文档库 最新最全的文档下载
当前位置:文档库 › 微网逆变器H∞重复控制

微网逆变器H∞重复控制

微网逆变器H∞重复控制
微网逆变器H∞重复控制

微网逆变器H∞重复控制

本文提出了一种微网并网逆变器的电压控制器设计方法。这种逆变器通常与小型供能单元结合使用。其输出电压控制器的设计基于H∞及重复控制技术。即使在带非线性负载或者电网波形畸变时,仍可以保证输出电压谐波畸變率很低。控制器含有一个无穷维内在模型,可以消除所有与电网电网同频或者高频大约超过1.5kHz的动态扰动。

标签:DC-AC功率转换器;H∞控制;微网;重复控制;THD;电压控制

许多与分布式系统或者与微网连接的负载都是非线性的,会产生畸变的谐波电流。最典型例子就是线性负载与晶闸管串联以及直流侧电容。同时,许多负载都是单相的,因此可能出现较大的零序和负序电流分量。由于对于谐波电流而言电网阻抗相对较高,因此其将在相邻的供电用户侧引起电压畸变。而允许发电单元逆变器控制微网电压将可以使其电能质量更好。假设一个外部的控制环,通过选择合适的参考电压并调节其相对于电网的幅值和相位,来调节微网和大电网间功率交换。通过电压控制器对参考电压的跟随来实现小的THD。控制器输出受到非正弦电流、负载电流变化、电网电压波动和畸变、直流侧电压的影响。

1 中线臂电路模型

图1电路由中线臂和三相逆变器组成,逆变器部分的结构可以是三电平或多电平等形式。中线臂包括两个开关管、两个参数尽可能一致的电容和一个电感。中线臂控制器为开关管S1和S2提供触发脉冲,控制目标。①为维持电容器组的中点电压接近实际直流侧电压的一半,可通过控制使电感电流iL等于中线电流iN(使电容器没有电流通过)来实现;②为抑制系统内部和外部扰动。

2 H-∞控制器设计

由于各种复杂因素的影响,控制系统本身存在不确定性,包括数学模型本身的不确定性和外界干扰的不确定性,经典控制理论利用充分大的幅值增益和相位裕度使反馈系统在较大震动时,仍能保持系统性能并有效抑制干扰,但其无法直接应用于MIMO系统,H∞控制理论作为现代鲁棒控制理论的重要方法,可以克服不确定性的影响,同时维持系统运行的稳定性。本文三相四线制微源逆变器中线电流抑制和中点稳定问题采用H-∞控制理论解决。

如图2所示,中线臂控制器的控制目标是维持中性点稳定,兼顾维持系统稳定性的同时使Vave尽可能的小。根据H∞控制理论标准控制框图和中线臂控制模型构造控制器。摄动为中线电流iN,V0为等效

本文研究了由中性臂和直流电容组成的中点平衡控制模型。采用这种模型的有点是可以对中线臂控制电路采用高频宽鲁棒控制,从而避免大电容的使用或消耗无功平衡。对中性臂的控制归结为一个H无穷控制问题。仿真和实验结果证

光伏离网逆变器并机典型设计

光伏离网逆变器并机典型设计GrOWan古湍巨特 TOP3 全球单相逆变器 IlIIl 在一些无电地区,安装光伏离网储能系统,比采用油机发电,更经济和环保。相对于 并网系统,离网系统较为复杂,需考虑用户的负载、用电量、当地的天气情况,特别 是负载情况多样化,有像水泵类的感性负载、也有像电炉类的阻性负载,有单相,也 有三相。对于大于IOkW 的光伏离网系统,可以采用单机或者多机并联的方式,但各 有其优缺点。 本文主要介绍采用多台离网逆变器搭建的中大功率光伏离网系统设计方法。 古瑞瓦特离网控制逆变一体SPF5000TL HVM 机型,最多支持6台并机,可以搭建 30kW以内的光伏离网系统。既可组成30kW的单相系统,还可组成30kW的三相系统。考虑到三相负载不一定均衡,6台逆变器组成三相系统时,还有多种配置方法,如222、321、411等,可以应对不同场景的用户需要。下表是一个用户的实际负载

情况和用电情况。 这个系统较特殊,有单相负载与三相负载两种,且三相不平衡。我们根据负载的分布, 先进行逆变器选型设计,系统总负载功率是24kW ,用户表示,不会所有的负载都同 时运行,最大功率在20kW 左右,因此设计采用6台5kW 单相离网逆变器,A相用 3台共15kW,B相用2台共IOkW,C相用1台共5kW,构成一个30kW 三相不平衡的离网系统。单相逆变器输出有两根线:相线和零线,6台逆变器的零线全接在 一起,3台逆变器的相线接在A相,2台逆变器的相线接在B相,1台逆变器的相线 接在C相。 多台逆变器并联,每台机还需连接通信线,A相的3台机均流线接在一起,B相的2 台机均流线接在一起,连接完线,再接上蓄电池,关闭输出断路器,在面板上设置逆 变器的相位,SPF5000进入设置第23项,A相的3台机设为3P1,B相的2台机设为3P2,C相的1台机设为3P3 ,设置完成,便可运行。

