文档库 最新最全的文档下载
当前位置:文档库 › 动量和能量练习题共74题

动量和能量练习题共74题

动量和能量练习题共74题
动量和能量练习题共74题

动量和能量

高考试题

10.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁

的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.

【答案】4[()]A B g L l l μμ-+

11.(2006年·理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道

顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:

(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;

(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).

【答案】(1)gh 2;(2)211212

()m gh m m gd m m μ-++

解析:(1)由机械能守恒定律,有

2111

2

m gh m v =

解得v =gh 2 (2)A 、B 在碰撞过程中力远大于外力,由动量守恒,有 112()m v m m v '=+

碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+ 由能量守恒定律,有

212P 121

()()2

m m v E m m gd μ'+=++ 解得2

1P 1212

()m E gh m m gd m m μ=-++

12.(2006年·理综)如图,半径为R 的光滑圆形轨道固定在竖直面.小

球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,

碰撞后A 、B 球能达到的最大高度均为1

4

R ,碰撞中无机械能损失.重力加速度为g .试求: (1)待定系数β;

(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.

【答案】(1)3;(2)1v =,方向水平向左;2v =,方向水平向右;4.5mg ,方向竖直向下.(3)见解析

解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得

44

mgR mgR

mgR β=

+

,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球

组成的系统,有

22

12

112

mgR mv mv β=

+

12mv mv β=+

解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则

2

2

v N mg m R

ββ-=,B 球对轨道的压力

4.5N N mg '=-=-,方向竖直向下.

(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+

221211

22

mgR mV mV β=+

解得V 1=-gR 2,V 2=0.

(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去)

由此可得:

当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;

当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同. 13.(2006年·)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻

绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:

(1)两球从开始运动到相碰,A 球下落的高度.

(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的 水平分量.

(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.

【答案】(1)2

20

2gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv

解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规

律得

0l v t =

① 212

h gt =

联立①②得2

20

2gl h v =

(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得

0A

B x x mv mv mv ''=+

由机械能守恒定律,得

22222

220B A A A B B 1111()()()2222

y y x y

x y m v v mv m v v m v v ''''++=+++ ⑤

式中A

A B B ,y y y y v v v v ''== 联立④⑤解得A

0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得

0B 2x mv mv =

由动量定理得B 01

2

x I mv mv ==

14.(2005年·)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的

间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大

小为mg 5

2的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不

脱离木板,每块木板的长度至少应为多少?

【答案】0.3m

解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2

0.220.10μμ==12,,则

11225F mg f mg μ=<=且222

(2)5

F mg f m m g μ=>=+

说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有

2

21

1()(2)2

F f s m m v -=+ A 、B 两木板的碰撞瞬间,力的冲量远大于外力的冲量,由动量守恒定律得:

mv 1=(m +m )v 2

碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则 2mv 1+(m +m )v 2=(2m +m +m )v 3

设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理:

22

113132

32112222(2)f s f s mv mv f m m m g

m -=-=++ 对C 物体,由动能定理得22

11131

11(2)(2)2222

F l s f l s mv mv +-+=

- 联立以上各式,再代入数据可得l =0.3m .

15.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质

量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .

【答案】

201()2ML v g

m

解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有

2

12h

gt

① L =Vt

② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv

③ 设B 后退的距离为l ,由功能关系,21

2mgl mv μ=

由以上各式得201()22ML g l

v g

m

h

16.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于

水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距

离s .已知男演员质量m 1和女演员质量m 2之比

12

2m m ,秋千的质量不计,秋千的摆长

为R ,C 点比O 点低5R . 【答案】8R

解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得

2

1

2121()()2

B

m m gR

m m v 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2

分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,根据题给

条件,从运动学规律,21142

R

gt s

v t

根据题给条件,女演员刚好回到A 点,由机械能守恒定律得2

222

12

m gR

m v 已知m 1=2m 2,由以上各式可得s=8R 17.(2005年·理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面

间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取

10m/s 2

,求:

(1)瞬时冲量作用结束时木板的速度v 0;

(2)木板的长度L . 【答案】0.50m

解析:(1)设水平向右为正方向,有I =m A v 0 ① 代入数据得v 0=3.0m/s ②

(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有 -(F BA +F CA )t =m A v A -m A v A ③ F AB t =m B v B ④ 其中F AB =F BA F CA =μ(m A +m B )g ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B ,

有22

11()22

BA

CA A

A A A F F s m v m v

⑥ F AB s B =E kB

⑦ 动量与动能之间的关系为A A m v =

⑧ 2B B B kB m v m E

木板A 的长度L =s A -s B ⑩ 代入数据解得L =0.50m 18.(2005年·春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着

一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为

L ,撞车后共同滑行的距离8

25

l L =

.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.

