文档库 最新最全的文档下载
当前位置:文档库 › 图像边缘检测技术的研究和比较

图像边缘检测技术的研究和比较

图像边缘检测技术的研究和比较
图像边缘检测技术的研究和比较

图像边缘检测技术的研究和比较

摘要

边缘描绘对象的边界,因此边缘提取是图像处理的基础而重要的问题。图像边缘检测大大地减少了图像数据量,过滤了无用的信息,而保留了图像重要属性结构。由于边缘检测是对象检测的第一步,因此对边缘检测算法的正确理解是问题的关键。本文对各种各样的图像边缘检测技术进行了比较分析。通过编写MATLAB 70程序,显示在几乎所有情景下Canny边缘检测算法比其他所有的算法的执行效果都好。对处理后图像的评估显示:在有噪声的情况下,LoG算子,Robert算子,Prewitt算子,Sobel算子各自都表现出色。观察Canny边缘检测算法在计算上比LoG算子,Sobel算子、Prewitt算子和Robert 算子代价高。

关键字:边缘检测,噪声,数字图像处理

1 介绍

边缘检测定义为识别和定位图像突变间断性的过程。间断性是描述像素灰度急剧变化的描述对象边界的地方。经典的边缘检测方法包括用算子对图像进行卷积,该算子对图像梯度敏感,当在平坦区域时,返回值为0。现在设计出大量的边缘检测算子,它们各自针对某种特定边缘敏感。在选择边缘检测算子时,要根据边缘取向、噪声环境和边缘结构等的变化而变。算子的几何形状决定了边缘最敏感的特征方向。可以选选择合适的算子来寻找水平,垂直或者对角边缘。由于噪声和边缘信息在高频部分,对有噪声的图像,边缘检测是比较困难的。而尝试减少噪声,又导致边缘模糊和变形。用于有噪声图像的算子通常具有更大的尺寸,因此它能用足够的数据进行均衡,以削弱噪声像元,这个结果使检测出的边缘定位精度降低。不是所有的边缘包含灰度的阶跃变化。例如折射或弱焦点可能导致对象的边界灰度逐渐变化。这些情况下,选择的算子要对这种渐变敏感。因此,就出现了检测为伪边缘、真实的边缘的漏检、边缘定位精度、高计算时间

的问题和由噪声产生的问题等。所以,本文诣在对各种边缘检测技术进行比较和分析,并且指出各自适用的情况。这里有许多方法进行边缘检测。然而,这些检测方法大多可以分为两类:基于梯度的边缘检测:梯度法通过寻找图像一阶导数极大值和极小值来检测边缘。基于Laplacian边缘检测:

Laplacian算法是搜索图像二阶导数的零交叉点来寻找边缘。边缘具有一维的倾斜形状,并且计算图像导数可能突出它的位置。

假设我们有以下由灰度跃迁显示边缘的信号:

如果我们采用这个信号的梯度,我们得到如下图:

明显地,原始的信号中位于的边缘中心的地方显示出了一个最大值。这种找出边缘的方法属于边缘检测滤波中的“梯度滤波”,包括Sobel算子。如果梯度的值超出某阈值,该像素点称为边缘点。如上所述,边缘比周围具有更大的像素灰度值。因此,一旦设置阈值,就用该阈值与梯度值相比较,检测出任何超出阈值的边缘。此外,当一阶导数

为最大值时,二阶导数为零。由此可知,我们可以用定位二阶导数为零的方法来找到边缘的位置,这个方法叫作Laplacian,信号的二阶导数如下所示:

在本篇文章,我们对最常用的基于梯度和Laplacian边缘检测技术的分析和可视化比较。第2章是对问题的定义。第3章是对各种边缘检测技术的研究和分析。第4章通过开发MATLAB 70程序对各种边缘检测技术进行可视化比较。第5章讨论各种边缘检测技术的优缺点。第6章对MATLAB 70程序实验中分析和可视化比较说得出的结论进行讨论。

2 问题定义

这里的问题有伪边缘检测的、真实的边缘漏检,导致线变窄或变粗和由噪声引起的问题等。在本文我们对最常用的基于梯度和Laplacian边缘检测技术的的检测精度、漏检、导致线变窄或变粗的问题和由噪声引起的问题等作出了分析和可视化比较,并用MATLAB 70开发了这个软件。

