文档库 最新最全的文档下载
当前位置:文档库 › The Sloan Digital Sky Survey

The Sloan Digital Sky Survey

The Sloan Digital Sky Survey
The Sloan Digital Sky Survey

a r X i v :a s t r o -p h /0207189v 1 9 J u l 2002The Sloan Digital Sky Survey

Jon Loveday,for the SDSS collaboration

Astronomy Centre,University of Sussex,Falmer,Brighton,BN19QJ,England

February 1,2008Abstract The Sloan Digital Sky Survey (SDSS)is making a multi-colour,three dimensional map of the nearby Universe.The survey is in two parts.The ?rst part is imaging one quarter of the sky in ?ve colours from the near ultraviolet to the near infrared.In this imaging survey we expect to detect around 50million galaxies to a magnitude limit g ~23.The second part of the survey,taking place concurrently with the imaging,is obtaining spectra for up to 1million galaxies and 100,000quasars.From these spectra we obtain redshifts and hence distances,in order to map out the three-dimensional distribution of galaxies and quasars in the Universe.These observations will be used to constrain models of cosmology and of galaxy formation and evolution.This article describes the goals and methods used by the SDSS,the current status of the survey,and highlights some exciting discoveries made from data obtained in the ?rst two years of survey operations.1Introduction What is the Universe made of?How did the Universe begin?How will it end?These are some of the fundamental questions which can be addressed by studying the large scale

distribution of galaxies in the Universe.It is widely believed that the galaxies we see today formed at the sites of tiny (~1part in 105)density ?uctuations in the early Universe.The form of these density ?uctuations (which,if Gaussian in nature,may be fully described by their power spectrum)are predicted by cosmological models,and depend on such parameters as the mean matter density ?m ,the fraction of baryonic matter ?b /?m and any contribution to the cosmological density from vacuum energy,also known as the cosmological constant ?Λ.On large scales,the clustering of galaxies can be predicted from the primordial density ?uctuations using linear perturbation theory.By measuring this large-scale clustering,we can thus obtain important constraints on cosmological models.By studying the intrinsic properties of the galaxies themselves,such as luminosity,colour and morphology,we can test theories for how galaxies are born and evolve.

In order to measure the clustering of galaxies reliably,it is important to use a systematic and well-de?ned catalogue.Systematic surveys date back to that of Messier,published in three parts in the 1770s and 1780s,although it was not realized at the time that some of the nebulae catalogued by Messier were other galaxies outside our own Milky Way.It was only in 1923,by a careful measurement of the distance to the Andromeda Nebula (M31in Messier’s catalogue),that Edwin

Hubble proved de?nitively that M31was a large galaxy separate from our own.Hubble later discovered the expansion of the Universe,and found that the recession velocity of a galaxy is in direct proportion to its distance from us,the Hubble law.Since then,a number of galaxy surveys have been published,starting with that of Shapley and Ames in1932[33],and including more recently the APM Galaxy Survey[24],which contains positions and magnitudes for about three million galaxies.Most of these surveys are based on photographic plates,and there is concern that such surveys could be missing a substantial fraction of low surface-brightness galaxies,eg.[8].There is also apprehension that uncertainties in the photometric calibration of these surveys could lead to spurious measurement of galaxy clustering on large scales[12,23].

Smaller surveys have been made using charge coupled device(CCD)detectors.These solid state devices,unlike photographic plates,have a linear response to light and~50times higher quantum e?ciency,but the limited size of these detectors has before now precluded the construction of wide-area galaxy surveys.

In order to map out the three-dimensional distribution of galaxies,as opposed to just their two-dimensional projection on the celestial sphere,one needs the distance to each galaxy.This may be obtained by measuring the spectrum of light emitted by a galaxy.The Doppler shift in features towards the red end of the spectrum(the redshift)may be used to infer a galaxy’s recession velocity and hence its distance from the Hubble relation.Until recently,galaxy spectra were painstakingly measured one-by-one,and it is only in the last few years that optical?bre multiplexing has been used to measure redshifts for many thousands of galaxies.

The largest redshift survey to date is the nearly-completed Two Degree Field(2dF)Galaxy Redshift Survey carried out on the Anglo-Australian Telescope[6].While containing redshifts for more than 200,000galaxies,the2dF survey is based on the photographic APM Galaxy Survey,with the potential problems mentioned above.

The Sloan Digital Sky Survey(SDSS)collaboration was therefore formed in1988with the aim of constructing a de?nitive map of the local universe,incorporating CCD imaging in several passbands over a large area of sky,and measurement of redshifts for around one million galaxies.In order to complete such an ambitious project over a reasonable timescale,it was decided to build a dedicated 2.5-metre telescope equipped with a large CCD array imaging camera and multi-?bre spectrographs. The survey itself began in April2000,and observations are scheduled to?nish in June2005.In this article I review some important aspects of the survey,including an overview of survey operations (§2),a description of the preliminary public data release(§3),and a selection of some early science results(§4).