(1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求

1

2

v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.

【答案】(1)

54;(2)32

L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m

)v 2

1254

v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ

两车相撞前卡车动能变化22

011

122

Mv Mv MgL μ-=

碰撞后两车共同向前滑动,动能变化2

21

()0()2

M m v M m gl μ+-=+ ③

由②式得v 02-v 12

=2μgL

由③式得v 22

=2μgL 又因208,325

l L v gL μ=

=得 如果卡车滑到故障车前就停止,由2

0102

Mv MgL μ'-=

故3

2

L L '=

这意味着卡车司机在距故障车至少32

L 处紧急刹车,事故就能够免于发生. 19.(2004年·)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,

弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.

【答案】12(1016)g l l μ+

解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有

22

0111122

mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2

碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零. 2223211(2)(2)(2)(2)22

m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有2

3112

mv mgl μ=

由以上各式解得012(1016)v g l l μ=+

20.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞

间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:

柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h 如图

(b ).已知m 1=1.0×103kg ,M =2.0×103

kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.

【答案】2.1×105

N

解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2 其中122,2()v gh v g h l ==-

碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能

定理,有21

02

Mgl Fl Mv -=-

由上各式解得()[22()]mg m

F mg h l h h l l M =+-+-

代入数据解得F =2.1×105

N 21.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质

量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能. 【答案】2.4J

解析:设木块和物块最后共同的速度为v ,由动量守恒定律得

v M m mv )(0+=

设全过程损失的机械能为E ,则

220)(2

1

21v M m mv E +-=

用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间摩擦力对木板所做的功.用W 2表示同样时间摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间摩擦力对木板所做的功.用W 4表示同样时间摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则

W 1=1mgs μ

③ W 2=)(1s s mg +-μ ④ W 3=2mgs μ-

(a ) (b )

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

动量和动能练习题

动量练习题 例1.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等。两者质量之比 M m 可能为( ) A.2 B.3 C.4 D.5 解析:解法一:两物块在碰撞中动量守恒:12Mv Mv mv =+,由碰撞中总能量不增加有: 21 2Mv ≥ 22121122 Mv mv +,再结合题给条件12Mv mv =,联立有3M m ≤,故只有A B 、正确。 解法二:根据动量守恒,动能不增加,得222(2)222p p p M M m ≥+,化简即得3M m ≤,故A B 、正确。 例2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m L =,现有质量 10.2kg m =可视为质点的物块,以水平向右的速度02m/s v =从左端滑上小车,最后在车面 上某处与小车保持相对静止。物块与车面间的动摩擦因数0.5μ=,取2 10m/s g =,求 (1) 物块在车面上滑行的时间t ; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度0v '不超过多少。 解析:(1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律有 2012()m v m m v =+ ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有 220Ft m v m v -=- ② 2F m g μ= ③ 解得10 12()m v t m m g μ= +,代入数据得0.24s t = ④ (2)要使物块恰好不从车面滑出,须使物块到车面最右端时与小车有共同的速度,设其为v ',则 2012()m v m m v ''=+ ⑤ 由功能关系有 222012211 ()22 m v m m v m gL μ''=++ ⑥ 代入数据得05m/s v '= 故要使物块不从小车右端滑出,物块滑上小车左端的速度0v '不超过5m/s 。 m 2 m 1 v

