文档库 最新最全的文档下载
当前位置:文档库 › 变容二极管调频振荡器及相位鉴频器

变容二极管调频振荡器及相位鉴频器

变容二极管调频振荡器及相位鉴频器
变容二极管调频振荡器及相位鉴频器

课程名称通信电子电路实验

实验项目:变容二极管调频振荡器及相位鉴频器成绩:

学院:信息学院专业:通信工程

实验时间:2017年6月2 实验室:信息学院3501 指导教师:谢汝生

一.实验目的

1.熟悉变容二极管调频器和相位鉴频器电路原理及构成。

2.了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。

3.将变容二极管调频器与相位鉴频器两实验板进行联机试验,进一步了解调频和解调全过程及整机调试方法。

二.实验设备

1.双踪示波器(RIGOL DS5062CA数字存储示波器)

2.频率计(AT-F1000-C数字频率计)

3.万用表(DT9205数字万用表)

4.清华科教TPE-GP2型高频电路实验箱及G3实验板

三.实验电路及基本原理分析

在调制中,载波信号的频率或相位随调制信号而变,称为调频(FM)或调相(PM),在这两种调制过程中,载波信号的幅度都保持不变,而频率或相位的变化都表现为相角的变化,故二者统称为角度调制或调角。

调频就是用调制信号电压去控制载波的频率,可分为直接调频和间接调频两种。直接调频就是用调频电压直接去控制载波振荡器的频率,产生调频信号。间接调频就是保持振荡器的频率不变,而用调制电压去改变载波输出的相位,即调相。

变容二极管是利用半导体PN结的结电容随外加反相电压而变化的特性制成的一种半导体二极管,它是一种电压控制可变电抗元件,在其PN结上反偏压越大,则结电容越小。若将变容二极管接在谐振电路两端作为回路振荡电容,使其反向偏压受调制信号的控制,则其容值随调制电压的变化而变化,整个振荡回路的振荡频率将随调制信号的变化而变化,从而得变容二极管调频振荡器。

本实验所用电路如图8.1所示,为变容二极管部分接入振荡回路的直接调频电路。电容二极管全部接入作为振荡回路的总电容时,其最大优点是调制信号对振荡频率的调变能力强,即调制灵敏度高,较小的调制度就能够产生较大的相对频偏,但同时因温度等外界因素变化引起的载波频率不稳定也必然相对增加。为了克服上述缺点,采用变容二极管仅是回路总电容的一部分,因而调制信号对振荡频率的调变能力将比变容二极管全部接入时小,但因温度等变化引起的载波频率不稳定的情况却有较大改善,载波频率稳定度有较大提高。

实验电路见图8.1。电路中,V1为调频振荡级,V2为放大级,V3为射随放大级,主要对电路输出进行缓冲和隔离。电位器RP1用来调整加于变容二极管上的直流偏置电压,对调频振荡器载波频率进行控制:RP2设定振荡回路放大器的静态工作电流。

图8-1 变容二极管构成的调频振荡器

从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。

鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

图8-2 相位鉴频器

相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再讲这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。

本实验所用电路如图8-2所示,该电路为电容耦合回路叠加型相位鉴频器。电路中V1/V2构成差分对振幅限幅电路,对输入信号进行去干扰限幅。同时在V2的集电极负载回路中设置了由CT1、C6、L1组成的并联谐振回路,与由CT2、C10、L2组成的并联谐振回路对振幅后的调频波进行双调频回路选频放大,将其变换为调幅调频波。再通过后面两只检波二极管D1、D2组成的对称幅度检波器分别对上下两个调幅包络进行检波,最后得到调制信号。

四.实验步骤及内容记录(包括数据、图表、波形、程序设计等)

1.FM调制器静态调制特性测量(图8-1)