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

重复控制逆变器并网电流控制技术研究

龙源期刊网 https://www.wendangku.net/doc/b9944971.html, 重复控制逆变器并网电流控制技术研究 作者:陈凯张杰 来源:《中国测试》2015年第03期 摘要:针对在逆变电源系统中因模型的不精确及系统负载的非线性、以及常规方法中基于完美对消思想设计的重复控制器无法满足逆变电源的控制需求且设计复杂等问题,提出一种新的重复控制器设计方法,利用数字滤波器代替重复控制补偿器,并将内模系数和补偿器等效为同一个低通滤波器。将改进后的重复控制器与PI控制相结合,形成复合式控制系统,进一步提高电流跟踪速度,减小电流谐波含量。并通过运行Matlah仿真模型和具体实验平台测试,验证该方法的可行性和良好性能。 关键词:比例积分控制;重复控制;总谐波失真(THD);并网逆变器 文献标志码:A 文章编号:1674-5124(2015)03-0091-05 0 引言 并网逆变器是分布式并网发电系统的关键部分,它将直流电能变换成交流电能并传输到公共电网,供电网负载使用。为减小对电网的污染,分布式并网发电系统必须具有高功率因数和低并网电流谐波含量。根据IEEE的相关标准,对于太阳能光伏发电系统和风力发电系统,允许的最大电流谐波含量为5%。 应用最为广泛的并网控制算法是比例积分(PI)控制、谐振控制(PR)和重复控制。PI 控制具有简单、易离散、参数整定确定和鲁棒性强等特点,但是其难以精确跟踪时变的交流正弦信号,系统将存在稳态误差;PR控制具有良好的稳态性能,可以提高输出电流质量,但前提是每一个谐波频率都对应一个谐振控制器;重复控制是一种基于内模原理的控制方法。重复控制能够消除周期性误差信号和最小化电流谐波含量,已广泛用于逆变系统中。但是由于重复控制器中周期延时的存在,使得重复控制器不能立即输出,而是延迟到下一个周期才会输出,而对于当前周期的误差信号没有任何调节作用,因此系统动态性能较差。 本文首先分析光伏并网逆变器系统模型和重复控制理论,提出一种改进的重复控制器设计方法,并将改进后的方法用于与PI控制相结合的复合式控制系统。 1 并网电流控制系统建模 并网光伏发电系统一般由光伏电池板、并网逆变器和电网组成。单相并网逆变器的核心部分一般包括逆变电桥和LC滤波器。逆变电桥完成高频调制,实现直流变换为交流,再经LC 滤波器后得到并网电流。并网环节核心电路如图l(a)所示。

离网逆变器控制策略

逆变器控制策略: 逆变器的控制目标是提高逆变器输出电压的稳态和动态性能。稳态性能主要是指输出电 压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD 和负载突变时的动态响应水平。在这些指标中输出电压THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%。 1、离网逆变器的控制性能要求主要是使其输出电压具有良好的控制抗扰性。 离网逆变器采用输出电容电流内环和输出电压外环的双闭环控制。 电流调节器可以实现快速加减速和电流限幅作用,同时使系统的抗电源扰动和负载扰动 的能力增强。 电压调节器主要是控制输出电压的稳定。 2、基于LC 滤波器的离网型逆变器 图2 基于LC 滤波的电压型离网逆变器主电路 图3 基于LC 的VSI 输出电压单闭环控制结构 图5 基于电容电流反馈的单位调节器内环控制结构 1VD 3VD 5VD 2VD 6VD 4VD 1 V 3V 5V 4V 6V 2V U V W dc C C R L dc u + -L i o i C i L u C u i u 调节 器 PWM K 1sL R +-i u o i C *u C u L i -1sC -C i ? ? ?C u L u *Cq u cq u PI P PWM K 1sL sC 1iq u C *i C i ????oq i +----

图14 基于同步坐标系的LC-VSI 双环控制结构 PI PI P P Inv.Park Trans Inv.Clarke Trans SPWM Generator Clarke Trans Park Trans Clarke Trans Park Trans *q s U *sd U sd U q s U *sd I *q s I q s I d s I a s I βs I A U βs U a s U B U A I B I 1 1ov T s +11 e T s +1 1oi T s +PI 1Ls 1Cs P 11 oi T s +11 ov T s +*Cq u C *i iq u oq i cq u C i +-+- + -+ -电流内环