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量与能量经典例题详解

动量与能量经典题型详解 动量与功能问题可以与高中物理所有的知识点综合,是高考的重点,试题难度大,需要多训练、多总结归纳. 1.如图所示,一轻绳的一端系在固定粗糙斜面上的O 点,另一端系一小球,给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中( ) A .小球的机械能守恒 B .重力对小球不做功 C .绳的张力对小球不做功 D .在任何一段时间内,小球克服摩擦力所做的功是等于小球动能的减少 【解析】小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. [答案] C 2.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的 动量正好相等.两者质量之比M m 可能为( ) A .2 B .3 C .4 D .5 【解析】由题意知,碰后两球动量相等,即p 1=p 2=12 M v 故v 1=v 2,v 2=M v 2m 由两物块的位置关系知:M v 2m ≥v 2 ,得M ≥m 又由能量的转化和守恒定律有: 12M v 2≥12M (v 2)2+12m (M v 2m )2 解得:M ≤3m ,故选项A 、B 正确. [答案] AB 【点评】碰撞问题是高考对动量守恒定律考查的主流题型,这类问题一般都要考虑动量守恒、动能不增加、位置不超越这三方面. 3.图示为某探究活动小组设计的节能运输系统.斜面轨道的倾角为30°,质量为M 的 木箱与轨道间的动摩擦因数为36 .木箱在轨道顶端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速度滑下,当轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程.下列选项正确的是 ( ) A .m =M B .m =2M C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度 D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能

物理高考总复习动量与能量的综合压轴题(各省市高考题,一模题答案详解)

高考第2轮总复习首选资料 动量的综合运用 1.(20XX 年重庆卷理科综合能力测试试题卷,T25 ,19分) 某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放置一直径为 2 3 d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g ,不考虑板翻转。 (1)对板施加指向圆心的水平外力F ,设物块与板 间最大静摩擦力为max f ,若物块能在板上滑动,求F 应满足的条件。 (2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I , ①I 应满足什么条件才能使物块从板上掉下? ②物块从开始运动到掉下时的位移s 为多少? ③根据s 与I 的关系式说明要使s 更小,冲量应如何改变。 答案: (1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加速度为a 由牛顿运动定律,有 对物块 f =2ma 对圆板 F -f =ma 两物相对静止,有 f ≤f max 得 F≤ 32 f max 相对滑动的条件 m a x 3 2 F f > (2)设冲击刚结束的圆板获得的速度大小为0v ,物块掉下时,圆板和物块速度大小分别为1v 和2v 由动量定理,有0I mv = 由动能定理,有 对圆板2210311 2()422mg s d mv mv μ-+=- 对物块221 2(2)02 mgs m v μ-=- 由动量守恒定律,有 0122mv mv mv =+ 要使物块落下,必须12v v > 由以上各式得

3 2 I > s = 2 12g μ ? ?? ? 分子有理化得 s =2 3 12md g μ?? ? 根据上式结果知:I 越大,s 越小. 2.(20XX 年湛江市一模理综) 如图所示,光滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗 糙轨道,A 的右侧光滑,水平轨道左侧是一光滑斜面轨道,斜面轨道与水平轨道在O 点平 滑连接。车右端固定一个处于锁定状态的压缩轻弹簧,其弹性势能为Ep ,一质量为m 的小物体(可视为质点)紧靠弹簧,小物体与粗糙水平轨道间的动摩擦因数为μ,整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出后滑上水平粗糙轨道。车的质量为 2m ,斜面轨道的长度足够长,忽略小物体运动经过O 点处产生的机械能损失,不计空气阻力。求: (1)解除锁定结束后小物体获得的最大动能; (2)当∥满足什么条件小物体能滑到斜面轨道上,满足此条件时小物体能上升的最 大高度为多少? 解析:(1)设解锁弹开后小物体的最大速度饷大小为v 1,小物体的最大动啦为E k ,此时长板车的速度大小为v 2,研究解锁弹开过程小物体和车组成的系统,根据动量守恒和机械能守恒,有 ①(2分) ②(3分) ③(1分) 联立①②③式解得 ④(2分) (2)小物体相对车静止时,二者有共同的速度设为V 共 ,长板车和小物体组成的系统水平方向动量守恒 ⑤(2分) 所以v 共=0 ⑥(1分) 120mv mv -=221211 .222p E mv mv = +2111 2 k E mv =12 3k p E E =(2)0m m v +=共

