当链表中结点数小于i时返回NULL }

template // 假定线性表的元素类型为T

bool lnkList :: insert (int i, T value) {

Link *p, *q;

q = new Link;

p = setPos(i-1); // p是第i个结点的前驱

if (p == NULL ) {

cout << " the inserted point is illegal"<

return false;

}

q->next = p->next;

q->data = value;

p->next = q;

if (q->next == NULL ) // 插入点在链尾,插入结点成为新的链尾

tail = q;

return true;

}

// delete a node from singly linked list

template // 假定线性表的元素类型为T

bool lnkList :: delete(int i) {

Link *p, *q;

p = setPos(i-1); // p是第i个结点的前驱

if (p == NULL ) {

cout << " the deletion point is illegal"<

return false;

}

q = p->next; // q是真正待删结点

if (q == tail) // 待删结点为尾结点,则修改尾指针

tail = p;

if (q != NULL) { // 删除结点q 并修改链指针

p->next = q->next;

delete q;

}

return true;

}

template // 假定顺序表的元素类型为T

void lnkList :: print() {

while (head != NULL) {

cout << head->data;

cout << endl; // 从位置p开始每个元素左移直到curLen, tmp = head;

head = head->next;

}

}

四、程序清单

#include

#define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define

OVERFLOW -2

typedef int Status;

typedef int ElemType;

#define LIST_INIT_SIZE 10 #define LISTINCREMENT 2

typedef struct shunxubiao{ ElemType *list;

int size;

int Maxsize; }SqList;

int InitList_Sq(SqList &L) {

// 构造一个空的线性表L。

L.list = new ElemType[LIST_INIT_SIZE];

if (!L.list) return OVERFLOW; // 存储分配失败 L.size = 0; // 长度

为0

L.Maxsize = LIST_INIT_SIZE; // 初始存储容量 return OK; } // InitList_Sq

int InsertList_Sq(SqList &L, int i, ElemType e) { ElemType *p,*q;

if (i < 1 || i > L.Maxsize+1) return ERROR; q = &(L.list[i-1]); // q指示插入位

置 for (p=&(L.list[L.Maxsize-1]); p >= q; --p)

*(p+1) = *p;

// 插入位置及之后的元素右移

*q = e; // 插入e ++L.size; // 表长增1 return OK; } // ListInsert_Sq

int LocateElem_Sq(SqList L, ElemType e) {

// 在顺序表中查询数据元素e,若存在,则返回它的位序,否则返

回 0 int i = 1; // i 的初值为第 1 元素的位

序 ElemType *p = L.list; // p 的初值为第 1 元素的存储位

置 while (i <= L.size && *p!=e) { ++i;

++p;

}

if (i <= L.size) return i; else return 0;

}

Status InsertList_Sq(SqList &L,ElemType e,ElemType f,ElemType g) { int i=LocateElem_Sq( L,e); int j=LocateElem_Sq(L,f); if(i==j-1) { InsertList_Sq(L,j,g); return OK; }

else return ERROR;

}

int GetList_Sq(SqList L,int i) { if(i>0 && i<=L.size) { return L.list[i];

} else

return ERROR; }

Status ListDelete_Sq(SqList &L, int i, ElemType &e) { ElemType *p,*q;

if ((i < 1) || (i > L.Maxsize)) return ERROR; p = &(L.list[i-1]); // p为被删除元素的位置 e = *p; // 被删除元素的值赋给e

q = L.list+L.size-1; // 表尾元素的位置

for (++p; p <= q; ++p)

*(p-1) = *p; // 被删除元素之后的元素左移 --L.size; // 表长减1 return OK;

} // ListDelete_Sq

void Create_Sq(SqList &L) { cout<<"创建顺序表"<

数:"; int count;

cin>>count;

for(int i=0;i

"; cin>>L.list[i]; ++L.size;

}

}

void Print_Sq(SqList &L) { cout<<"输出顺序表:"<

cout<

}

void main() { SqList myList;