3 边缘检测技术

3.1 Sobel算子

如图1所示,这个算子包括一对3×3卷积核。其中一个核是另一个核转动90°的情况。

图1 :sobel算子的模板

这些核为最大地反应垂直和水平相对应的像素网格而设计,每个核对应着二个垂直方向之一的边缘。这种核可以独立地应用于输入图像,测量各自方向的梯度成分(称这些为Gx和Gy)。然后组合这些梯度来找到在每个点的绝对幅值和那个梯度的方向[3]。梯度幅值由下式的出:

通常,近似幅值可以这样计算:

这种方法加快了计算的速度。

影响空间梯度的是边缘(与像素网格相关)的方向角,可由下式得出:

3.2 Robert交叉算子

Robert交叉算子执行起来简单,计算速度快,是对图像的二维空间梯度测量。在每个输出点的像素值代表了对输入图像在该点空间梯度估计的绝对幅值。如图2所示,该算子包括一对2×2卷积核,其中一个是将另一个简单的旋转90°得到[4]。这与Sobel 算子非常类似。

图2 Robert算子模板。

这些核为最大地反应边缘45°相对应的像素网格而设计,每个核对应着二个垂直方向之一的边缘。这种核可以独立地应用于输入图像,测量各自方向的梯度成分(称这些为Gx和Gy)。然后组合这些梯度来找到在每个点的绝对幅值和那个梯度的方向[3]。梯度幅值由下式的出:

通常,近似幅值可以这样计算:

这种方法加快了计算的速度。

影响空间梯度的是边缘(与像素网格相关)的方向角,可由下式得出:

3.3 Prewitt算子

Prewitt算子[5]类似于Sobel算子用于检测图像的垂直和水平的边缘。

图3 Prewitt梯度边缘检测器模板

3.4 Laplacian-高斯算子

Laplacian是图像空间二阶导数的二维同向性测量法。Laplacian突出图像灰度快速变化的地区,因此常常被用于边缘检测。Laplacian经常用于图像处理,首先得对图像进行一些近似高斯平滑滤波的方法进行平滑处理,降低对噪声的敏感度。该算子通常采取输入一个单灰度级图像,而输出另一个灰度级图像。

Laplacian L (x,y)可由图像像素灰度值I(x,y)得到:

因为输入图像是离散像元,我们必须找到一个接近Laplacian定义的二阶导数的离散卷积核[5]。三个常用的小核如图4所示。

图4通常使用接近Laplacian的离散滤波器。

由于这些核接近图像的二阶导数的测量,他们对噪声是非常敏感的。为了抗噪,在应用Laplacian滤波器之前通常用高斯平滑图像。图像预处理减少高频噪声成分,应在差分处理之前进行。

实际上,因为卷积操作是关联的,我们可以首先把Laplacian过滤器与高斯平滑滤波器进行卷积,然后用这种混合滤波器对图像进行卷积以达到需要的结果。这样做有两个好处:因为高斯和Laplacian核通常都小于图像,通常这个方法的算术运算量少。

LoG[6]核可以是预先计算好的,在图像处理时只需运用一次卷积就可以实现了。

二维LoG函数[7]以零为中心,以高斯标准偏差σ的形式表示:

在图5显示了

图5 二维Laplacian-高斯函数,x和y轴以标准偏差(σ)标记接近这个函数的离散核(高斯σ=14)在图6显示。

图6近似σ=14 LoG函数的离散模板

注意,当高斯核越来越小时,LoG核就与简单的Laplacian核一样了,如图4。这是因为使用一个很窄的高斯(σ<05像元)去光滑离散的网格是没有效果的。因此,对于离散像素网格,简单的Laplacian可以替代高斯狭窄的LoG。

3.5 Canny边缘检测算法

Canny边缘检测算法是大家公认最优的边缘探测器。在他开始工作时候Canny的目的是提高大多已存在的边缘探测器的效果。他是非常成功地实现了他的目标,他的想法和方法可以在他的论文中找到,“用于边缘检测的计算方法”[11]。在他的论文中,他遵守了一系列标准来改进当前边缘检测方法。排在第一位也是最明显的标准是低误差率。重要的是,不应该丢失图像的边缘,也不会对非边缘响应。第二个标准是边缘定位准确。换句话说,如实际边缘探测器找到的边缘像素点之间的距离最小。第三个标准是对单边缘的只有一次响应。采用这个标准是因为前两个标准从根本上不足够完全地消除对边缘的多次响应。凭这些标准,Canny边缘探测器首先对图像平滑以消除噪声。后来发现图像梯度能突出高阶空间导数区域。然后,该算法沿这些区域进行检测,同时抑制不是最大值的所有像素点。通过滞后作用梯度列阵得到了进一步减少的。滞后作用用于沿剩余的未被抑制的像素点进行跟踪。滞后作用使用双阈值,如果幅度在第一阈值之下,则设为零(做一个非边缘)。如果幅度在高阈值之上,则它被做边缘。如果幅度在2阈值之间,除非有从这个像素点到其梯度在T2之上的另一个像素点之间是一条道路,