动量和动能练习题

动量和动能练习题

动量练习题 例1.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等。两者质量之比M m 可能为( ) A.2 B.3 C.4 D.5 解析:解法一:两物块在碰撞中动量守恒: 12 Mv Mv mv =+,由碰撞中总能量不增加有:2 12 Mv ≥ 22121122 Mv mv +,再结合题给条件12 Mv mv =,联立有3M m ≤,故只有A B 、正确。 解法二:根据动量守恒,动能不增加,得 222 (2)222p p p M M m ≥+,化简即得3M m ≤,故A B 、正确。 例2.如图所示,质量1 0.3kg m =的小车静止在光滑的水平面上,车长 1.5m L =,现有质量1 0.2kg m =可视为质 点的物块,以水平向右的速度0 2m/s v =从左端滑上 小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数0.5μ=,取2 10m/s g =,求 (1) 物块在车面上滑行的时间t ; (2) 要使物块不从小车右端滑出,物块滑上小 车左端的速度0 v '不超过多少。 解析:(1)设物块与小车共同速度为v ,以水平

向右为正方向,根据动量守恒定律有 2012()m v m m v =+ ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有 220 Ft m v m v -=- ② 2F m g μ= ③ 解得101 2 ()m v t m m g μ=+,代入数据得0.24s t = ④ (2)要使物块恰好不从车面滑出,须使物块到车面最右端时与小车有共同的速度,设其为v ',则 2012()m v m m v '' =+ ⑤ 由功能关系有2220 12211 ()2 2 m v m m v m gL μ' '=++ ⑥ 代入数据得0 5m/s v '= 故要使物块不从小车右端滑出,物块滑上小车左端的速度0 v '不超过5m/s 。 例 3.两个质量分别为1 M 和2 M 的劈A 和B ,高度相 同,放在光滑水平面上。A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h 。物块从静止开始滑下,然后又滑上劈B 。求物块在B 上能够达到的最大高度。 m 2 m 1 v 0

动量和能量综合试题

动量和能量综合试题 1.如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。 试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对于地面的最大速度和最小速度。 2.如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 3、质量为m的木块在质量为M的长木板中央,木块与长木板间的动摩擦因数为μ,木块和长木板一起放在光滑水平面上,并以速度v向右运动。为了使长木板能停在水平面上,可以在木块上作用一时间极短的冲量。试求: (1)要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2)木块受到冲量后,瞬间获得的速度为多大?方向如何? (3)长木板的长度要满足什么条件才行? 4、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹 簧,一质量m=1.0kg的小物体(可视为质点)紧靠弹簧,小物 体与水平轨道间的动摩擦因数0.5 μ=。整个装置处于静止状 态。现将轻弹簧解除锁定,小物体被弹出,恰能到达圆弧轨道 的最高点A。不考虑小物体与轻弹簧碰撞时的能量损失,不计 空气阻力。g取10m/s2,求: (1)解除锁定前轻弹簧的弹性势能; (2)小物体第二次经过O′点时的速度大小; (3)最终小物体与车相对静止时距O′点的距离。 5、质量m=1kg的小车左端放有质量M=3kg的铁块,两者以v0=4m/s的共同速度沿光滑水平面向竖直墙运动,车与墙的碰撞时间极短,无动能损失。铁块与车间的动摩擦因数为μ=1/3,车足够长,铁块不会到达车的右端。从小车第一次与墙相碰开始计时,取水 平向右为正方向,g=10m/s2,求:当小车和铁块再次具有共同速度 时,小车右端离墙多远? 6、如图所示,轻质弹簧将质量为m的小物块连接在质量为M(M=3m) 的光滑框架内。小物块位于框架中心位置时弹簧处于自由长度.现 v沿光滑水平面向左匀速滑动. 设框架与小物块以共同速度 (1)若框架与墙壁发生碰撞后速度为零,但与墙壁不粘连,求框架脱离墙壁后的运动过程中,弹簧弹性势能的最大值.

2020届高考物理一轮复习考点综合提升训练卷:动量和能量综合题(含解析)

2020年高考物理一轮复习考点综合提升训练卷---动量与能量综合题 1.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求: (1)摆到最低点B ,女演员未推男演员时秋千绳的拉力; (2)推开过程中,女演员对男演员做的功; (3)男演员落地点C 与O 点的水平距离s . 【答案】 (1)9mg (2)6mgR (3)8R 【解析】 (1)第一个过程:两杂技演员从A 点下摆到B 点,只有重力做功,机械能守恒.设 二者到达B 点的速度大小为v 0,则由机械能守恒定律有:(m +2m )gR =12 (m +2m )v 02. 女演员未推男演员时,秋千绳的拉力设为F T ,由两杂技演员受力分析有: F T -(2m +m )g =(m +2m )v 02R 所以F T =9mg (2)第二个过程:两演员相互作用,沿水平方向动量守恒. 设作用后女、男演员的速度大小分别为v 1、v 2, 所以有(m +2m )v 0=2mv 2-mv 1. 第三个过程:女演员上摆到A 点过程中机械能守恒,因此有mgR =12 mv 12. 女演员推开男演员时对男演员做的功为W =12×2mv 22-12 ×2mv 02