输入端不接音频信号,将频率计借到调频器的F端。不接C3(=100pf),调整R P1使Ed=4V,

调R P2使f0=6.5MHz,然后重新调节电位器R P1,使Ed在0.5V~8V范围内变化,在C3接入和不接入时,测量电路输出频率,将对应的频率填入表8.1,并依据测试结果在坐标图中绘制出变容二极管调频振荡器的静态调制特性曲线。

表8.1

将实验电路中E、F、G三个接点分别与半可调电容C T1、C T2、C T3连接。

将扫频仪输出信号接入实验电路输入端IN,其输出信号不宜过大,扫频频标用10:1档,扫频中心频率调至6.5MHz处。扫频仪输入检波探头改用双夹子电缆线,接至鉴频器输出端OUT 即可看到S型曲线,参加图9-2,如曲线不理想,可适当调C T1、C T2上下对称,调曲线中心频率为6.5MHz;调C T3使f0中心点附近线性度,观察回路C T1、C T2、C T3对S曲线的影响。调好后,记录上、下二峰点频率和二峰点高度格数,即f m、V m、V n。

C T1调上下对称,C T2调曲线中心频率,C T3调f0中心点线性度

下峰点频率为6.2MHz,上峰点频率为6.8MHz。下峰点格数为2.7,上峰点格数为2.7。

3.鉴频特性静态测试

输入信号改接高频信号发生器,输入电压约为100mV P-P,用万用表测鉴频器的输出电压,在5.5MHz~7.5MHz范围内,以每格0.2MHz条件下测得相应的输出电压。并填入表8.2。

FM调频电路输入端不接音频信号,将频率计接到调频器的F端。C3(=100pf)电容开路,调整RP1使Ed=4V,调RP2使f0=6.5MHz,V M=400mV P-P的音频调制信号加至调频电路输入端进行调频。鉴频器中心频率也调谐在6.5MHz,将调频电路与鉴频电路连接,调频输出信号送入鉴频器输入端。

用双踪示波器同时观测记录调制信号和解调信号,比较二者的异同,将音频信号逐渐加大,观察波形变化,结果记录在表8.3中。

五.实验结果分析

由实验结果可以看出无论接不接如C3时,其频率都会随Ed变化而变化,且当Ed增大时,f也会增大,当Ed减小时f也随之减小。

S曲线的形状与鉴频器性能有直接关系:①S曲线的线性好,则失真小;②线性段的斜率大,则对于一定频移所得的低频电压幅度大,即鉴频器灵敏度高;③线性段的频率范围大(鉴频频带宽),则允许接收的频移大。

六.思考题及解答

1.通过绘制的变容二极管调频振荡器静态调制特性曲线,求出在Ed=4±1V期间的调制灵敏度S,说明曲线斜率受哪些因素影响?

?f即斜率,由绘制的静态调制特性曲线可知,答:调制灵敏度S=

u

?

在Ed=4±1V期间的调制灵敏度S中不接C3时调制灵敏度S为0.08,接C3时调制灵敏度S为0.09,影响调制灵敏度S的因素还有温度等外界因素,还有接入振荡回路的总电容,系统的增益,系统的噪声,系统的带宽,解调器的门限。

2.通过S型鉴频特性曲线说明相位鉴频器是如何实现调频波信号解调的?

答:先把等幅的调频波变换成幅度,按调制信号规律变化的调频调幅波,然后用振幅检波器把幅度的变化检出来,得到原来的调制信号。

七.实验小结

通过本次实验,我初步了解了相位鉴频器的基本工作原理以及鉴

频特性曲线的测量方法,在调制波形上遇到点困难,但经过老师的指导还是顺利地调制成功。

变容二极管调频课程设计..