ElemType e,f,g,sc; InitList_Sq(myList); Create_Sq(myList);

cout<<"请输入要插入顺序表的元素:"<>g;

cout<<"请输入新插入元素在顺序表中哪两个元素之间:"<>e>>f;

if(!InsertList_Sq(myList,e,f,g))

cout<<"插入的位置不对!"<

cout<<"删除一个元素,请输入要删除的位序:"<>wx;

if(!ListDelete_Sq(myList,wx,sc)) cout<<"删除元素失败!"<

}

五、实验结果与分析

六、实验心得

此次上机实验,不仅对此次编译程序的算法思想有了新的认识,还让我深刻的体会到了线性表的重要性以及其应用的方便,并且对指针加深了映象,应用了书本中的算法思想,对我以后的编译以及完成新的程序有很大的帮助。

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

线性表实验报告

线性表实验报告 一、实验的目的要求 1、了解线性表的逻辑结构特性,以及这种结构特性在计算机内的两种存储结构。 2、掌握线性表的顺序存储结构的定义及其C语言实现。 3、掌握线性表的链式存储结构——单链表的定义及其C语言实现。 4、掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5、掌握线性表在链式存储结构——单链表中的各种基本操作。 6、认真阅读和掌握实验的程序。 7、上机运行本程序。 8、保存和打印出程序的运行结果,并结合程序进行分析。 二、实验的主要内容 题目:请编制C语言,利用链式存储方式来实现线性表的创建、插入、删除和查找等操作。 具体地说,就是要根据键盘输入的数据建立一个单链表,并输出该单链表;然后根据屏幕 菜单的选择,可以进行数据的插入或删除,并在插入或删除数据后,再输出单链表;最后 在屏幕菜单中选择0,即可结束程序的运行。 三、解题思路分析 在链表中插入数据,不需要进行大量的数据移动,只需要找到插入点即可,可以采用后插入的算法,在插入点的后面添加结点。在链表中删除数据,先找到删除点,然后进行指针赋值操作。 四、程序清单 #include #include #include typedef int ElemType; typedef struct LNode {ElemType data; struct LNode *next; }LNode;

LNode *L; LNode *creat_L(); void out_L(LNode *L); void insert_L(LNode *L,int i,ElemType e); ElemType delete_L(LNode *L,ElemType e); int locat_L(LNode *L,ElemType e); void main() {int i,k,loc; ElemType e,x; char ch; do{printf("\n"); printf("\n 1.建立单链表"); printf("\n 2.插入元素"); printf("\n 3.删除元素"); printf("\n 4.查找元素"); printf("\n 0.结束程序运行"); printf("\n================================"); printf("\n 请输入您的选择(1,2,3,4,0)"); scanf("%d",&k); switch(k) {case 1:{L=creat_L(); out_L(L); }break; case 2:{printf("\n请输入插入位置:"); scanf("%d",&i); printf("\n请输入要插入元素的值:");

C语言数据结构线性表的基本操作实验报告

实验一线性表的基本操作 一、实验目的与基本要求 1.掌握数据结构中的一些基本概念。数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。 2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。 3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。4.掌握运用C语言上机调试线性表的基本方法。 二、实验条件 1.硬件:一台微机 2.软件:操作系统和C语言系统 三、实验方法 确定存储结构后,上机调试实现线性表的基本运算。 四、实验内容 1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。 2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。 3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。 五、附源程序及算法程序流程图 1.源程序 (1)源程序(实验要求1和3) #include #include #include #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef struct arr {

全维状态观测器的设计

实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 姓名 学号 同组人 实验名称全维状态观测器的设计 评分 批阅教师签字 一、实验目的 1、 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的 极点对状态的估计误差的影响; 2、 掌握全维状态观测器的设计方法; 3、 掌握带有状态观测器的状态反馈系统设计方法。 二、实验内容 开环系统? ??=+=cx y bu Ax x &,其中 []0100001,0,10061161A b c ????????===????????--???? a) 用状态反馈配置系统的闭环极点:5,322-±-j ; b) 设计全维状态观测器,观测器的极点为:10,325-±-j ; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时); 绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6、5 四、实验原理(或程序框图)及步骤

