文档库 最新最全的文档下载
当前位置:文档库 › 高中对数函数公式

高中对数函数公式

高中对数函数公式
高中对数函数公式

指数函数和对数函数

重点、难点: 重点:指数函数和对数函数的概念、图象和性质。

难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数

y a y x x a ==,log 在a >1及01<

1、指数函数:

定义:函数()

y a a a x

=>≠01且叫指数函数。

定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a

x

=中的a 必须a a >≠01且。

因为若a <0时,()y x

=-4,当x =

1

4

时,函数值不存在。

a =0,y x =0,当x ≤0,函数值不存在。

a =1时,y x

=1对一切x 虽有意义,函数值恒为

1,但y x

=1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。

1、对三个指数函数y y y x x

x

==?? ?

?

?=21210,,的图象的认识。

图象特征

函数性质

(1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1);

(2)无论a 取任何正数,x =0时,y =1;

(3)y y x

x

==210,在第一象限内的纵坐

标都大于1,在第二象限内的纵坐标都小于1,y x

=?? ???12的图象正好相反; (3)当a >1时,x a x a x

x >><

01

,则,则 当01<

><<>?????0101

,则,则

(4)y y x

x

==210,的图象自左到右逐渐上升,y x

=?? ?

?

?12的图象逐渐下降。

(4)当a >1时,y a x

=是增函数,

当01<

=是减函数。

对图象的进一步认识,(通过三个函数相互关系的比较):

①所有指数函数的图象交叉相交于点(0,1),如y x

=2和y x

=10相交于()01,,

当x >0时,y x =10的图象在y x

=2的图象的上方,当x <0,刚好相反,故有10222

>及10222--<。 ②y x

=2与y x

=?? ?

?

?12的图象关于y 轴对称。

③通过y x

=2,y x

=10,y x

=?? ??

?12三个函数图象,可以画出任意一个函数y a

x

=(a a >≠01且)的示意图,如y x

=3的图象,一定位于y x

=2和y x

=10两个图象的中

间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x

=?? ?

?

?13的示意图,即

通过有限个函数的图象进一步认识无限个函数的图象。 2、对数:

定义:如果a N a a b

=>≠()01且,那么数b 就叫做以a 为底的对数,记作b N

a =log (a 是底数,N 是真数,log a N 是对数式。)

由于N a b

=>0故log a N 中N 必须大于0。

当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。

由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如:

求log .032524??

?

?

?

分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524??

?

?

?=x ,再改写为指数式就比较好办。

解:设log .032524??

?

??=x

则即∴即032524

8258251

2

5241

212

032.log .x x

x =

?? ???=?? ??

?=-

?? ??

?=-

-

评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。如求35x

=中的x ,化为对数式x =log 35即成。

(2)对数恒等式:

由a N

b N b

a ==()log ()

12

将(2)代入(1)得a N a N log =

运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和

对数的底数相同。 计算:

()

3

13

2

-log

解:原式==?? ??

?-=3

131

2

222

13

1

3

log log 。

(3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则:

①()()log log log a a a MN M N

M N R =+∈+

②()log log log a

a

a

M

N

M N M N R =-∈+

③()()log log a n a

N n N N R =∈+

④()log log a n a

N n

N N R =∈+

1

3、对数函数:

定义:指数函数y a a a x

=>≠()01且的反函

数y x a =log x ∈+∞(,)0叫做对数函数。

1、对三个对数函数y x y x ==log log 212

,,

y x =lg 的图象的认识。

图象特征与函数性质:

图象特征

函数性质

(1)图象都位于 y 轴右侧; (1)定义域:R +,值或:R ;

(2)图象都过点(1,0);

(2)x =1时,y =0。即log a 10=;

(3)y x =log 2,y x =lg 当x >1时,图象在x 轴上方,当00<

与上述情况刚好相反; (3)当a >1时,若x >1,则y >0,若01<0,则y <0,若

01<0;

(4)y x y x ==log lg 2,从左向右图象是上升,而y x =log 12

从左向右图象是下降。

(4)a >1时,y x a =log 是增函数; 01<

对图象的进一步的认识(通过三个函数图象的相互关系的比较):

(1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时,y x =log 2的图象在y x =lg 的图象上方;而01<

y x =log 2的图象在y x =lg 的图象的下方,故有:log .lg .21515>;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12

的图象关于x 轴对称。

(3)通过y x =log 2,y x =lg ,y x =log 12

三个函数图象,可以作出任意一个对数

函数的示意图,如作y x =log 3的图象,它一定位于y x =log 2和y x =lg 两个图象的中间,且过点(1,0),x >0时,在y x =lg 的上方,而位于y x =log 2的下方,01<

的示意图。

因而通过课本上的三个函数的图象进一步认识无限个函数的图象。

4、对数换底公式:

log log log log (.)log b a a n e g N N

b

L N N e N L N N =

===其中…称为的自然对数称为常数对数

27182810 由换底公式可得:

L N N e N

N n =

==lg lg lg ..lg 04343

2303 由换底公式推出一些常用的结论:

(1)log log log log a b a b b a b a ==1

1或·

(2)log log a m

a n

b m n b =

(3)log log a n

a n

b b =

(4)log a m

n a

m n

=

5、指数方程与对数方程*

定义:在指数里含有未知数的方程称指数方程。

在对数符号后面含有未知数的方程称对数方程。

由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而

属于超越方程。

指数方程的题型与解法:

如有侵权请联系告知删除,感谢你们的配合!