否则它也设置为零。

步骤1:我们必须按照一系列的步骤来使用Canny边缘探测器算法。第一步在定位和检测边缘之前应滤除原始图像的所有噪声。因为高斯过滤器可以用一个简单的模板来计算,这个模板专门在Canny中使用。只要设计好了适当的模板,就可以用标准卷积方法进行高斯平滑。通常,卷积模板小于实际图像。因此,模板在图像中滑动,每次操作方形像素块。高斯模板的宽度越大,探测器对噪声的敏感度越低。当增加高斯模板宽度时,边缘检测定位的错误也稍有增加。

步骤2:对图像进行平滑和去噪后,下一个步骤是通过图像的梯度找到边缘的强度。Sobel算子是在图像的二维空间进行梯度测量。然后,在每点可以找到近似绝对梯度的幅度(边缘强度)。Sobel算子[3]用一对3x3卷积模板,一个估算x方向(列)的梯度,另一个估算y方向(行)的梯度。它们如下所示:

用如下公式来近似梯度幅度或者边缘强度:

步骤3:-用x和y方向的梯度来计算边缘的方向。然而,当sum(X)等于零时,就会产生错误,因此必须用代码限制任何时候出现这种情况。每当在x方向的梯度等于零,边缘方向必须等于90度或0度,这取决于梯度在y方向的值,如果GY有值为零,边缘方向为0度。否则边缘方向为90度。计算边缘方向的公式为:

Theta = invtan (Gy/Gx)

步骤4:一旦知道边缘方向,下一步就是把该边缘方向与图像追踪方向联系起来。如果5x5图像的像素如下排列:

通过看像素点“a”可以看到,当描述像素点的周围像素时,只有四个可能的方向,0度(在水平方向),45度(沿正对角线),90度(在垂直的方向),或者135度(沿负对角线)。根据本判断这四个方向中最接近的方向来确定边缘方向(即,如果发现方向角度3度,则让它为零度)。由此用一个半圆,把它划分它成5个地区。

因此,属于黄色区域(0到225和1575到180的范围)的所有边缘方向被置为0度。在绿色区域(225到67的范围)的所有边缘方向被置为45度。在蓝色区域(675到1125的范围)的所有边缘方向被置为90度。最后,属于红色区域(1125到1575程度)的所有边缘方向被置为135度。

步骤 5 :知道边缘方向后,现在进行非最大值抑制。非最大值抑制用于沿在边缘方向进行追踪和压制不是边缘的所有像素点(设为0)。这将输出图像一条稀薄的线。

步骤 6 :最后,滞后作用[12]作为抑制斑纹的方法。斑纹是由算子的输出在阈值上下波动产生的,它破坏了边缘的轮廓。如果一个单阈值,T1应用于图像,并且边缘的平均强度等于T1。这里有个例子,由于噪声影响,将会导致边缘在阈值之下,同样地,也有在阈值之上的边缘,这样延伸出来的边缘看起来就像破折线。要避免于此,滞后作用使用一高一低的双阈值。比T1大的所有像素点假定为边缘,并立刻作出标记。然后,任

何大于T2的且连接这个边缘的像素点也被选择当边缘像素点。如果您认为沿着边缘,需要从T2梯度开始,但您在找到一个在T1下的梯度之前不要停止。

4 各种边缘检测算法可视化比较

图7 用于边缘检测分析的图像

在图7中展示了四个种边缘检测方法的效果。Canny效果最佳,正如Canny的边缘检测解释的图像的区域所期望的那样。通过非最大的抑制,Canny产生了细薄边缘线。Canny 也利用了阈值化的滞后作用。

图8 图7经过Canny边缘检测得到最佳结果

图9 :边缘检测技术的比较(a)原始图像(b) Sobel (c) Prewitt (d)罗伯特(e) Laplacian (f)LoG

图10 :用莉娜图像进行边缘检测技术的比较(b)Canny (c)Robert (d)LoG (e) Sobel

图11 :对含噪图像的边缘检测技术比较(a)噪声原图(b) Sobel (c)Robert (d) Canny 5 边缘探测器的优缺点

边缘检测是计算机视觉的基础步骤,需要匹配过程中指出真的边界以获得最佳结果。这就是为什么选择合适的边缘检测器的重要性了。在这方面,我们在表1列出了各边缘检测算法的优缺点