利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件就是必须对全部状态变量都能进行测量,但在实际系统中,并不就是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y 与输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次就是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke 增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出k e ; 方法二:就是可 采用Ackermann 公式: []T o e Q A k 1000)(1Λ-Φ=,其中O Q 为可观性矩阵。 利用对偶原理,可使设计问题大为简化。首先构造对偶系统 ???=+=ξ ηξξT T T b v c A & 然后可由变换法或Ackermann 公式求出极点配置的反馈k 增益,这也可

数据结构实验一题目一线性表实验报告

北京邮电大学电信工程学院 数据结构实验报告 实验名称:实验1——线性表 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 1、实验目的:熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 学习指针、模板类、异常处理的使用 掌握线性表的操作的实现方法 学习使用线性表解决实际问题的能力 2、实验内容: 题目1: 线性表的基本功能: 1、构造:使用头插法、尾插法两种方法 2、插入:要求建立的链表按照关键字从小到大有序 3、删除 4、查找 5、获取链表长度 6、销毁 7、其他:可自行定义 编写测试main()函数测试线性表的正确性。 2. 程序分析 2.1 存储结构 带头结点的单链表

2.2 关键算法分析 1.头插法 a、伪代码实现:在堆中建立新结点 将x写入到新结点的数据域 修改新结点的指针域 修改头结点的指针域,将新结点加入链表中b、代码实现: Linklist::Linklist(int a[],int n)//头插法 {front=new Node; front->next=NULL; for(int i=n-1;i>=0;i--) {Node*s=new Node; s->data=a[i]; s->next=front->next; front->next=s; } } 2、尾插法

a、伪代码实现:a.在堆中建立新结点 b.将a[i]写入到新结点的数据域 c.将新结点加入到链表中 d.修改修改尾指针 b、代码实现: Linklist::Linklist(int a[],int n,int m)//尾插法 {front=new Node; Node*r=front; for(int i=0;idata=a[i]; r->next=s; r=s; } r->next=NULL; } 时间复杂度:O(n) 3、按位查找 a、伪代码实现: 初始化工作指针p和计数器j,p指向第一个结点,j=1 循环以下操作,直到p为空或者j等于1 b1:p指向下一个结点 b2:j加1 若p为空,说明第i个元素不存在,抛出异常 否则,说明p指向的元素就是所查找的元素,返回元素地址 b、代码实现 Node* Linklist::Get(int i)//得到指向第i个数的指针 {Node*p=front->next; int j=1; while(p&&j!=i)//p非空且j不等于i,指针后移 {p=p->next; j++;

二阶倒立摆实验报告

. I 线性系统实验报告 : 院系:航天学院 学号: . .

2015年12月

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动

力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的容。 3.实验步骤

线性表逆置(顺序表)实验报告

实验一:线性表逆置(顺序表)实验报告 (一)问题的描述: 实现顺序表的逆置算法 (二)数据结构的设计: 顺序表是线性表的顺序存储形式,因此设计如下数据类型表示线性表: typedef struct { ElemType *elem; /* 存储空间基址*/ int length; /* 当前长度*/ int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */ }SqList; (三)函数功能、参数说明及概要设计: 1.函数Status InitList(SqList *L) 功能说明:实现顺序表L的初始化 算法设计:为顺序表分配一块大小为LIST_INIT_SIZE的储存空间 2.函数int ListLength(SqList L) 功能说明:返回顺序表L长度 算法设计:返回顺序表中的length变量 3.函数Status ListInsert(SqList *L,int i,ElemType e) 功能说明:将元素e插入到顺序表L中的第i个节点 算法设计:判断顺序表是否已满,已满则加空间,未满则继续,将元素e插入到第i个元素之前,并将后面的元素依次往后移 4.函数Status ListTraverse(SqList L,void(*vi)(ElemType*)) 功能说明:依次对L的每个数据元素调用函数vi() 算法设计:依次对L的每个数据元素调用函数vi() 5.函数void Exchange(SqList *L) 功能说明:实现顺序表L的逆置 算法设计:用for循环将顺序表L中的第i个元素依次与第(i+length)个元素交换6.函数void print(ElemType *c) 功能说明:打印元素c 算法设计:打印元素c 2. (四)具体程序的实现