对数函数基础运算法则及例题_答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x = 4 9 时,不等式 log a (x 2–x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )349 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x ,解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 ,2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2)–f (x 1) = 212221log log 11x x x x ---2 1221(1)log (1)x x x x -=-=.11log 2 1 122x x x x --? ∵0<x 1<x 2<1,∴ 12x x >1,2111x x -->1. 则2 1 12211log x x x x --?>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = log a (a –a x ) (a >1). (1)求f (x )的定义域和值域;(2)判证并证明f (x )的单调性. 解:(1)由a >1,a –a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1), 而a x <a ,可知0<a –a x <a ,又a >1. 则log a (a –a x )<lg a a = 1. 取f (x )<1,故函数f (x )的值域为(–∞, 1). (2)设x 1>x 2>1,又a >1,∴1x a >2x a ,∴1x a a -<a-2x a , ∴log a (a –1x a )<log a (a –2x a ), 即f (x 1)<f (x 2),故f (x )在(1, +∞)上为减函数.

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

指数、对数函数公式及练习

高加索教育指数函数和对数函数总结练习典藏版 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,log 在a >1及 01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的 反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的认识。 图象特征与函数性质: 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10 22 2--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,

如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ?13也由关于y 轴的对 称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以 a 为底N 的对数,记作 b N a =log (a 是底数,N 是真 数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零或负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算:() 3 13 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+, ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1 3、对数函数: 定义:指数函数y a a a x =>≠()01且的反函数 y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,, y x =lg 的图象的认识。 图象特征与函数性质: (1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时, y x =log 2的图象在y x =lg 的图象上方;而01<;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12 的图象关于x 轴对称。

必修1第三章对数函数的运算法则(全)

【本讲教育信息】 一. 教学内容: 对数运算、对数函数 二. 重点、难点: 1. 对数运算 0,0,1,1,0,0>>≠≠>>N M b a b a (1)x N a =log N a x =? (2)01log =a (3)1log =a a (4)N a N a =log (5)N M N M a a a log log )(log +=? (6)N M N M a a a log log log -= (7)M x M a x a log log ?= (8)a M M b b a log /log log = (9)b x y b a y a x log log = (10)1log log =?a b b a 2. 对数函数x y a log =,0>a 且1≠a 定义域 (+∞,0) 值域 R 单调性 ↓∈)1,0(a ↑+∞∈),1(a 奇偶性 非奇非偶 过定点 (1,0) 图象 x y a log =与x y a 1log =关于x 轴对称

【典型例题】 [例1] 求值 (1)=7 log 3) 9 1( ; (2)=-++4log 20log 2 3 log 2log 151515 15 ; (3)=+?+18log 3log 2log )2(log 66626 ; (4)=?81log 16log 329 ; (5)=+?++)2log 2(log )5log 5)(log 3log 3(log 2559384 ; (6)=+?+2)2(lg 50lg 2lg 25lg 。 解: (1)原式49 173 3) 3(27log 7 log 27 log 22 333= ====---- (2)原式115log 15== (3)原式18log )3log 2(log 2log 6666++?= 236 log 18 log 2log 666==+= (4)原式58 )3log 54()2log 24(23=?= (5)原式8 15 )2log 23()5log 23()3log 65(532=??= (6)原式)2lg 50(lg 2lg 25lg ++= 2 100lg 2 lg 225lg ==+= [例2] 若z y x ,,满足)](log [log log )](log [log log 33 1322 12y x =)]z (log [log log 55 15= 0=,试比较z y x 、、的大小关系。 解:log 2〔log 21 (log 2x)〕=0?log 2 1(log 2x)=1?log 2x =21?x =2=(215 )1. 同理可得 y =33=(310) 30 1 ,z =5 5=(56) 30 1 . ∵310 >215 >56 ,由幂函数y =x 30 1 在(0,+∞)上递增知,y>x>z. [例3] 若==2121log log b b a a ……λ==n a b n log ,则=?)(log 21)(21n a a a b b b n 。 解:由已知λ 11a b =,λ λn n a b a b == 22 ∴ λ)()(11n n a a b b = ∴ λ=)(log 21)(1n a a b b b n