成绩评定表

课程设计任务书

目录 摘要 (4) 1.引言 (5) 2. Protel 99 SE 简介 (6) 3.实验步骤 (7) 3.1 Protel 99 SE 绘图环境设置 (7) 3.1.1新建一个设计库 (7) 3.1.2添加元件库 (10) 3.2绘制原理图 (12) 3.2.1选取元件 (12) 3.2.2摆放元件 (13) 3.2.3元件连接 (13) 3.2.4放置输入/输出点 (14) 3.2.5更改元件属性 (15) 3.2.6 ERC(电气规则检查) (16) 3.3 PCB制图 (16) 3.3.1自动生成PCB文件 (16) 3.3.2自动布线 (18) 3.4仿真应用 (20) 4.课设总结 (22) 5.参考文献 (22)

摘要 本次课设的要求和目的是掌握Protel的应用。本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。

Protel 99 SE应用课程设计 ——变容二极管的调频电路 1·引言 人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。其中最基本也是最常用的是以PCB设计为目的的电路设计、仿真和验证技术。 PCB设计业界称为电子装联设计。从最近两年的统计数据来看,中国大陆的电子装联产品占世界市场份额第一。Protel软件最成功的地方就是其PCB设计功能。其中Protel 99 SE 版本在PCB设计方面已经比较成熟,价廉物美、容易上手、功能满足基本需求,这是用户选择它的真正原因。

变容二极管调频振荡器

实验 变容二极管调频振荡器 时间:第 周 星期 节 课号: 院系专业: 姓名: 学号: 座号: ============================================================================================ 一、实验目的 1、了解变容二极管调频振荡器电路的构成及工作原理,加深对直接调频原理的理解; 2、了解调频器调制特性及测量方法; 3、观测调频波的频谱结构; 4、观察寄生调幅现象,了解其产生原因及消除方法。 二、实验预习 1、变容二极管调频电路如下图所示,请结合所学理论知识,分析下图中三个三极管V4001、V400 2、V4003的作用,并画出实验电路中调频振荡器部分的高频等效电路。 R 4001 R 4002 R 4003 R4004 R 4005 R 4006 R 4007 R 4008 D4001 GND GND M4001 R 4009 R 4010 R 4011 R 4012 R 4013 R 4014 R 4015 R 4016 R4017 GND M4002 M4003 GND GND GND GND GND 1 1 P4002+12V GND C 4001 C4003C 4004 C4006C4007C4008C 4009 C 4011 C4012 C 4013 C4014 C 4015 C4016 C 4017 C4019 C 4002 C 4010 C4018 L 4001 R p 4001 V4001 L 4003 V4002 V4003 R p 4003 D 4002 L 4004 Rp4002 SW 4001 E d L 4002 R4030 CT 4000 J 4001 P4001 R 4019 R 4020 P4003 J 4002 M4004 成 绩 指导教师 批阅日期

高频变容二极管调频器

深圳大学实验报告课程名称:通信电子线路 实验项目名称:变容二极管调频器学院:信息工程学院 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握用变容二极管调频振荡器实现FM的方法。 3.了解变容二极管串接电容的数值对FM波产生的影响。 4.理解静态调制特性、动态调制特性概念和测试方法。 方法、步骤: 1.实验准备 ⑴在箱体右下方插上实验板4。接通实验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板4上变容二极管调频振荡器单元(简称调频器单元)的电源开关(K2) 拨到ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。 2.静态调制特性测量 输入IN端先不接音频信号,将频率计接到调频器单元OUT端的C点(在本单元最右 边中部)。调节W2使得BG2射极到地之间的电压为4V(即集电极电流I c0=1mA,因为 R7=1kΩ),此后应保持不变。 ⑴电容C3(=100pF)不接(开关K1置OFF)时的测量 调整W l使得振荡频率f0=6.5MHz(用频率计测量),用万用表测量此时A点(在调频 器单元最左边中部)电位值,填入表8.1中。然后重新调节电位器W l,使A点电位在0.5~ 8V范围内变化,并把相应的频率值填入表8.1。最后仍需将振荡频率调回到6.5MHz。 ⑵电容C3接入(开关K1置ON)时的测量:同上,将对应的频率填入表8.1。最后仍 需将振荡频率调回到6.5MHz。 ⑶调节W2以改变BG2级工作点电压,观测它对于调频器输出波形的影响。最后仍 需将BG2射极到地之间的电压调回到4V ⑷调节W3以改变输出(OUT)电压幅度,观测它对于调频器输出波形的影响。 表8.1 V A(V) 0.5 1 2 3 4 5 6 7 8 f0(MHz)不接C3 6.5 空格接入C3空格 6.5 3.动态调制特性测量 ⑴实验准备 ①先把相位鉴频器单元(简称鉴频器单元)中的+12V电源接通(开关K7置ON,相应指示灯亮),再把鉴频器单元电路中的K2、K3、K5置ON位置,K1、K4、K6置OFF 位置(此时三个固定电容C5、C9、C10接通,三个可变电容C4、C11、C12断开,从而鉴