逆变电源控制算法哪几种

https://www.wendangku.net/doc/b9944971.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.wendangku.net/doc/b9944971.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

逆变电源重复控制技术的研究

收稿日期:2003205219. 作者简介:赵 金(19672),男,副教授;武汉,华中科技大学控制科学与工程系(430074).基金项目:“十?五”海军武器装备预研项目. 逆变电源重复控制技术的研究 赵 金 延烨华 徐金榜 万淑芸 (华中科技大学控制科学与工程系) 摘要:针对逆变电源控制系统,提出了一种基于重复控制技术的控制方法.重复控制是一种基于内模原理的控制策略.在逆变电源带非线性负载时,它是对输出电压波形进行改善的一种有效手段.分析了重复控制的基本原理,讨论了系统的稳定性和收敛性,并给出了相应的证明.在此基础上,针对重复控制器各个部分,提出了详细的参数选择设计方案.仿真结果表明本方案正确、可行.关 键 词:逆变电源;重复控制;仿真 中图分类号:TM571 文献标识码:A 文章编号:167124512(2003)1220025204 输出电压谐波含量是逆变电源的一项重要指 标.当前研究的一个热点问题就是如何降低逆变电源带非线性负载时的波形失真,抑制谐波,提高电压品质.现有的方案试图通过提高系统的动态响应速度来抑制负载扰动[1~3],都取得了一定的效果.但这类方法存在的共同问题就是需要检测多个变量,硬件的成本高,给在实际产品中大量应用带来了一定的难度.本文着眼于系统的稳定性和收敛性,给出了参数选择的具体方法,并通过仿真证明其正确性. 1 重复控制原理 1.1 数学模型 重复控制所基于的内模原理指出:如果产生参考输入指令的模型包含在稳定的闭环系统内部,那么被控系统的输出可以无静差的跟踪该参考输入指令[4].重复控制的内模如图1所示,图中T d 为单位延迟时间,T 为基波周期,N 为每基波周期对输出信号的采样次数 . 图1 重复控制的内模 重复控制系统的结构框图如图2所示,其中虚线框内的结构即为重复控制器.当误差e 周期性地重复出现时,控制器的输出逐周期累加;当e 为零时,控制器维持并周期性地输出上周期的波形 . 图2 重复控制系统结构框图 图2中,r 为输入信号;e 为误差信号;y 为输出信号;r c 为重复控制器叠加于输入r 上的校正量;d 为扰动信号.各环节意义为:z -N 为周期延时正反馈环节,对误差进行逐周期地积分,N 为 每基波周期对输出信号的采样次数;辅助补偿器Q (z )是为了增强系统鲁棒性而设计的;超前环节z k 的作用是使控制器根据上一周期的误差信息在下一周期提前k 拍发出校正量,k 为超前步长;比例系数K r 最终确定校正量r c 的幅值;补偿器S (z )改造被控对象特性,保证系统稳定;P (z )是控制对象的传递函数. 由图2,利用叠加原理可推导出系统误差与输入和扰动的关系 e (z )= [1-P (z )][z N -Q (z )] z N -[Q (z )-z k K r S (z )P (z )] ?r (z )+ Q (z )-z N z N -[Q (z )-z k K r S (z )P (z )] d (z ).(1) 1.2 稳定性分析 由式(1),得系统的特征方程为 z N -[Q (z )-z k K r S (z )P (z )]=0, (2) 第31卷第12期 华 中 科 技 大 学 学 报(自然科学版) Vol.31 No.122003年 12月 J.Huazhong Univ.of Sci.&Tech.(Nature Science Edition ) Dec. 2003

离网逆变器安装手册

离网逆变器使用手册 编制:李凡 审核: 批准: 成都旭双太阳能科技有限公司 光伏项目部 二O一一年五月

请在安装逆变器之前仔细阅读本手册。 本手册介绍了离网逆变器的使用注意事项、安装要求及安装方法,系统加电及调试过程,系统使用及操作方法,系统维护及应急处理等基本知识。本手册可以帮助您正确使用和维护逆变设备。 本手册适用于对逆变器安装、操作、维护专业技术人员及日常操作的用户。读者需具备一定的电气知识,熟悉电气原理图和电子元器件特性。 本手册内容都为成都旭双太阳能科技有限公司所有,非公司内部人员未经书面授权不得公开转载全部或部分内容。 编者 2011年5月18日