实验报告一顺序表的操作

《数据结构》实验报告一 系别:班级: 学号:姓名: 日期:指导教师: 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 从键盘输入10个整数,产生顺序表,并输入结点值。 从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找不到,则显示“找不到”。 从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出顺序表所有结点值,观察输出结果。 从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。二、程序设计的基本思想,原理和算法描述: (包括程序的结构,数据结构,输入/输出设计,符号名说明等) 三、源程序及注释:

#include <> /*顺序表的定义:*/ #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; /*子函数的声明*/ void CreateList(SeqList * L,int n); /*创建顺序表函数*/ int LocateList(SeqList L,DataType x); /*查找顺序表*/ void InsertList(SeqList * L,DataType x,int i); /*在顺序表中插入结点x*/ void DeleteList(SeqList * L,int i);/*在顺序表中删除第i个结点*/ void PrintList(SeqList L,int n); /*打印顺序表中前n个结点*/ void main() { SeqList L; int n=10,x,i; /*欲建立的顺序表长度*/ =0;

线性表实验报告

一.实验名称 1.线性表基本操作; 2.处理约瑟夫环问题 二.试验目的: 1.熟悉C语言的上机环境,掌握C语言的基本结构。 2.定义单链表的结点类型。 3.熟悉对单链表的一些基本操作和具体的函数定义。 4.通过单链表的定义掌握线性表的链式存储结构的特点。 5.熟悉对单链表的一些其它操作。 三.实验内容 1.编制一个演示单链表初始化、建立、遍历、求长度、查询、插入、删除等操作的程序。 2.编制一个能求解除约瑟夫环问题答案的程序。 实验一线性表表的基本操作问题描述: 1. 实现单链表的定义和基本操作。该程序包括单链表结构类型以及对单链表操作 的具体的函数定义 程序中的单链表(带头结点)结点为结构类型,结点值为整型。 /* 定义DataType为int类型*/ typedef int DataType; /* 单链表的结点类型*/ typedef struct LNode {DataType data; struct LNode *next; }LNode,*LinkedList; LinkedList LinkedListInit() //初始化单链表 void LinkedListClear(LinkedList L) //清空单链表 int LinkedListEmpty(LinkedList L)//检查单链表是否为空 void LinkedListTraverse(LinkedList L)//遍历单链表 int LinkedListLength(LinkedList L)//求单链表的长度 /* 从单链表表中查找元素*/ LinkedList LinkedListGet(LinkedList L,int i) /* 从单链表表中查找与给定元素值相同的元素在链表中的位置*/ int LinkedListLocate(LinkedList L, DataType x) void LinkedListInsert(LinkedList L,int i,DataType x) //向单链表中插入元素 /* 从单链表中删除元素*/ void LinkedListDel(LinkedList L,DataType x)

数据结构- 顺序表的基本操作的实现-课程设计-实验报告

顺序表的基本操作的实现 一、实验目的 1、掌握使用VC++上机调试顺序表的基本方法; 2、掌握顺序表的基本操作:建立、插入、删除等运算。 二、实验仪器 安装VC++软件的计算机。 三、实验原理 利用线性表的特性以及顺序存储结构特点对线性表进行相关的基本操作四、实验内容 程序中演示了顺序表的创建、插入和删除。 程序如下: #include #include /*顺序表的定义:*/ #define ListSize 100 typedef struct { int data[ListSize]; /*向量data用于存放表结点*/ i nt length; /*当前的表长度*/ }SeqList; void main() { void CreateList(SeqList *L,int n); v oid PrintList(SeqList *L,int n); i nt LocateList(SeqList *L,int x); v oid InsertList(SeqList *L,int x,int i); v oid DeleteList(SeqList *L,int i); SeqList L;