算子优点缺点

经典算子(Sobel,Prewitt,

Kirsch等)简单、边缘和其他方向的检测对噪声敏感,精度不高

零交叉发(拉普拉斯,二方向导数)对边缘和其他方向的检测、在

各个方向有固定的特征

对已存在的边缘响应、对噪声

敏感

LoG,Marr-Hildreth 寻找出正确边缘的位置、测试

像元周围更大的区域

在拐角、弯曲和灰度级变化

处,其效果不佳,会因为使用

拉普拉斯滤波器而找不到边

缘方向

高斯(Canny,Shen-Castan)用概率统计误差率,定位和响

应,提高信噪比,特别是对有

噪声的检测效果更好

复杂的计算、伪零值交叉,费

时间

表1:边缘探测器优缺点

6 结论

边缘检测是对象检测的第一步,了解边缘检测技术之间的区别是非常重要的。在本文我们研究了最常用的边缘检测技术基于梯度和基于Laplacian的边缘检测技术。并用MATLAB 70开发软件。

基于梯度的算法,例如Prewitt滤波器,有个主要缺点是对噪声非常敏感。滤波器的核和参数是固定的,对给定的图像不能适应。一种具有适应性的边缘检测算法必提供鲁棒性的解决方案,它能适应噪声变化的各种图像,帮助从人工加入了噪声的图像中区分出有效图像内容。

Canny的算法的效果极大地取决于可调参数σ,它是高斯滤波器的标准偏差,和两个阈值‘T1’和‘T2’。σ也控制高斯滤波器的大小。σ越大,高斯滤波器越大,这意味着加大对有噪声图像必要的模糊,并且检测出更大的边缘。然而,正如所料想的一样,高斯尺度越大,边缘定位的精度越低。σ小意味着限制模糊量,维持图像更好边缘。用户能通过调整这些参数适以适应不同的情况。

与Sobel、Prewitt和Robert算子相比,Canny边缘检测算法在计算上是更加费时。然而,在几乎所有情景下Canny边缘检测算法都比这些算子的效果好。根据图像评估表明,在含有噪声时,Canny,LoG,Sobel,Prewitt,Roberts分别表现良好。

致谢

作者非常感激Punjabi大学工程学院的计算机工程提供了优秀实验室设施使得这项

工作得以完成。

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

图像边缘检测方法研究综述_段瑞玲

第31卷第3期2005年5月 光学技术 OP T ICA L T ECHN IQ U E V ol.31No.3 M ay 2005 文章编号:1002-1582(2005)03-0415-05 图像边缘检测方法研究综述 段瑞玲,李庆祥,李玉和 (清华大学精密仪器及机械学系,北京 100084) 摘 要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。 关键词:图像处理;边缘检测;梯度算法;差分边缘检测 中图分类号:T P751 文献标识码:A Summary of image edge detection DU AN Rui_ling,LI Qin g_xiang,LI Yu_he (Department of P recisio n I nstrument and M echanology,Tsing hua University,Beijing 100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ay s one of the most classical studying projects o f computer vision and image processing field.T he fist step of image analy sis and understanding is edg e de tec-tion.T he g oal of edge detection is to recover information about shapes and reflectance o r transmittance in an image.I t is one of the fundamental steps in image processing,mage analy sis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made fo r objective w orld. T he summary for basic edge de tection metho ds was made.It involv ed the detection methods only but no t filtering,edge loca-tion,analy sis of algorithm complexity and functional evaluation about a detecto r. Key words:image processing;imag e detection;gradient arithmetic; 1 引 言 早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。 机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。 2 图像边缘定义 图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰 415 收稿日期:2004-06-01;收到修改稿日期:2004-10-20 E-mail:duanrl03@mails.ts https://www.wendangku.net/doc/b84279491.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

图像边缘检测方法比较研究

图像边缘检测方法比较研究 作者:关琳琳孙媛 来源:《现代电子技术》2008年第22期 摘要:边缘检测在数字图像处理中有着重要的作用。系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。 关键词:边缘检测;检测算子;高通滤波;小波变换 中图分类号:TP391文献标识码:A 文章编号:1004-373X(2008)22-096-03 Comparison of Image Edge Detection Methods GUAN Linlin1,SUN Yuan2 (1.Department of Resource Science and Technology,Beijing Normal University,Beijing,100875,China; 2.96656 Unit of Second Artillery F orces,Chinese People′s Liberation Army,Beijing,100820,China) Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection. Keywords:edge detection;detective operators;high-pass filtering;wavelet transform 1 引言 边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。近年来,边缘检测技术被广泛地应用在各个领域,例如工程技术中零件检查[1]、医学中器官病变状况观察[2]、遥感图像处理中道路等典型地物的提取[3]以及估算遥感平台的稳定精度[4]等。这使得如何快速、准确地获得边缘信息成为国内外研究的热点。边缘检测方法在空间域和频域中均可以实现,而且不断涌现出新技术新方法。这些方法