目录 一、安全说明 (1) 1.1安装前 (1) 1.2安装中 (1) 1.3维修 (2) 1.4其他 (2) 二、逆变器安装 (4) 2.1安装流程 (4) 2.1.1 安装前准备 (4) 2.1.2 场地选择 (5) 2.1.3 机械安装 (6) 2.1.4 电气连接 (6) 2.1.5通讯线连接: (8) 2.2试运行 (9) 2.1.2 试运行前检查: (9) 2.1.3 试运行: (10) 三、逆变器维护 (11) 四、结语 (12)

一、安全说明 逆变器是作为电力电子产品,在安装、操作和维护过程中需要严格遵循相关安全注意事项。 不正确使用或误操作将可能危害: ●操作者和第三方的生命和人身安全。 ●逆变器和属于操作者或第三方的其他财产。 1.1安装前 ?当收到产品时应首先检查逆变器是否在运输过程中有无损坏。若发 现问题请立即与生产厂家或运输公司联系。 ?在选择安装场地时,应保证周围内没有任何其他电力电子设备的干 扰。 1.2安装中 ?在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断 开直流侧断路器。暴漏于阳光,光伏阵列将会产生危险电压。 ?所有安装操作必须且仅有安装技术人员完成。 ?光伏系统中所使用的电缆必须连接牢固,良好绝缘以及规格合适。

离网发电系统方案

光伏离网发电系统(技术部分) 上海泊吾电源有限公司 2013年1月

目录 第一章:系统概述 (3) 1.1 项目概述 (3) 1.2 系统设计依据 (3) 1.3 公司简介 (4) 第二章:系统配置 (4) 2.1系统构成 (4) 2.2系统选型 (4) 2.2.1光伏组件 (4) 2.2.2光伏组件支架 (5) 2.2.3光伏方阵防雷汇流箱 (6) 2.2.4接地和防雷 (7) 2.2.5线缆桥架 (8) 2.2.6光伏逆变器 (10) 2.2.7通讯及监控 (12) 2.2.8蓄电池 (14) 第三章:系统设计 (16) 3.1离网系统设计的基本原理 (16) 3.2气象数据分析................................................................................... 错误!未定义书签。 3.3 组件方阵设计 (17) 3.3.1倾角和方位角 (17) 3.3.2组件阵列间距 (19) 3.3.3组件距地(屋面)距离 (20) 3.4光伏逆变器电气设计 (21) 3.5光伏消防安全设计........................................................................... 错误!未定义书签。 3.5.1蓄电池设计方法.................................................................... 错误!未定义书签。第四章:系统发电量分析............................................................................. 错误!未定义书签。第五章:系统主要设备清单......................................................................... 错误!未定义书签。

微网逆变器H∞重复控制

微网逆变器H∞重复控制 本文提出了一种微网并网逆变器的电压控制器设计方法。这种逆变器通常与小型供能单元结合使用。其输出电压控制器的设计基于H∞及重复控制技术。即使在带非线性负载或者电网波形畸变时,仍可以保证输出电压谐波畸變率很低。控制器含有一个无穷维内在模型,可以消除所有与电网电网同频或者高频大约超过1.5kHz的动态扰动。 标签:DC-AC功率转换器;H∞控制;微网;重复控制;THD;电压控制 许多与分布式系统或者与微网连接的负载都是非线性的,会产生畸变的谐波电流。最典型例子就是线性负载与晶闸管串联以及直流侧电容。同时,许多负载都是单相的,因此可能出现较大的零序和负序电流分量。由于对于谐波电流而言电网阻抗相对较高,因此其将在相邻的供电用户侧引起电压畸变。而允许发电单元逆变器控制微网电压将可以使其电能质量更好。假设一个外部的控制环,通过选择合适的参考电压并调节其相对于电网的幅值和相位,来调节微网和大电网间功率交换。通过电压控制器对参考电压的跟随来实现小的THD。控制器输出受到非正弦电流、负载电流变化、电网电压波动和畸变、直流侧电压的影响。 1 中线臂电路模型 图1电路由中线臂和三相逆变器组成,逆变器部分的结构可以是三电平或多电平等形式。中线臂包括两个开关管、两个参数尽可能一致的电容和一个电感。中线臂控制器为开关管S1和S2提供触发脉冲,控制目标。①为维持电容器组的中点电压接近实际直流侧电压的一半,可通过控制使电感电流iL等于中线电流iN(使电容器没有电流通过)来实现;②为抑制系统内部和外部扰动。 2 H-∞控制器设计 由于各种复杂因素的影响,控制系统本身存在不确定性,包括数学模型本身的不确定性和外界干扰的不确定性,经典控制理论利用充分大的幅值增益和相位裕度使反馈系统在较大震动时,仍能保持系统性能并有效抑制干扰,但其无法直接应用于MIMO系统,H∞控制理论作为现代鲁棒控制理论的重要方法,可以克服不确定性的影响,同时维持系统运行的稳定性。本文三相四线制微源逆变器中线电流抑制和中点稳定问题采用H-∞控制理论解决。 如图2所示,中线臂控制器的控制目标是维持中性点稳定,兼顾维持系统稳定性的同时使Vave尽可能的小。根据H∞控制理论标准控制框图和中线臂控制模型构造控制器。摄动为中线电流iN,V0为等效 本文研究了由中性臂和直流电容组成的中点平衡控制模型。采用这种模型的有点是可以对中线臂控制电路采用高频宽鲁棒控制,从而避免大电容的使用或消耗无功平衡。对中性臂的控制归结为一个H无穷控制问题。仿真和实验结果证