i nt i,x; i nt n=10; L.length=0; c lrscr(); C reateList(&L,n); /*建立顺序表*/ P rintList(&L,n); /*打印建立后的顺序表*/ p rintf("INPUT THE RESEARCH ELEMENT"); s canf("%d",&x); i=LocateList(&L,x); p rintf("the research position is %d\n",i); /*顺序表查找*/ p rintf("input the position of insert:\n"); s canf("%d",&i); p rintf("input the value of insert\n"); s canf("%d",&x); I nsertList(&L,x,i); /*顺序表插入*/ P rintList(&L,n); /*打印插入后的顺序表*/ p rintf("input the position of delete\n"); s canf("%d",&i); D eleteList(&L,i); /*顺序表删除*/ P rintList(&L,n); /*打印删除后的顺序表*/ g etchar(); } /*顺序表的建立:*/ void CreateList(SeqList *L,int n) {int i; printf("please input n numbers\n"); for(i=1;i<=n;i++) scanf("%d",&L->data[i]); L->length=n;

数据结构线性表实验报告

实验报告 实验一线性表 实验目的: 1.理解线性表的逻辑结构特性; 2.熟练掌握线性表的顺序存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用; 3.熟练掌握线性表的链表存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用; 4.掌握双向链表和循环链表的的描述方法,以及在该存储结构下的基本操作。 实验原理: 线性表顺序存储结构下的基本算法; 线性表链式存储结构下的基本算法; 实验内容: 2-21设计单循环链表,要求: (1)单循环链表抽象数据类型包括初始化操作、求数据元素个数操作、插入操作、删除操作、取消数据元素操作和判非空操作。 (2)设计一个测试主函数,实际运行验证所设计单循环链表的正确性。 2-22 .设计一个有序顺序表,要求: (1)有序顺序表的操作集合有如下操作:初始化、求数据元素个数、插入、删除和取数据元素。有序顺序表与顺序表的主要区别是:有序顺序表中的数据元素按数据元素值非递减有序。 (2)设计一个测试主函数,实际运行验证所设计有序顺序表的正确性。 (3)设计合并函数ListMerge(L1,L2,L3),功能是把有序顺序表L1和L2中的数据元素合并到L3,要求L3中的数据元素依然保持有序。并设计一个主函数,验证该合并函数的正确性。 程序代码: 2-21(1)头文件LinList.h如下: typedef struct node { DataType data; struct node *next; }SLNode; /*(1)初始化ListInitiate(SLNode * * head)*/ void ListInitiate(SLNode * * head) { /*如果有内存空间,申请头结点空间并使头指针head指向头结点*/ if((*head=(SLNode *)malloc(sizeof(SLNode)))==NULL)exit(1);

系统的能控性,能观测性,稳定性分析

实验报告 课程线性系统理论基础实验日期年月日 专业班级姓名学号同组人 实验名称系统的能控性、能观测性、稳定性分析及实现评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a)了解以下命令的功能;自选对象模型,进行运算,并写出结

果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性; (c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性

顺序表实验报告

嘉应学院计算机学院 实验报告 课程名称数据结构实验名称线性表实验地点锡科405 指导老师巫喜红实验时间第2-3周提交时间第3周 班级1303班姓名魏振辉学号131110108 一、实验目的和要求 编写一个程序algo2-1.cpp,实现顺序表的各种基本运算 二、实验环境、内容和方法 实验内容: 1.初始化线性表L; 2.依次采用尾插法插入a,b,c,d,e元素; 3.输出顺序表L; 4.输出顺序表L的长度; 5.判断顺序表L是否为空; 6.输出顺序表L的第3个元素; 7.输出元素a的位置; 8.在第4个元素位置上插入f元素; 9.输出顺序表L; 10.删除L的第3个元素; 11.输出顺序表L; 12.释放顺序表L。 实验环境:Windows xp Visual C++6.0 三、实验过程描述 (详见本文件夹) 四、结果分析 运行结果如下图所示: 初始化线性表,先定义一个变量num,用while循环配合switch语句的使用来达到在未选择退出即num不等