变容二极管调频振荡器

实验五变容二极管调频振荡器 一.实验目的 1.了解变容二极管的特性及由其振荡电路的的工作原理。 2.熟悉变容二极管调频器电路原理及构成。 3.掌握调频器调制特性及性能指标的测量方法; 4.了解分布参数对高频电路的影响。 二.实验原理 所谓调频,就是把所要传送的信息(例如语言、音乐等)作为调制信号去控制载波信号的频率,使其按照调制信号幅度的大小变化。调频电路中,最简单的办法是采用变容二极管调频,利用变容二极管结电容的改变来控制振荡器振荡频率的变化。 实验电路如图5-1所示。三极管V1组成电容三点式振荡器的改进型电路,即克拉泼电路。变容二极管D C部分接入振荡回路中,是调频电路的主要元件。电位器R P1、电阻R2、电感L1为变容二极管提供静态时的反向直流偏置,调节R P1可改变主振荡器的振荡频率。V2为放大级,对振荡信号进行放大,以保证有足够的振荡幅度输出。调节R P3,可调节输出幅度的大小。V3为射随器,以提高带负载的能力。 调制信号由IN处输入,经变容二极管D C和主振荡调频后,再经V2、V3放大后由OUT 处输出。 图5-1 变容二极管调频振荡器 三.实验设备 1. 示波器SS7802A 1台

2. 信号源 EE1643 1台 3. 高频毫伏表 1台 4. 高频电路实验板G 4 1块 四. 实验内容与步骤 按图5-1连接好电路 1. 静态调制特性的测试 输入端不接调制信号,调节2P R 使得1e V 为0.6v ,1b V 为1.2v 左右,示波器接至输出端OUT 处,然后调节电位器R P1使E d =4V (万用表直流电压档测该点对地电压),此时示波器将显示振荡波形,其f 0在6.5MHz 附近。适当调整振荡器的静态工作点使波形最好,调节R P3使输出幅度为U OP-P =2V ,然后重新调节电位器R P1,使E d 在0.5V~8V 范围内变化。将对应的振荡频率填入表5-1中。 表5-1 根据表格画出静态调制特性曲线。 调制灵敏度S= ED f U ?? (静态) 2. 最大频偏的测量 最大频偏是指在一定的调制电压作用下能达到的最大频率偏移值Δf m ,调频广播、移动式电台的频偏一般在50KHz~75KHz 的范围内。 1)C 3先不接,调节R P1使E d =4V ,使振荡频率f 0=6.5MHz (幅度为 U OP-P =1V ); 2)输入端IN 处输入f 0=2KHz 、幅度U m 从0~1V 可调的正弦低频调制信号U Ω; 3)输出端OUT 处接入调制度仪射频2.5~30MHz 输入口,调节调制信号的幅度即可观察对应的频偏。完成表5-1内容的测试。 表5-1

变容二极管直接调频电路课程设计-精品

2014 ~2015学年第 1 学期 《高频电子线路》 课程设计 题目:变容二极管直接调频电路的设计 班级: 12电子信息工程(2)班 姓名: 指导教师: 电气工程系 2014年12月6日

1、任务书

摘要 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的围。在调频时,可以将音频信号的频率围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。 本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。 关键字:变容二极管;直接调频;LC振荡电路。