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

离网型逆变器如何合理选配

离网型逆变器如何合理选配 很多人问我,我建一套光伏发电系统,离网型的,如何挑选合适的逆变器?牌子当然重要,知名的公司在网上都能查的到,而且相同的功率名牌比普通牌的在价格上贵太多。不管是名牌还是其他牌子所采用的原理都是一样的。国内的南京欧陆、固德威、景浪等也相当不错。除了牌子,产地,原理,用料,我们选择合适的、性价比好的逆变器,究竟要看什么? 作为逆变器生产厂家做了多年技术开发和产品应用的人员,今天为大家整理了一些心得,希望能够对朋友们有所帮助。 一、几个基本技术指标要符合: 1、逆变效率:最低要≥90% 2、波形失真:<5.0% 3、过载保护:大于110%额定电流1分钟;大于150%额定电流20S;大于 180%额定电流5秒;大于200%额定电流0S。 4、要有通讯功能:例如RS485通讯 5、使用环境一般为:温度:-10℃~40℃,湿度:<95%无冷凝。 二、可靠性和性能要符合: 1、独有的动态电流环控制技术确保逆变器可靠运行。 2、负载适应能力强,包括电容性、电感性、混合性负载。 3、过载能力和抗冲击能力强。 4、具有输入过、欠压,输出过、欠压,过温,过载等完善的保护功能。 5、逆变器前面板最好采用LED显示方式,可以显示电池电压,输出电 流,输出功率等一些列参数。 总体要求:性能稳定,一键启动,控制安全可靠,以保障使用寿命长。 三、逆变器功率选择:

我们要选择逆变器,就要明白电气在开机瞬间的冲击能力~冲击也只表现在感性或容性负电气上。 逆变器瞬间能输出2倍的标称功率,容性或感性负载瞬间启动要3到7倍峰值功率。例如:1000W的空调,峰值7000W,逆变器2倍峰值,7000除2等于 3500W,就是说要用1000W功率的空调,要配3500W以上功率的逆变器才能启动。 这样说起来太复杂,下边就我们常用的电器列一下要配的逆变器功率: 1、对于像电热丝,灯泡,太阳灯之类纯电阻性家用电气,就用它的功率除以0.9。 2、电视机,以液晶为例,只要比电视标的功率大2倍的逆变器可以。 3、电脑,按选购液晶电视点加上90W功率选取(电脑主机功率); 4、空调,非变频的按7倍峰值算,变频的按4倍峰值算。 5、对于家庭中一些小功率电气,可以忽略不计。 常见家用合理电池逆变器的配置: 小结一下: 1、家庭上网,电视电脑,照明用,请配500W以上的逆变器加上100AH电池,使用时间,4个小时。 2、冰柜,请配1500W以上的逆变器加上150AH电池。使用时间8个小时。 3、风扇,照明,配300W逆变器加36AH电池,使用时间2个小时。

逆变电源并联均流的PI控制和重复控制结合的复合控制方法研究

逆变电源并联均流的PI控制和重复控制结合的 复合控制方法研究 董杰荣雅君 可有效地抑制非线性负载所引起的扰动,减小输出电压畸变 在复合控制下,逆变电源输出电压能很快达到稳态,具有良好的动态特性。 AC 图1 PI控制与重复控制复合控制框图 t/ms (0.02s/格) u / V ( / 格 ) 1 V 图2 重复控制时输出电压与电流波形(带非线性负载) 0.1ms/格 1 V / 格 图3复合控制后输出电压波形(带非线性负载)

逆变电源并联均流的电压与电流瞬时值反馈控制方案 董杰 荣雅君 根据电压与电流的瞬时值进行控制 减小输出电压畸变,保证波形质量 U 图5 电路原理图 图6 双闭环控制波形 基于模糊聚类分析的逆变电源并网运行的孤岛检测