联立得:v 2=22gR ,W =6mgR (3)第四个过程:男演员自B 点平抛,有:s =v 2t . 运动时间t 可由竖直方向的自由落体运动得出4R =12 gt 2, 联立可解得s =8R . 2.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92 mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。放手后绳在短暂时间内被拉断,之后B 继续向右运动,一段时间后与向左匀速运动、速度为v 0的物块C 发生碰撞,碰后B 、C 立刻形成粘合体并停止运动,C 的质量为2m 。求: (1)B 、C 相撞前一瞬间B 的速度大小; (2)绳被拉断过程中,绳对A 所做的W 。 【答案】 (1)2v 0 (2)12mv 20 【解析】 (1)B 与C 碰撞过程中动量守恒 mv B =2mv 0 解得:v B =2v 0 (2)弹簧恢复原长时,弹性势能全部转化为物块B 的动能,则E p =12mv 2B 0 解得:v B 0=3v 0 绳子拉断过程,A 、B 系统动量守恒 mv B 0=mv B +mv A 解得:v A =v 0

(完整word版)动量和能量综合练习题

动量和能量综合练习题 1、(12分)如图所示光滑水平直轨道上有三个滑块A、B、C质量分别为mA=mC=2m和mB=m,A、B用细绳相连,中间有一压缩的弹簧(弹簧与滑块不栓接),开始时A、B以共同速度V0向右运动,C静止,某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三者的速度恰好相同。 求:(1)B与C碰撞前B的速度 (2)弹簧释放的弹性势能多大 2、如图所示,粗糙斜面与光滑水平面平滑连接,滑块A质量为m1=1kg,滑块B质量为m2=3kg,二者都可视为质点,B的左端连接一轻质弹簧。若A在斜面上受到F=2N,方向沿斜面向上的恒力作用时,恰能沿斜面匀速下滑,现撤去F,让A在距斜面底端L=1m处从静止开始滑下。弹簧始终在弹性限度内。g=10m/s2。求: (1)A到达斜面底端时速度v是多大? (2)从滑块A接触弹簧到弹簧第一次获得最大弹性势能的过程中,弹簧对A的冲量I大小和方 向? 弹簧的最大弹性势能E Pm是多大? 4、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。车右端固定一个尺寸可以忽略,处于锁 定状态的压缩轻弹簧,一质量m=1.0kg的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数。 整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出,恰能到达圆弧轨道的最高点A。不考虑小物体与轻弹簧碰撞时的能量损失,不计空气阻力。g取10m/s2,求 (1)解除锁定前轻弹簧的弹性势能 (2)小物体第二次经过O′点时的速度大小(3)最终小物体与车相对静止时距O′点的距离。 8、光滑水平面上放着质量,m A=1kg的物块A与质量m B=2kg的物块B, A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能E P=49J。在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m, B恰能到达最高点C。g=10m/s2,求 (1)绳拉断后瞬间B的速度vB的大小;(2)绳拉断过程绳对B的冲量I 的大小; (3)绳拉断过程绳对A所做的功W。

(完整word)高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力 做功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。 例1A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为

动量与能量综合计算题练习

动量与能量综合 1、如图所示,一质量为M,长为L的木板固定在光滑水平面上。一质量为m的小滑块以水平速度v0从木板的左端开始滑动,滑到木板的右端时速度恰好为零。 (1)小滑块在木板上的滑动时间; (2)若木块不固定,其他条件不变,小滑块相对木板静止时距木板 左端的距离。 2、如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以v o= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2) 3.质量为M的物块A静止在离地面高h的水平桌面的边缘,质量为m的物块B沿桌面向A运动并以速度v0与A发生正碰(碰撞时间极短)。碰后A离开桌面,其落地点离出发点的水平距离为L。碰后B 反向运动。已知B与桌面间的动摩擦因数为μ.。重力加速度为g,桌面足够长。求: (1)碰后A、B分别瞬间的速率各是多少? (2)碰后B后退的最大距离是多少?