目录 第一章设计思路 (1) 第二章调频电路工作原理 (2) 2.1 间接调频原理 (2) 2.2 直接调频原理 (2) 2.3 变容二极管直接调频原理 (2) 第三章电路设计 (5) 3.1 主振电路设计原理分析 (5) 3.2 变容二极管直接调频电路设计原理分析 (6) 第四章电路元器件参数设置 (8) 4.1 LC震荡电路直流参数设置 (8) 4.2 变容管调频电路参数设置 (8) 4.3 T2管参数设置 (8) 5.1 mulitisim11软件介绍 (9) 5.2 电路仿真 (9) 小结 (12) 附录一元器件清单 (13) 附录二参考文献 (14)

变容二极管调频振荡器

课程名称通信电子线路 实验项目变容二极管调频振荡器成绩 学院信息专业通信工程学号姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二极管调频振荡器电路原理及构成。 2.了解调频器调制特性及测量方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.清华科教TPE-GP2型高频电路实验箱及G4实验板

3.实验电路及基本原理分析 实验原理: 在调制中,载波信号的频率或相位随调制信号而变,称为调频(FM)或调相(PM),在这两种调制过程中,载波信号的幅度都保持不变,而频率或相位的变化都表现为相角的变化,故二者统称为角度调制或调角。 调频就是用调制信号电压去控制载波的频率,可分为直接调频和间接调频两种。直接调频就是用调制电压直接去控制载波振荡器的频率,产生调频信号。间接调频就是保持振荡器的频率不变,而用调制电压去改变载波输出的相位,即调相。 变容二级管是利用半导体PN结的结电容随外加反向电压而变化的特性制成的一种半导体二极管,它是一种电压控制可变电抗元件,在其PN结上反偏压越大,则结电容越小。若将变容二极管接在谐振电路两端作为回路振荡电容,使其反向偏压受调制信号的控制,则其容值随调制信号电压的变化而变化,整个振荡器的回路的振荡频率将随着调制信号的变化而变化,从而得变容二极管调频振荡器。 本实验所用电路如图所示,为变容二极管部分接入振荡回路的直接调频电路。变容二极管全部接入作为回路的总电容时,其最大的优点是调制信号对振荡频率的调变能力强,即调制灵敏度高,较小的调制度就能产生较大的相对频偏,但同时因温度等外界因素变化引起的载波频率不稳定也必然相对增加。为了克服上述缺点,采用变容二极管部分接入振荡回路的直接调频电路,此时由于变容二极管仅是回路总电容的一部分,因而调制信号对振荡频率的调变能力将比变容二极管全部接入时小,但因温度等变化引起的载波频率不稳定的情况却有较大改善,载波频率稳定度有较大提高。

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验 一、实验目的 1、掌握变容二极管调频电路的原理。 2、了解调频调制特性及测量方法。 3、观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1、测试变容二极管的静态调制特性。 2、观察调频波波形。 3、观察调制信号振幅时对频偏的影响。 4、观察寄生调幅现象。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、 3 号板1块 4、双踪示波器1台 5、万用表1块 6、频偏仪(选用)1台 四、实验原理及电路 1、变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率低。从图(a ) 中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的 非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

变容二极管调频电路

变容二极管调频电路 实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。直接调频是用调制信号电压直接去控制自激振荡器的振荡频率(实质上是改变振荡器的定频元件),变容二极管调频便属于此类。间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理(如积分)后,再对高频振荡进行调相,以达到调频的目的。两种调频法各有优缺点。间接调频器间接调频的优点是载波频率比较稳定,但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加。对调频器的基本要求是调频频移大,调频特性好,寄生调幅小。调频器广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等电子设备 直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。常用的变容二极管直接调频电路如图Z0916(a)所示。 图中D为变容二极管,C2、L1、和C3组成低通滤滤器,以保证调制信号顺利加到调频级上,同时也防止调制信号影响高频振荡回路,或高频信号反串入调制信号电路中。调制级本身由两组电源供电。