及保护判据研究 荣雅君 殷桂梁 一、孤岛的特点及其检测 1.电压和频率 逆变电源并网运行时,逆变电源向a 点提供的功率为 jQ P +;负载得到功率为Load Load jQ P +,则电网提供的功率为 P P P Load -=? Q Q Q Load -=? 如果逆变电源工作在单位功率因数,则有0=Q , Load Q Q =?。孤岛形成前瞬间,如果0=?P ,a V 幅值将发生 变化;如果0≠?Q ,负载电压出现一个突然的相位漂移,逆 图1 逆变电源并网运行示意图 变电源控制系统能改变输出电流的频率,即a V 的频率,直到 0=?Q (达到负载的谐振频率)。 2.电压相位突变 电流源型逆变电源,电网断开后,a V 不再被系统电压所固定,而逆变电源输出电流i 是固定的,它一直跟随逆变电源内部的PLL 提供的波形。i 和a V 仅仅在a V 的过零点发生同步,在过零点之间,逆变电源工作在开环状态。因此,逆变电源输出电流突变为参考相。由于频率没有发生变化,负载的相位与系 统断开前相同,因此a V 必然要跳变到新的相位(如图 2所示)。在a V 的下一个过零点,“新”电压和逆变电 图2 相位突变 源输出电流之间存在相位差。 3.电压谐波 电网断开后,逆变电源产生的谐波电流将会流入负载,负载阻抗通常要比系统阻抗大得多,谐波电流与负载阻抗相乘,a V 将产生更大的谐波[5]。逆变电源通过检测电压谐波或谐波的变化来判断是否处于孤岛状态。 二、基于模糊聚类分析的保护方法 1. 模糊聚类分析 设论域}{21n x x x U ,, , =为被分类的对象,每一对象由m 个特性指标表示其性质,}{21im i i i x x x x ,,, =,n i ,,, 21=。 则n 个样本的特性指标矩阵为: ????? ? ??????=nm n n m m x x x x x x x x x X 2 1 2222111211

光伏并网微逆变器关键技术分析

光伏并网微逆变器关键技术分析2010年11月11日来源:英伟力新能源科技(上海)有限公司作者:吴红飞 [责任编辑:Aglaia] 微逆变器区别于传统逆变器的特点 微逆变器的设计考虑因素 微逆变器的关键性技术 引言: 常见的光伏并网发电系统结构包括集中式、串式、多串式和交流模块式等几种方案。集中式、串式和多串式系统中,都存在光伏组件的串联和并联,因此系统的最大功率点跟踪时针对整个串并联光伏阵列,无法兼顾系统中每个光伏阵列,单个光伏阵列利用率低、系统抗局部阴影能力差,且系统扩展灵活性不够。光伏并网微逆变器(简称微逆变器)与单个光伏组件相连,可以将光伏组件输出的直流电直接变换成交流电并传输到电网,具有以下优点:(1)保证每个组件均运行在最大功率点,具有很强的抗局部阴影能力;(2)将逆变器与光伏组件集成,可以实现模块化设计、实现即插即用和热插拔,系统扩展简单方便;(3)并网逆变器基本不独立占用安装空间,分布式安装便于配置,能够充分利用空间和适应不同安装方向和角度的应用;(4)系统冗余度高、可靠性高,单个模块失效不会对整个系统造成影响。 微逆变器的概念由来已久,但最初并没有引起人们的注意,近年来随着太阳能发电技术的发展以及技术的进步,使得微逆变器十分具有吸引力。美国加州Petaluma的Enphase 从2008年开始微逆变器的商业化量产,并取得了不错的销售成绩,使得微逆变器获得了更广泛的认可,吸引了众多公司纷纷加入到微逆变器的研发行列,德国艾斯玛太阳能技术股份公司(SMASolarTechnology)2009年通过技术收购荷兰OKE-Services光伏系统电子开发商,进入了微逆变器市场。国内众多的光伏并网逆变器生产厂商主要从事大功率集中并网逆变器产品的开发,随着国内外微逆变器市场的日益火热,众多厂商也纷纷蠢蠢欲动,尝试开始微逆变器产品的开发,英伟力(Involar)新能源科技公司是国内最早从事微逆变器研究的公司,公司从2008年初开始微逆变器技术的开发,经过近两年的努力已完全自主掌握了微逆变器的核心技术,并于2010年5月份成功发布了其第一代产品MAC250,目前该款微逆变器产品已经推向市场。 微逆变器不同于传统大功率集中式逆变器,本文重点分析微逆变器的关键性技术。 微逆变器的特点及设计考虑因素 微逆变器区别于传统逆变器的特点:

光伏离网系统设计思路、常见问题及解决方案

光伏离网系统设计思路、常见问题及解决方案 在现代日常生活中,通常我们认为用电是理所当然的事情,然而,当今世界上却还有超过20亿人生活在缺电或者无电地区。以我们国家为例,由于经济发展水平的差异,西部仍有部分偏远地区的人口没有解决基本用电问题,无法享受现代文明。光伏离网发电不仅可以解决无电或者少电地区居民基本用电问题,还可以清洁高效地利用当地的可在生能源,有效解决能源和环境之间的矛盾。从目前来看,并网系统的研究已获得足够的重视,技术成熟,但离网系统还面临诸多困难,制约了光伏离网的应用和发展。光伏离网是刚性消费需求,客户两极分化,一种是不差钱的“土豪”,最关心是系统的可靠性,主要是私人海岛业主、别墅业主、通信基站、监控系统等,另一种是偏远地区的贫困户,最关心是产品价格。从项目规模上看,一种是针对单个客户的小项目或者单个项目的小工程,另一种是针对特定人群的大项目,如国家无电地区光伏扶贫项目。离网系统对不同的客户,要采取不同的设计方案,尽量满足客户的实际需要。 晶福源公司是国内最大的光伏离网逆变器厂家,每年出货的离网逆变器超过5万多套,占全国总量60%以上,笔者从事光伏离网系统售前技术支持和售后安装指导工作,先后设计过1000多套离网系统,现场调试过100 多套系统,并参观过100多家离网电站,从中总结出一些经验,仅各位参考。 光伏离网发电系统主要由光伏组件,支架,控制器,逆变器,蓄电池以及配电系统组成。系统电气方案设计,主要考虑组件,逆变器(控制器),蓄电池的选型和计算。设计之前,前期工作要做好,需要先了解用户安装地点的气候条件,负载类型和功率;白天和晚上的用电量,当然,用户的

太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案 内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。 因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。 本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。 为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

基于重复控制的全数字单相逆变电源研究

基于重复控制的全数字单相逆变电源研究 姜洪训 (四川机电职业技术学院,四川攀枝花617000) 摘要:本文建立了PWM逆变器的数学模型。介绍了重复控制理论,为了改善逆变器波形质量,提出了一 种基于改进型重复控制的单相逆变器系统的设计。采用DSP实现了数字闭环控制方案,设计了系统硬件和 软件,并进行了实验。实验结果证明带重复补偿的逆变系统波形质量好,精度高,输出电压波形畸变率小; 该控制系统既有较好的稳态性能,又有较快的响应速度。 关键词:逆变器重复控制数字控制DSP 中图分类号:TM464 文献标示码:A 文章编号:1003-4862 (2011)01-0001-05 Research on Full-Digital Single Phase Inverter Based on Repetitive Control Jiang Hongxun (Sichuan Electromechanical Institute of Vocation and Technology, Panzhihua 617000, Sichuan, China) Abstract: This paper establishes a mathematical model of PWM inverter and introduces repetitive control theory. In order to improve the quality of inverter waveform, a modified repetitive control system based on single-phase inverter is proposed. Using DSP, it realizes digital closed-loop control, and designs system’s hardware and software experiments. Experimental results show that the inverter system with a repeat compensation has good waveform quality, high precision and. low distortion output voltage waveform. The control system has both good static performance and fast response. Key words: inverter, repetitive control, digital control, DSP 1 引言 SPWM逆变器是目前应用最广泛的一种逆变器,作为一种高性能的逆变器,除了要求它满足体积小、重量轻和电磁兼容性好等基本指标外,还必须具备输出高质量电压波形的能力、且有足够的输出功率和高稳定性[1]。为此近年来人们对其提出了多种控制方法以改善其输出波形的质量,如PID控制、重复控制、双环反馈控制、三环控制、、无差拍控制等,其中应用最多的是电压电流双环控制方案和重复控制方案。双环控制具有控制器设计简单,输出电压波形失真小、动态响应快等优点,但这种双闭环控制方案采用PI 调节,它跟踪快速变化的正弦波时无法消除静态误差。而重复控制是基于内模原理的一种新型的控制策略,它对周期性外激信号的跟踪和抑制具有良好的稳态输出特性,鲁棒性好。本文建立了单相逆变器的数学模型,并对开环逆变器进行了分析,分析了双环控制的特点,提出了一种双环控制与重复控制相结合的控制方案,最后以TMS320LF2407为主控芯片搭建了一台50 Hz单相逆变器实验系统,并进行了实验,给出了实验结果,证明了所建立模型的正确性。 2 单相全桥逆变器的数学模型 单相逆变器主电路如图1所示[2],图中T1、T2、T3、T4是功率开关管,滤波电感L与滤波电容C构成低通滤波器,R r为考虑滤波电感L的等效串联电阻、死区效应、开关管导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻。 收稿日期: 2010-09-01 作者简介:姜洪训(1967—),男,讲师,专业方向:电 气自动化。 1