时一直提示操作的效果,每执行一次操都会先运行fflush(stdin)函数来清除缓存区,避免下次操作受到干扰; 1、往线性表里插入元素,位置和元素用空格隔开; 2、查询线性表是否为空 3、输出顺序表 4、查询线性表长度

5、查询某位置的元素。执行查询操作时先用if语句判断查询元素的函数LocateElem(L,e)返回的值来执行不的操作,当返回的值为0时则所查元素不在线性表中; 6、查询木元素的位置。用if语句判断是否正确输入; 7、删除某元素。 8、释放顺序表 9、退出。用if语句每次执行操作时都判断一次指令是否正确。 五、实验总结

线性表的基本操作实验报告

实验一:线性表的基本操作 【实验目的】 学习掌握线性表的顺序存储结构、链式存储结构的设计与操作。对顺序表建立、插入、删除的基本操作,对单链表建立、插入、删除的基本操作算法。 【实验内容】 1.顺序表的实践 1) 建立4个元素的顺序表s=sqlist[]={1,2,3,4,5},实现顺序表建立 的基本操作。 2) 在sqlist []={1,2,3,4,5}的元素4和5之间插入一个元素9,实现 顺序表插入的基本操作。 3) 在sqlist []={1,2,3,4,9,5}中删除指定位置(i=5)上的元素9, 实现顺序表的删除的基本操作。 2.单链表的实践 3.1) 建立一个包括头结点和4个结点的(5,4,2,1)的单链表,实现单链 表建立的基本操作。 2) 将该单链表的所有元素显示出来。 3) 在已建好的单链表中的指定位置(i=3)插入一个结点3,实现单链表插 入的基本操作。 4) 在一个包括头结点和5个结点的(5,4,3,2,1)的单链表的指定位置 (如i=2)删除一个结点,实现单链表删除的基本操作。 5) 实现单链表的求表长操作。 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了刚创

建的工程之中。 4.写好代码 5.编译->链接->调试 1、#include "stdio.h" #include "malloc.h" #define OK 1 #define OVERFLOW -2 #define ERROR 0 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef int ElemType; typedef int Status; typedef struct { ElemType *elem; int length; int listsize; } SqList; Status InitList( SqList &L ) { int i,n; L.elem = (ElemType*) malloc (LIST_INIT_SIZE*sizeof (ElemType)); if (!L.elem) return(OVERFLOW); printf("输入元素的个数:"); scanf("%d",&n); printf("输入各元素的值:"); for(i=0;i

系统的能控性、能观测性、稳定性分析

实 验 报 告 课程 线性系统理论基础 实验日期 年 月 日 专业班级 学号 同组人 实验名称 系统的能控性、能观测性、稳定性分析及实现 评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌 握如何使用MATLAB 进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a )了解以下命令的功能;自选对象模型,进行运算,并写出结 果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,18 2710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;

(c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性 已知两个单位负反馈系统的开环传递函数分别为 s s s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。 (d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。 []x y u x x 0525,100050250100010-=????? ?????+??????????-=

实验报告二:线性表及其基本操作实验(2学时)

实验报告 实验二线性表及其基本操作实验(2学时) 实验目的: (1) 熟练掌握线性表ADT和相关算法描述、基本程序实现结构; (2) 以线性表的基本操作为基础实现相应的程序; (3) 掌握线性表的顺序存储结构和动态存储结构之区分。 实验内容:(类C算法的程序实现,任选其一。具体要求参见教学实验大纲) (1)一元多项式运算的C语言程序实现(加法必做,其它选做); (2) 有序表的合并; (3)集合的并、交、补运算; (4)约瑟夫问题的求解。 注:存储结构可以选用静态数组、动态数组、静态链表或动态链表之一。对链表也可以采用循环链表(含单向或双向)。 实验准备: 1) 计算机设备;2) 程序调试环境的准备,如TC环境;3)实验内容的算法分析与代码设计与分析准备。 实验步骤: 1.录入程序代码并进行调试和算法分析; 2.编写实验报告。 实验过程:(一元多项式的加法) 【算法描述】 定义两个指针qa和qb,分别指向多项式A和多项式B当前进行比较的某个结点,然后比较2个结点中的指数项,则有以下三种结果: 1、指针qa所指结点的指数值小于指针qb所指结点的指数值,则应摘取指针qa 所指的结点插入到“和多项式”链表当中去; 2、指针qa所指结点的指数值大于指针qb所指结点的指数值,则应摘取指针qb 所指的结点插入到“和多项式”链表当中去; 3、指针qa所指结点的指数值等于指针qb所指结点的指数值,则将两个结点的系数相加,若和数不等于零,则修改qa所指结点的系数值,同时释放qb所指结点。反之,从多项式A的链表删除相应结点,并释放指针qa和qb所指结点。【源程序】 #include #include typedef struct { float coef;