4. 如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位 置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R . 5、如图12所示,一个半径R =0.80m 的 4 1光滑圆弧轨道固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h =1.25m 。在圆弧轨道的最下端放置一个质量m B =0.30kg 的小物块B (可视为质点)。另一质量m A =0.10kg 的小物块A (也视为质点)由圆弧轨道顶端从静止开始释放,运动到轨道最低点时,与物块B 发生碰撞,碰后A 物块和B 物块粘在一起水平飞出。忽略空气阻力,重力加速度g 取10m/s 2 ,求: (1)物块A 与物块B 碰撞前对圆弧轨道最低点的压力大小; (2)物块A 和B 落到水平地面时的水平位移大小; (3)物块A 与物块B 碰撞过程中A 、B 组成系统损失的机械能。 6. 如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板 位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能. 图12

动量和能量综合测试卷

动量和能量综合测试卷 第一卷(选择题共40分) 一、本题共10小题;每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.在高速公路上发生一起交通事故,一辆质量为1500kg向南行驶的长途客车迎面撞上了一质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前以20m/s的速率行驶,由此可判断卡车碰前的行驶速率( ) A. 小于10m/s B. 大于10m/s小于20m/s C . 大于20m/s小于30m/s D . 大于30m/s小于40m/s 2.如图所示,光滑水平面上,质量为m=3kg的薄木板和质量为m=1kg的物块,都以v=4m/s 的初速度朝相反方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4m/s时,物块的运动情况是() A.做加速运动 B.做减速运动 C.做匀速运动 D.上述都有可能 3. 一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力 所做的功等于() A.物体势能的增加量 B.物体动能的增加量 C.物体动能的增加量加上物体势能的增加量 D.物体动能的增加量加上克服重力所做的功 4.测定运动员体能一种装置如图所示,运动员质量为m1,绳 拴在腰间沿水平方向跨过滑轮(不计滑轮质量及摩擦), 下悬一质量为m2的重物,人用力蹬传送带而人的重心不 动,使传送带以速率v匀速向右运动。下面是人对传送带 做功的四种说法,其中正确的是() A.人对传送带做功B.人对传送带不做功 C.人对传送带做功的功率为m2gv D.人对传送带做功的功率为(m1+m2)gv 5.在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有() A.E1<E0 B.p1<p0 C.E2>E0 D.p2>p0 6.如图所示,两物体A、B之间用轻质弹簧相连接,放在光滑的水平面上,物体A紧靠竖直墙壁,现向左推物体B使弹簧压缩,然后由静止释放,则() A.弹簧第一次恢复原长后,物体A开始加速运动 B.弹簧第一次伸长到最大长度时,A、B的速度一定相同C.弹簧第二次恢复原长后,两物体速度一定为零

2019-2020年高三物理考点二轮练习:第4强化动量和能量的综合问题含解析高考物理试题试卷分析

2019-2020年高三物理考点二轮练习:第4强化动量和能量的综合问题含解析高考物 理试题试卷分析 1.(多选)从塔顶以相同速率抛出A、B、C三小球,A球竖直上抛,B球平抛,C球竖直下抛.另有D球从塔顶起自由下落,四个小球质量相同,落到同一水平面上.不计空气阻力,则() A.落地时动能相同的小球是A、B、C B.落地时动量相同的小球是A、B、C C.从离开塔顶到落地过程中,动能增量相同的小球只有A、B、C D.从离开塔顶到落地过程中,动量增量相同的小球是B、D 解析:小球从抛出至落地过程中只有重力做功,且重力做功相同,A、B、C三个小球的初动能相同,故小球落地时的动能相同,所以A 正确;A、B、D落地速度方向相同,都是竖直向下,但是C落地速度方向不是竖直向下,故A、B、C落地的动量不相同,故选项B错误;从离开塔顶到落地过程中,动能增量等于合力做功,即等于重力的功,由于从相同高度抛出,故重力的功相同,故四个小球落地过程中动能增量相同,故选项C错误;从离开塔顶到落地过程中,动量增量等于合力的冲量,合力为重力,但是时间相同的只有B、D,故合力的冲量相同的是B、D,故选项D正确. 答案:AD