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

对数函数公式.pdf

指数函数和对数函数 y a a a x =>≠01且定义域为R ,底数是常数,指数是自变量。a 必须a a >≠01且。 如果 a N a a =>≠()01且,那么数 b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对 数式。)由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在 求35x =中的x ,化为对数式x =log 35即成。 对数恒等式:由a N b N b a ==()log ()12a N a N log =对数的性质:①负数和零没有对数; ②1的对数是 零; ③底数的对数等于1。对数的运算法则: ()() log log log a a a MN M N M N R =+∈+ , ()log log log a a a M N M N M N R =?∈+,()() log log a n a N n N N R =∈+ () log log a n a N n N N R =∈+1 3、对数函数:定义:指数函数y a a a x =>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,,y x =lg 的图象的认识。:

4、对数换底公式: log log log log (.)log b a a n e g N N b L N N e N L N N = ===其中…称为的自然对数称为常数对数 27182810 由换底公式可得: L N N e N N n = ==lg lg lg ..lg 04343 2303 由换底公式推出一些常用的结论: (1) log log log log a b a b b a b a = =11或· (2)log log a m a n b m n b = (3)log log a n a n b b = (4)

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

必修对数函数的运算法则全

一.教学内容: 对数运算、对数函数 二.重点、难点: 1.对数运算 (1)x N a =log N a x =? (2)01log =a (3)1log =a a (4)N a N a =log (5)N M N M a a a log log )(log +=? (6)N M N M a a a log log log -= (7)M x M a x a log log ?= (8)a M M b b a log /log log = (9)b x y b a y a x log log = (10)1log log =?a b b a 2.对数函数x y a log =,0>a 且1≠a 定义域 (+∞,0) 值域 R 单调性 ↓∈)1,0(a ↑+∞∈),1(a 奇偶性 非奇非偶 过定点 (1,0) 图象 x y a log =与x y a 1log =关于x 轴对称 【典型例题】 [例1]求值 (1)=7log 3)9 1(; (2)=-++4log 20log 2 3log 2log 151515 15; (3)=+?+18log 3log 2log )2(log 66626; (4)=?81log 16log 329; (5)=+?++)2log 2(log )5log 5)(log 3log 3(log 2559384; (6)=+?+2)2(lg 50lg 2lg 25lg 。 解: (1)原式49 1733)3(27log 7log 27log 22333= ====---- (2)原式115log 15==

(3)原式18log )3log 2(log 2log 6666++?= (4)原式5 8)3log 54()2log 24(23=?= (5)原式8 15)2log 23()5log 23()3log 65(532=??= (6)原式)2lg 50(lg 2lg 25lg ++= [例2]若z y x ,,满足)](log [log log )](log [log log 33132212y x =)]z (log [log log 55 15= 0=,试比较z y x 、、的大小关系。 解:log 2〔log 21(log 2x)〕=0?log 2 1(log 2x)=1?log 2x =21?x =2=(215)301. 同理可得y =33=(310)301,z =55=(56)301. ∵310>215>56,由幂函数y =x 301 在(0,+∞)上递增知,y>x>z. [例3]若==2121log log b b a a ……λ==n a b n log ,则=?)(log 21)(21n a a a b b b n 。 解:由已知λ11a b =,λλn n a b a b == 22 ∴λ)()(11n n a a b b = ∴λ=)(log 21)(1n a a b b b n [例4]图中四条对数函数x y a log =图象,底数a 为10 1,53,34,3这四个值,则相对应的C 1,C 2,C 3,C 4的值依次为() A.101,53,34,3 B.53,101,34,3 C.101,53,3,34 D.5 3,101,3,34 答案:A [例5]求下列函数定义域 (1))]lg[lg(lg x y = (2))43lg(2--=x x y (3))1(log 2 1-=x y 解: (1)1lg 0]lg[lg =>x ∴1lg >x ∴),10(+∞∈x (2)0432>--x x ),4()1,(+∞?--∞∈x (3)110≤-

对 数 运 算 法 则

负对数似然(negative log-likelihood) negative log likelihood文章目录negative log likelihood似然函数(likelihood function)OverviewDefinition离散型概率分布(Discrete probability distributions)连续型概率分布(Continuous probability distributions)最大似然估计(Maximum Likelihood Estimation,MLE)对数似然(log likelihood)负对数似然(negative log-likelihood)Reference似然函数(likelihood function)Overview在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和"概率(probability)"词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接下来的观测结果;似然性用于根据一些观测结果,估计给定模型的参数可能值。 Probability is used to describe the plausibility of some data, given a value for the parameter. Likelihood is used to describe the plausibility of a value for the parameter, given some data. ? —from wikipedia[3] ^[3] [ 3] 其数学形式表示为: 假设X XX是观测结果序列,它的概率分布fx f_{x}f x? 依赖于参数θ thetaθ,则似然函数表示为 ?L(θ∣x)=fθ(x)=Pθ(X=x) L(theta|x)=f_{theta}(x)=P_{theta}(X=x)L(θ∣x)=f θ? (x)=P θ? (X=x)

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

对数函数运算公式

对数函数运算公式标准化管理部编码-[99968T-6889628-J68568-1689N]

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M 和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M)

相关文档
相关文档 最新文档