储能逆变器的控制策略研究

储能逆变器的控制策略研究 发表时间:2018-05-30T10:13:41.427Z 来源:《电力设备》2018年第1期作者:杜学平 [导读] 摘要:目前我国经济发展十分快速,电力行业越来越普遍,随着分布式电源不断接入电网和微电网系统的发展,微电网对系统的运行稳定性及供电可靠性都提出了一定的要求。 (青岛科技大学自动化与电子工程学院山东青岛 266199) 摘要:目前我国经济发展十分快速,电力行业越来越普遍,随着分布式电源不断接入电网和微电网系统的发展,微电网对系统的运行稳定性及供电可靠性都提出了一定的要求。储能系统应运而生,储能系统可以存储过剩的电能,在发电能力较弱时再放出电能给负载供电,实现削峰填谷,完美解决新能源间歇性发电的问题。储能系统在微电网中发挥着非常重要的作用,而储能逆变器又是储能系统中的核心部分,因此储能逆变器的控制策略研究是非常有实用价值的。 关键词:储能;逆变器;控制策略;研究 1系统结构和基本原理 图1 系统结构简图 以电池为介质的储能系统主要由电池及其管理系统(风能、太阳能的储能系统)和能量转换系统(PCS)两个部分组成(如图1所示)。电池通过PCS与电网交换能量(或离网负载),根据实际需要储存或释放能量。作为电池与大电网之间接口的PCS,实际上是大功率的电力电子变流器,此处PCS特指储能逆变器(储能变流器)。 常见的储能逆变器分为单级型和多级型两种主要形式。单级型储能变流器的拓扑仅由一个AC/DC环节构成,其优点是结构简单、控制方法简便,逆变器损耗低,能量转换效率高。但是存在以下缺点:1)一个AC-DC不可以充分多路输出;2)电池电压的工作范围不能灵活控制;3)电池电压固定不能灵活分配。由于以上确定我们选择两多级型,我们选择两级,增加一级隔离DC-DC的控制,该级控制可以根据功率灵活的扩展DC-DC通道的数量和输出电压的大小(如图2所示)。 1.1 AC-DC部分介绍: AC-DC部分拓扑采用三电平,其中开关频率为20K,功率器件为:初步选定英飞凌的DF100R07W1H5FP_B3的IGBT模组。此部分效率可达到98%。在大功率PWM变流装置中,常采用三点式电路,这种电路也称为中点钳位型(Neutral Point Clamped)电路(如图3所示)。与两点式PWM相比,三点式PWM调制主要有以下优点,一是对于同样的基波与谐波要求而言,开关频率可以低得多,从而能够大幅度减少开关损耗;二是主功率器件断开时所承受的电压仅为直流侧电压的一半,因此这种电路应用在高电压大容量的产品上特别合适。在控制策略方面,在传统的PWM整流器双闭环控制的基础上,采用内模控制代替电流内环PI调节器,以提高系统的鲁棒性能、跟踪性能和动态响应能力。 图2 两级PCS框图图3 AC-DC主原理图 1.2 DC-DC部分介绍: DCDC部分拓扑采用CLLC准谐振开关技术,开关频率100K或者是更高频率,功率器件采用单管MOS并联组成(并联数量根据功率确定,具体原理框图见图4)。功率器件为:初步选定英飞凌的IRFP4668P6F。此部分效率可达到90%以上。隔离DC/DC部分采用CLLC谐振软开关技术,它应用谐振的原理,使开关器件中的电流(或电压)按照正弦或标准正弦规律变化。当电流通过零点时,使器件关断(或电压为零时,器件打开),从而减少开关损耗。它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题并且还能解决二极管反向恢复问题,对于由于硬开关引起的EMI 等问题也有很好的改善。这种拓扑结构,电路结构简单,工作效率高,并在输入电压和负载变化范围很宽的情况下依旧具有良好的电压调节特性,不仅可以在原边实现开关管 ZVS,还可以使副边整流管实ZCS,且原副边管子的电压应力较低。 图4 DC-DC 原理框图 2、几种必要的控制模式 2.1并网模式到孤岛模式: 储能逆变器并网模式到离网模式的切换分为两种主动切换和被动切换。主动切换指人为的把储能逆变器离网;被动切换指因电网故障或者电压过低等原因,储能逆变器受到不良影响,把储能逆变器切离电网PW。主动切换情况下,电网电压幅值和频率等指标正常,此时模式切换策略较为简单,只需要提供一个与电网电压相同的量作为离网模式下储能逆变器控制策略的参考值,在断开开关的同时控制方式切换为VF,电压外环给定值为电网电压幅值和频率。被动切换情况下,电网电压幅值和频率等指标可能不正常,此时的控制策略需参考

相关文档
相关文档 最新文档