2.(多选)(2016·桂林模拟)如图所示,有一光滑钢球质量为m ,被一U 形框扣在里面,框的质量为M ,且M =2m ,它们搁置于光滑水平面上,今让小球以速度v 0向右去撞击静止的框,设碰撞无机械能损失,经多次相互撞击,下面结论正确的是( ) A .最终都将停下来 B .最终将以相同的速度向右运动 C .永远相互碰撞下去,且整体向右运动 D .在它们反复碰撞的过程中,球的速度将会再次等于v 0,框也会再次重现静止状态 解析:小球与框碰撞过程中,系统动量守恒,机械能总量也守恒; 根据动量守恒定律,有m v 0=m v 1+M v 2, 根据机械能守恒定律,有12m v 20=12m v 21+12 M v 22, 其中M =2m , 联立解得:v 1=v 0,v 2=0(两次碰撞后)或者v 1=-13v 0,v 2=23 v 0(一次碰撞后), 由于二次碰撞后的速度情况与开始时相同,故整体内部一直不断碰撞,整体持续向右运动;球的速度将会再次等于v 0,框也会再次重现静止状态,故A 错误,B 错误,C 正确,D 正确,故选C 、D. 答案:CD 3.(多选)(2016·南宁模拟)质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正撞,碰撞后两者的动量正好相等,两者质

动量和能量练习题

动量和能量练习题 一、选择题: 1 、如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻弹簧.B静止,A 以速度v0水平向右运动,通过弹簧与B发生作用.作用过程中,弹簧获得的最大弹性势能 E p为( ) A.mv B.mv C.mv D.mv 2.(多选)如图所示,水平光滑轨道宽和弹簧自然长度均为 d.m2的左边有一固定挡板,已知m1≥m2.m1由图示位置静止释放,当m1与m2相距最近时m1速度为v1,则求在以后的运动过程中( ) A.m1的最小速度是0 B.m1的最小速度是v1 C.m2的最大速度是v1 D.m2的最大速度是v1 3.(多选)如图所示,水平传送带AB足够长,质量为M=1.0 kg的木块随传送带一起以v1=2 m/s的速度向左匀速运动(传送带的速度恒定),木块与传送带的动摩擦因数μ=0.5,当木块运动到最左端A点时,一颗质量为m=20 g的子弹,以v0=300 m/s的水平向右的速度,正对射入木块并穿出,穿出速度v=50 m/s,设子弹射穿木块的时间极短,(g取10 m/s2)则( ) A.子弹射穿木块后,木块一直做减速运动 B.木块遭射击后远离A的最大距离为0.9 m C.木块遭射击后到相对传送带静止所经历的时间为1 s D.木块遭射击后到相对传送带静止所经历的时间为0.6 s 4.一炮弹质量为m,以一定的倾角斜向上发射,达到最高点时速度大小为v,方向水平.炮 弹在最高点爆炸成两块,其中一块恰好做自由落体运动,质量为,则爆炸后另一块瞬时速度大小为( ) A.v B. C. D.0 5.如图所示,质量为m的半圆轨道小车静止在光滑的水平地面上,其水平直径AB长度为2R,

高考物理二轮复习专题二能量与动量动量与能量观点的综合应用教案

第5课时动量与能量观点的综合应用 考点动量定理与动量守恒定律的应用 1.动量定理 (1)公式:Ft=p′-p=Δp (2)理解: 等式左边是过程量Ft,右边是两个状态量之差,是矢量式.v1、v2是以同一惯性参考系为参照的;Δp的方向可与mv1一致、相反或成某一角度,但是Δp的方向一定与F的方向一致.2.动量守恒定律 (1)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′,或Δp=0,或Δp1=-Δp2. (2)守恒条件 ①系统不受外力或系统虽受外力但所受外力的合力为零. ②系统所受外力的合力不为零,但在某一方向上系统受到的合力为零,则系统在该方向上动量守恒. ③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程. 3.应用技巧 (1)动量定理没有适用条件,在计算与时间有关的问题或求平均冲力时可以用. (2)动量定理的研究对象可以是单一物体,也可以是物体系统. (3)判断动量是否守恒时,要注意所选取的系统,区分内力和外力. (4)两规律都是矢量式,书写时要规定正方向.