对高频振荡信号来说,L1可看作开路,电源EB的交流电位为零,R1与C3并联;如果将隔直电容C4近似看作短路,R2看作开路,则可得到 图(b)所示的高频等效电路。不难看出,它是一个电感三点式振荡电路。变容二极管D的结电容Cj,充当了振荡回路中的电抗元件之一。所以振荡频率取决于电感L2和变容二极 变容二极管的正极直流接地(L2对直流可视为短路),负极通过R1接+EB,使变容二极管获得一固定的反偏压,这一反偏压的大小与稳定,对调频信号的线性和中心频率的稳定性及精度,起着决定性作用。

实验四 变容二极管调频

实验四变容二极管调频 一.实验目的 1、掌握变容二极管调频的工作原理。 2、学会测量静态特性曲线,理解动态特性的含义。 3、学会测量调频信号的频偏及调制灵敏度。 4、观察寄生调幅现象。 二.实验原理 1、变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。 设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t 根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下: a f (t) = A o cos(ωo t+ ΩΩ V K f sinΩt) 或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。 图4-1 变容二极管调频原理电路 变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C为: C = C N + C j(4-3) 加在变容二极管上的反向偏压为: V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)

变容二极管调频电路

摘要 调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 目前,变容二极管直接调频电路是目前应用最广泛的直接调频电路,它是利用变容二极管反向所呈现的可变电容特性实现调频的,具有工作频率高固有损耗小等特点。现有的对于调频电路的研究与仿真主要集中在锁相环电路,变容二极管直接调频电路研究较少,对于变容二极管静态调制特性的研究更是几乎无人涉及。 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 关键词:LC振荡电路、变容二极管、调频

1.设计要求 (1)主振频率=8MHZ (2)频率稳定度/≤0.0005/h (3)主振级的输出电压 (4)最大频偏 (5)电源电压= 5V 2.电路原理分析 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。变容二极管直接调频电路由于变容二极管的电容变化范围大,因而工作频率变化就大,可以得到较大的频偏,且调制灵敏度高、固有损耗小、使用方便、构成的调频器电路简单。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 3.电路设计 3.1 主振电路设计 本文中所用电路采用常见的电容三点式振荡电路实现LC振荡,简便易行。式中,L为LC振荡电路的总电感量,C为振荡电路中的总电容,主要取决于C3、C7、C8、Cc1及变容二极管反偏时的结电容Cj。,变容二极管电容Cj作为组成LC振荡电路的一部分,电容值会随加在其而端的电压的变化而变化,从而达到变频的目的。R4、R5、R6、R7和W2调节并设置电容三点式振荡器中T1管的静态工作点,R8、R9、R10调节并设置T2管的静态工作点,C7、C9、C10以及L4、

变容二极管直接调频电路要点

2012 ~2013学年第1 学期 《高频电子线路》 课程设计报告 题目:变容二极管直接调频电路的设计专业:电子信息工程 班级: 10信息(2)班 电气工程系 2012年12月17日

1、任务书 课题名称变容二极管直接调频电路的设计 指导教师(职称) 执行时间2012~2013学年第二学期第16 周学生姓名学号承担任务 设计目的1.原理分析及电路图设计 2.用相关仿真软件画出电路并对电路进行分析与测试 设计要求(1)输入1KHz大小为200Mv的正弦电压(也可以用1KHz的方波); (2)主振频率为f0大于15MHz; (3)最大频偏△fm= 20KHz。

变容二极管直接调频电路的设计 摘要 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。 本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。 关键字:变容二极管;直接调频;LC振荡电路。