状态观测器的设计——报告

东南大学自动化学院 实 验 报 告 课程名称: 自动控制基础 实验名称: 状态观测器的设计 院 (系): 自动化学院 专 业: 自动化 姓 名: 吴静 学 号: 08008419 实 验 室: 机械动力楼417室 实验组别: 同组人员: 实验时间:2011年05月13日 评定成绩: 审阅教师: 一、实验目的 1. 理解观测器在自动控制设计中的作用 2. 理解观测器的极点设置 3. 会设计实用的状态观测器 二、实验原理 如果控制系统采用极点配置的方法来设计,就必须要得到系统的各个状态,然后才能用状态反馈进行极点配置。然而,大多数被控系统的实际状态是不能直接得到的,尽管系统是可以控制的。怎么办?如果能搭试一种装置将原系统的各个状态较准确地取出来,就可以实现系统极点任意配置。于是提出了利用被控系统的输入量和输出量重构原系统的状态,并用反馈来消除原系统和重构系统状态的误差,这样原系统的状态就能被等价取出,从而进行状态反馈,达到极点配置改善系统的目的,这个重构的系统就叫状态观测器。 另外,状态观测器可以用来监测被控系统的各个参量。 观测器的设计线路不是唯一的,本实验采用较实用的设计。 给一个被控二阶系统,其开环传递函数是G (s )=12 (1)(1)K T s T s ++ ,12 K K K =观测器如图示。

设被控系统状态方程 构造开环观测器,X ∧ Y ∧ 为状态向量和输出向量估值 由于初态不同,估值X ∧ 状态不能替代被控系统状态X ,为了使两者初态跟随,采用输出误差反馈调节,加入反馈量H(Y-Y)∧ ,即构造闭环观测器,闭环观测器对重构造的参数误差也有收敛作用。 也可写成 X =(A-HC)X +Bu+HY Y CX ? ∧ ∧ ∧∧ = 只要(A-HC )的特征根具有负实部,状态向量误差就按指数规律衰减,且极点可任意配置,一般地,(A-HC )的收敛速度要比被控系统的响应速度要快。工程上,取小于被控系统最小时间的3至5倍,若响应太快,H 就要很大,容易产生噪声干扰。 实验采用X =A X +Bu+H(Y-Y)? ∧ ∧∧ 结构,即输出误差反馈,而不是输出反馈形式。 取:1212min 35 20,5,2,0.5,0.2K K T T t λ-= =====,求解12g g ?????? 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 Matlab/Simulink 软件 四、实验步骤 按要求设计状态观测器 (一) 在Matlab 环境下实现对象的实时控制 1. 将ZhuangTai_model.mdl 复制到E:\MATLAB6p5\work 子目录下,运行matlab ,打开ZhuangTai_model.mdl 注:‘实际对象’模块对应外部的实际被控对象,在simulink 下它代表计算机与外部接口: ● DA1对应实验面板上的DA1,代表对象输出,输出通过数据卡传送给计算机; ● AD1对应实验面板上的AD1,代表控制信号,计算机通过数据卡将控制信号送给实际对象;