例 1(2019·山东济南市上学期期末)某研究小组经查阅资料了解到,在空气中低速下落的物体所受的空气阻力可认为与物体速度大小成正比关系,因此下落的物体最终会达到一个恒定的速度,称之为收尾速度.如图1所示为小球由静止开始,在低速下落过程中速度随时间变化的一部分图象.图中作出了t=0.5s时刻的切线,小球的质量为0.5kg,重力加速度g取10m/s2,求:

图1 (1)小球在t =0.5s 时刻的加速度大小; (2)小球最终的收尾速度的大小; (3)小球从静止下落到t =0.5s 时刻的位移大小. 答案 (1)4m/s 2 (2)203m/s (3)23m 解析 (1)由题图图象可知:a =Δv Δt =4m/s 2 (2)设空气阻力与速度大小的正比系数为k ,当v =4m/s 时,有:mg -kv =ma 达到最大速度时,有mg =kv m 联立解得:k =34,v m =20 3 m/s (3)在0到t =0.5s 内对小球由动量定理可得 mgt -Σkv i Δt =mv -0,即:mgt -kx =mv -0 解得:x =2 3 m.

动量与能量结合综合题附标准答案

1 / 11 动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab 和cd ,其质量均为m ,能沿导轨无摩擦地滑动.金属杆ab 和cd 与导轨及它们间的接触等所有电阻可忽略不计.开始时ab 和cd 都是静止的,现突然让cd 杆以初速度v 向右开始运动,如果两根导轨足够长,则( ) A .cd 始终做减速运动,ab 始终做加速运动,并将追上cd B .cd 始终做减速运动,ab 始终做加速运动,但追不上cd C .开始时cd 做减速运动,ab 做加速运动,最终两杆以相同速度做匀速运动 D .磁场力对两金属杆做功的大小相等 2.一轻弹簧的下端固定在水平面上,上端连接质量为m 的木板处于静止状态,此时弹簧的压缩量为0h ,如图所示。一物块从木板正上方距离为03h 的A 处自由落下,打在 木板上并与木板一起向下运动,但不粘连,它们到达最低点后又向上运动。若物块质量也为m 时,它们恰能回到O 点;若物块质量为2m 时,它们到达最低点后又向上运动,在通过O 点时它们仍然具有向上的速度,求: 1,质量为m 时物块与木板碰撞后的速度; 2,质量为2m 时物块向上运动到O 的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为 L ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,两根导体棒的质量皆为m , 电阻皆为R ,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁 场,磁感应强度为B 。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度0v ,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q 最多是多少? (2)当ab 棒的速度变为初速度的4/3时,cd 棒的加速度a 是多少? 4.(20分) 如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,两物块的质量均为M=0.60kg 。一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A 物块,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面。已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m 。设子弹在物块A 、 B 中穿行时受到的阻力保持不变,g 取10m/s 2。求: (1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)求子弹在物块B 中穿行的距离; (3)为了使子弹在物块B 中穿行时物块B 未离开桌面,求物块B 到桌边的最小距离。 5.宇宙射线每时每刻都在地球上引起核反应。自然界的14C 大部 分是宇宙射线中的中子轰击“氮-14 ”产生的,核反应方程式为 。若中子的速度为v 1=8×l06m/s ,反应前 “氮-14”的速度认为等于零。反应后生成的14C 粒子的速度为 v 2=2.0×l05m/s ,其方向与反应前中子的运动方向相同。 ①求反应中生成的另一粒子的速度: ②假设此反应中放出的能量为0.9MeV ,求质量亏损。 6.(19分)如图12所示,质量M=1.0kg 的木块随传送带一起以v=2.0m/s 的速度向左匀速运动,木块与传送带间的 动摩擦因数μ=0.50。当木块运动至最左端A 点时,一颗质量为m=20g 的子弹以v 0=3.0×102m/s 水平向右的速度击 穿木块,穿出时子弹速度v 1=50m/s 。设传送带的速度恒定,子弹击穿木块的时间极短,且不计木块质量变化,g=10m/s 2。 求: (1)在被子弹击穿后,木块向右运动距A 点的最大距离; (2)子弹击穿木块过程中产生的内能; (3)从子弹击穿木块到最终木块相对传送带静止的过程中,木块与传送带间由 于摩擦产生的内能。(AB 间距离足够长)

相关文档
相关文档 最新文档