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

实验12 变容二极管调频器

实验12 变容二极管调频器 一、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握用变容二极管调频振荡器实现FM 的方法; 3.了解变容二极管串接电容的数值对FM 波产生的影响; 4.理解静态调制特性、动态调制特性概念和测试方法。 二、实验内容 1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响; 2.变容二极管调频器静态调制特性测量; 3.变容二极管调频器动态调制特性测量。 三、实验步骤 1.实验准备 在实验箱主板上插上变容二极管调频模块和电容耦合回路相位鉴频器模块,按下12K01,此时变容二极管调频模块电源指标灯点亮。 2.静态调制特性测量 输入端先不接音频信号,将示波器接到调频器单元的12TP01。调节12W 02使12TP01的波形清晰失真小。 (1)将频率计接到调频输出(12V02),逆时针调整12W 03 至最大,调整12W 01使得振荡频率f 0=8.2MHz ,用万用表测量此时12P01(铆孔)点电位值,填入表12-1中。然后重新调节电位器12W 01,使12P01点电位在0.5~8V 范围内变化,并把相应的频率值填入表 12-1 其调频灵敏度约为0.1,曲线斜率主要受载波中心频率、变容管的偏置电压等影响。

(2)将示波器接到12TP02,调节12W02以改变12BG01级工作点电压,观测它对于调频器输出波形的影响。 12W02阻值越小,调频输出频率变小,幅度变大 (3)将示波器接到12TP02,调节12W03以改变输出12TP02电压幅度,观测它对于调频器输出波形的影响。 12W03阻值越小,输出的幅度越大 3.动态调制特性测量 ⑴实验步骤 ①将电容耦合回路相位鉴频器模块(简称鉴频器单元)中的+12V电源接通(按下13K01开关,相应指示灯亮),从而鉴频器工作于正常状态。 ②调整12W01使得振荡频率f0=8.2MHz。 ③以实验箱上的函数发生器作为音频调制信号源,输出频率f =1kHz、峰-峰值V p-p=1V (用示波器监测)的正弦波。 ④把实验箱上的函数发生器输出的音频调制信号加入到调频器单元的音频输入端,便可在调频器单元的12TP02端上观察到FM波。 ⑤把调频器单元的调频输出端连接到鉴频器单元的输入端上,便可在鉴频器单元的OUT 端上观察到经解调后的音频信号。如果没有波形,应调整12W01和13W01,如果波形不好,需调整13C1、13C2、13C3。 ⑥将示波器CH1接调制信号源(可接在调制模块中的12P01铆孔),CH2接鉴频输出13TP03, 两波形相位相差180度,信号源幅度为0.4V,鉴频器输 出幅度为1V 改变调制信号源的幅度, 调制信号源幅度增加,鉴频器输出幅度随之增大调整调制信号源的频率,观测鉴频器输出波形的变化。 调制信号源频率增加,鉴频器输出频率随之增大 ⑵调节12W02以改变12BG01级工作点电压,观测它对于鉴频器解调输出波形影响。 解调输出波产生失真 ⑶调节12W03以改变输出(OUT)电压幅度,观测它对于鉴频器解调输出波形的影响。 解调输出波幅度随输出电压的改变而改变 四、实验心得 通过本次实验,我初步了解了变容二极管调频振荡器实现FM的方法,在实际应用中,与变容二极管串联或者并联一个电容,可以调整电容的变化曲率,以使之适应工作的需要。 方波调频得到的调频信号是两条不变的正弦波的原因是,调频信号的频率随着调制信号的幅度改变而改变。对于调制信号,正弦波或者三角波的幅度随着相位的改变而不断变化,而方波的幅度只有两个值,因此,正弦波和方波调制得到的FM波是正弦带,而方波得到的是两条正弦波。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

变容二极管调频实验

变容二极管调频实验和电容耦合相位鉴频 器实验 一 实验目的 1. 进一步学习掌握频率调制相关理论。 2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。 3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。 4. 进一步学习掌握频率解调相关理论。 5. 了解电容耦合回路相位鉴频器的工作原理。 6. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 5. 电容耦合相位鉴频器实验板 三、实验基本原理与电路 (一)变容二极管调频电路 R4 R6 R5 R3 T1 C9 RW2 C7 C6 C4* C5* CV1 L C2* R8 R10 T2 C10 C13 C12 R11 LED +12 K D R2 R1 RW1 C1 R9 C8 R7 J2 C3* TP1 变容二极管调频 J1 RW3 IN1 OUT TP2 C11 A6-0808 电路原理: 晶体管T1构成了电容三点式振荡电路 ,其中电容C6,C7是正反馈电容,反馈系数等于6 67 +C F C C ,晶体管的基极接了一个电容C9到地,因此晶体管构成共基极组态的放大