顺序表的查找、插入与删除实验报告

《数据结构》实验报告一 学院:班级: 学号:姓名: 日期:程序名 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 1.从键盘输入10个整数,产生顺序表,并输入结点值。 2.从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找 不到,则显示“找不到”。 3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插 入在对应位置上,输出顺序表所有结点值,观察输出结果。 4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。 二、源程序及注释: #include #include /*顺序表的定义:*/ #include #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; void main() { SeqList L; int i,x; int n=10; /*欲建立的顺序表长度*/ L.length=0; void CreateList(SeqList *L,int n); void PrintList(SeqList L,int n); int LocateList(SeqList L,DataType x); void InsertList(SeqList *L,DataType x,int i); void DeleteList(SeqList *L,int i);

过程控制系统综合设计报告

过程控制系统综合设计报告 班级: 姓名: 学号: 学期:

一、实验目的与要求 1.掌握DDC控制特点; 2.熟悉CS4100实验装置,掌握液位控制系统和温度控制系统构成; 3.熟悉智能仪表参数调整方法及各参数含义; 4.掌握由CS4100实验装置设计流量比值控制、液位串接控制、液位前馈反馈控制及四水箱解耦控制等设计方法; 5.掌握实验测定法建模,并以纯滞后水箱温度控制系统作为工程案例,掌握纯滞后水箱温度控制系统的建模,并用DDC控制方案完成控制算法的设计及系统调试。 以水箱流量比值控制、水箱液位串接控制、水箱液位前馈反馈控制及四水箱解耦控制为被被控对象,完成系统管路设计、电气线路设计、控制方案确定、系统调试、调试结果分析等过程的训练。以纯滞后水箱作为被控对象,以第二个水箱长滞后温度作为被控量,完成从实验测定法模型建立、管路设计、线路设计、控制方案确定、系统调试、结果分析等过程的训练。 具体要求为: 1)检索资料,熟悉传感器、执行器机械结构及工作原理。 2)熟悉CS4100过控实验装置的机械结构,进行管路设计及硬件接线; 3)掌握纯滞后水箱温度控制系统数学模型的建立方法,并建立数学模型; 4)掌握智能仪表参数调节方法; 5)进行控制方案设计,结合具体数学模型,计算系统所能达到性能指标,并通过仿真掌握控制参数的整定方法; 6)掌握系统联调的步骤方法,调试参数的记录方法,动态曲线的测定记录方法。记录实验数据,采用数值处理方法和相关软件对实验数据进行处理并加以分析,记录实验曲线,与理论分析结果对比,得出有意义的结论。 7)撰写实验设计报告、实验报告,具体要求见:(五)实践报告的内容与要求。 二、实验仪器设备与器件 1.CS4100过程控制实验装置 2.PC机(组态软件) 3.P909智能仪表若干

顺序表的应用数据结构实验报告记录

顺序表的应用数据结构实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

大学数据结构实验报告 课程名称数据结构实验第(三)次实验实验名称顺序表的应用 学生姓名于歌专业班级学号 实验成绩指导老师(签名)日期2018年9月30日一、实验目的 1.学会定义线性表的顺序存储类型,实现C程序的基本结构,对线性表的一些基本操作和具体的函数定义。 2.掌握顺序表的基本操作,实现顺序表的插入、删除、查找以及求并集等运算。 3.掌握对多函数程序的输入、编辑、调试和运行过程。 二、实验要求 1.预习C语言中结构体的定义与基本操作方法。 2.对顺序表的每个基本操作用单独的函数实现。 3.编写完整程序完成下面的实验内容并上机运行。 4.整理并上交实验报告。 三、实验内容: 1.定义一个包含学生信息(学号,姓名,成绩)的顺序表,使其具有如下功能: (1)根据指定学生个数,逐个输入学生信息 (2)逐个显示学生表中所有学生的相关信息 (3)根据姓名进行查找,返回此学生的学号和成绩 (4)根据指定的位置可返回相应的学生信息(学号,姓名,成绩) (5)给定一个学生信息,插入到表中指定的位置 (6)删除指定位置的学生记录 (7)统计表中学生个数 四、实验设计 1.定义一个包含学生信息(学号,姓名,成绩)的顺序表,使其具有如下功能: (1)根据指定学生个数,逐个输入学生信息 for(count=0; count

相关文档
相关文档 最新文档