红外热像无损检测图像处理研究现状与进展

红外热像无损检测图像处理研究现状与进展 来源:《红外技术》 引言 红外热像(infrared thermography)是目前运用非常广泛的一种快速高效的无损检测技术,通过外部施加的热或冷激励使被测物体内的异性结构以表面温度场变化的差异形式表现出来,从而达到缺陷部位的定性和定量分析。其成像原理是利用红外探测仪将接受到的被测物体的红外辐射映射成灰度值,再转化为可视温度分布图(红外热像图)。最早在二战末期应用于军事侦察领域,因其本身具有快速高效、无需停运、无需取样、可进行无污染、非接触、大面积检测、以及其直观成像等优点,而被作为复合材料的无损检测技术应用于工业领域,如航空航天、机械、油气、建筑等领域。 1 、红外热像技术的发展现状 自20世纪以来,红外热像技术得到快速发展。20世纪90年代,美国无损检测协会和材料试验协会针对红外热成像技术指定了相应标准,并在无损检测手册红外与热检测分册中描述了基于红外热像的无损检测技术在各个领域的运用。目前美国、俄罗斯、法国、德国、加拿大、澳大利亚等国已将红外热像技术广泛运用于航空航天复合材料构件内部缺陷及胶接质量的检测、蒙皮铆接质量检测等。近年来,红外热像技术与智能手机、无人机等设备充分结合,并在各个领域广泛使用,如美国的Fluke和FLIR、德国Testo、国内武汉高德、浙江大立等企业。 国内的红外热像检测技术比欧美、俄罗斯等发达国家起步较晚,但经过十几年的发展,目前也取得较为显著的成果。中国特种设备研究院和武汉工程大学将红外热像技术运用于压力设备缺陷检验,取得了一系列显著的成果。西南交通大学、昆明物理研究所、北京航空材料研究院、北京理工大学、西北工业大学等将红外热像技术运用于航空航天夹层结构件的缺陷检测,取得了有效进展。在石油化工领域,各位学者将红外热像技术用于高温高压容器和管道的缺陷、保温层破损、以及内部液体流动情况的检测,也取得了许多成果。 2 、红外图像预处理 红外技术应用的核心工作在于图像的处理及利用,不仅在无损检测领域,在军事监测、人脸识别等领域的应用更加重要。红外图像的处理主要分为图像预处理和图像识别,预处理是开展后续工作的基础,其主要分为图像的非均匀性校正和图像增强两个方面。 2.1 图像的非均匀性校正

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.wendangku.net/doc/b84279491.html,

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

图像边缘检测方法的研究与实现刘法200832800066

青岛大学 专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班 学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日 题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] i且处在强度显著变化的位置上的点. ,[j 边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.

边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。 Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。 Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是拉普拉斯高斯(LOG)算子。前边介绍的边缘检测算法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。 1.3 边缘检测算法 对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘。灰度边缘是灰度值不连续(或突变) 的结果,这种不连续常可利用求一阶和二阶导数方便地检测到。已有的局部技术边缘检测方法,主要有一次微分(Sobel 算子、Robert s 算子等) 、二次微分(拉普拉斯算子等)。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像,大多数提取算法均可以取得较好的效果。但对于边缘复杂、采光不均匀的图像来说,则效果不太理想。主要表现为边缘模糊、边缘非单像素宽、弱边缘丢失和整体边缘的不连续等方面。 用算子检测图像边缘的方法是用小区域模板对图像进行处理,即采用卷积核作为掩模模板在图像中依次移动,完成图像中每个像素点同模板的卷积运算,最终输出的边缘幅度结果可以检测出图像的边缘。卷积运算是一种邻域运算。图像处理认为:某一点像素的结果不但和本像素灰度有关,而且和其邻域点值有关。运用模板在图像上依此对每一个像素进行卷积, 即模板上每一个点的值与其在图像上当前位置对应的像素点值相乘后再相加,得出的值就是该点处理后的新值。 边缘检测算法有如下四个步骤:

相关文档
相关文档 最新文档