电路。其中电阻RW2,R3,R4是基极的直流偏置电阻,电阻R53决定晶体管的集电极电压,电阻R6决定晶体管的射极静态的直流电流Ie 。 电容满足675,C C C >>,可变电容CV1和电感L 相并联,改变可变电容CV1,可改变振荡频率。电容C2也是一个小电容,当跳线J1连接上后,变容二极管D (型号为BB910)就接入振荡电路中,滑动变阻器RW1和电阻R1构成分压电路,为变容二极管D 提供直流反偏电压,改变滑动变阻器RW1抽头位置可以改变变容二极管D 的直流反偏电压。电阻R2是隔离电阻,通常取R2》R1,在实验中可以取300K Ω以上。电容C3是已知电容值的固定电阻,当跳线J2连接上,跳线J1断开时,振荡回路的振荡频率固定,电容C3是为测量变容二极管的结电容提供帮助的。调制信号从IN1输入,电容C1是输入隔直电容。电容C11是一个小电容,对高频振荡信号相当于短路,对低频调制信号相当于开路,从而保证低频调制信号可以加在变容二极管D 的两端,而振荡回路中的高频信号不会反射到低频调制信号输入端。 振荡信号从晶体管的射极引出,后一级晶体管构成共射极电压放大,起到隔离和缓冲的作用。 (二)电容耦合相位鉴频器电路 C1 R2 T C8 R5 LED1 +12 C7 R4 R8 R3 C3 C2 CV1 L1 C4 C5L2 CV2 CV3 D3 D4 R6 R7 C6 RW1 D2D1 R1 电容耦合相位鉴频 K TP2INT TP4 OUT TP1 TP3 A7-0808 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号经正、反向并联二极管D1、D2限幅之后,加到放大器T 的基极上。放大管的负载是频相转换电路,该电路

最新实验七变容二极管调频器

实验七变容二极管调 频器

实验七变容二极管调频器 —、实验准备 1.做本实验时应具备的知识点: ●频率调制 ●变容二极管调频 ●静态调制特性、动态调制特性 2.做本实验时所用到的仪器: ●变容二极管调频模块 ●双踪示波器 ●频率计 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握用变容二极管调频振荡器实现FM的方法; 3.理解静态调制特性、动态调制特性概念和测试方法。 三、实验内容 1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响; 2.变容二极管调频器静态调制特性测量; 3.变容二极管调频器动态调制特性测量。 四、实验原理 1.调频电路 变容二极管调频器实验电路如图7-1所示。图中,12BG01本身为电容三点式振荡器,它与12D01、12D02(变容二极管)一起组成了直接调频器。 12BG03为放大器,12BG04为射极跟随器。12W01用来调节变容二极管偏压。 由图7-1可见,加到变容二极管上的直流偏置就是+12V经由12R02、12W01和12R03分压后,从12R03得到的电压,因而调节12W01即可调整偏压。

由图可见,该调频器本质上是一个电容三点式振荡器(共基接法),由于 电容12C05对高频短路,因此变容二极管实际上与12L02相并。调整电位器 12W01,可改变变容二极管的偏压,也即改变了变容二极管的容量,从而改变 其振荡频率。因此变容二极管起着可变电容的作用。 对输入音频信号而言,12L01短路,12C05开路,从而音频信号可加到变 容二极管12D01、 12D01上。当变容二极管加有音频信号时,其等效电容按音频规律变化,因而 振荡频率也按音频规律变化,从而达到了调频的目的。 1 12

相关文档
相关文档 最新文档