2Survey Overview

2.1Goals

The basic goal of the survey is to make a de?nitive map of the local Universe,which can then be used to constrain cosmological models and models for the formation and evolution of galaxies.This map will consist of5-colour imaging to a g-band limiting magnitude m≈23over a contiguous area ofπsteradians(10,000square degrees)in the northern sky and three,non-contiguous stripes with total area740square degrees in the southern sky.(Magnitudes measure?ux on a logarithmic scale,

where smaller magnitudes correspond to larger?ux.The magnitude di?erence between two stars of?ux f1and f2is de?ned to be m1?m2=?2.5lg(f1/f2).The brightest stars have magnitude m≈1,the faintest stars visible to the naked eye have m≈6,ie.100times fainter.A magnitude m≈23thus corresponds to an observed?ux which is roughly six million times fainter than that of the dimmest naked-eye stars.)From this imaging data we can map out the two-dimensional distribution of galaxies and quasars as projected on the celestial sphere.Distances to a subset of these objects will be determined by observing spectra of roughly one million galaxies and100,000 quasars.The spectrum of a galaxy or quasar enables one to measure its recession velocity v from the Doppler redshift of spectral features.Distances d may then be estimated from the Hubble law:v=H0d,where H0≈70km/s/Mpc is the Hubble parameter.In this way,we can map out the three-dimensional distribution of objects in space.(Astronomers often measure extragalactic distances in units of Mpc where1Mpc=106parsecs,and1parsec≈3.09×1016m.Uncertainty in the value of H0leads to a corresponding uncertainty in distances derived from the Hubble relation. To re?ect this,distances are often written in units of h?1Mpc,where H0=100h km/s/Mpc.)

2.2Hardware and operations

The SDSS consists of two concurrent surveys,one photometric and one spectroscopic.To complete a digital survey over a large fraction of the sky within a reasonable timescale,it is necessary to conduct wide-?eld imaging and multi-object spectroscopy.To meet this need,a wide-?eld telescope,imaging camera and multi-?bre spectrographs were designed and built speci?cally for this purpose,which I describe very brie?y below.

The survey hardware comprises the2.5-metre survey telescope,a0.5-metre photometric telescope (called the monitor telescope in its previous incarnation),a state-of-the-art imaging camera[14] that observes near-simultaneously in?ve passbands covering the near-ultraviolet to near-infrared, and a pair of dual beam spectrographs,each capable of observing320?bre-fed spectra.The site is also equipped with a10-micron all-sky camera[17],which provides rapid warning of any cloud cover.The data are reduced by a series of automated pipelines and the resulting data products stored in an object-oriented database.

The main survey telescope is of modi?ed Ritchey-Chr′e tien design[39],with a primary aperture of2.5m and a focal ratio of f/5to produce a?at?eld of3?with a plate scale of16.51arc-sec/mm.It is situated at Apache Point Observatory,near Sunspot,New Mexico,at a height of2,800m.The telescope is housed in an enclosure which rolls o?for observing,and is encased in a co-rotating ba?e which protects it from wind disturbances and stray light.This unique de-sign allows the telescope to remain free of dome-induced seeing.Photographs of the site and telescope can be found at https://www.wendangku.net/doc/bf12487178.html,/.A technical overview of the survey has been given by York et al.[40]and further details are available online in the SDSS Project Book at https://www.wendangku.net/doc/bf12487178.html,/PBOOK/welcome.htm.

2.3Imaging Survey

The photometric imaging survey will produce a database of roughly108galaxies and108stellar objects,with accurate(≤0.10arcsec)astrometry,5-colour photometry,and object classi?cation parameters.This database will become a public archive.

Figure1:Front view of the imaging camera assembly.The ugriz imaging CCDs are colour-coded blue,green,red,black and orange respectively.The astrometric CCDs are shown as narrow red rectangles.The arrows indicate the direction of motion of astronomical sources across the imaging array,which subtends2.3?on the sky.

The imaging camera[14](Figure1)consists of54CCDs in eight dewars and spans2.3?on the sky. Thirty of these CCDs are the main imaging/photometric devices,each a SITe(Scienti?c Imaging Technologies,formerly Tektronix)device with2048×204824μpixels.They are arranged in six dewars aligned with the scan direction and holding5CCDs each,one CCD for each?lter bandpass. The camera operates in TDI(Time Delay and Integrate),or scanning,mode for which the telescope is driven at a rate synchronous with the charge transfer rate of the CCDs.Objects on the sky drift down the CCD array so that nearly simultaneous5-colour photometry is obtained.The e?ective integration time,i.e.the time any part of the sky spends on each detector,is55seconds at the chosen(sidereal)scanning rate,which results in a limiting magnitude of g~23.

The SDSS photometric system u′g′r′i′z′[13](Figure2)has been speci?cally designed for this survey and covers the near-UV to near-IR range(~3000–10,000?A)in?ve essentially non-overlapping passbands.The u?lter response peaks in the near ultra-violet at3500?A,g is a blue-green band centred at4800?A,r is a red band centred at6250?A,i is a far-red?lter centred at7700?A and z is a near-infrared passband centred at9100?A.The standard stars that de?ne this system have been presented by Smith et al.[34].The photometric data are not yet?nally calibrated,so the current magnitudes are indicated with asterisks,u?g?r?i?z?,to denote their preliminary nature.The SDSS ?lters themselves are referred to simply as ugriz,without primes or asterisks.

In order to provide photometric calibration while the imaging camera is scanning,a second,dedi-cated Photometric Telescope operates concurrently,observing photometric standard stars and cre-ating photometrically calibrated“secondary patches”which lie within the main telescope’s scan. These calibration patches are then used to transfer the primary photometric calibration to objects detected with the2.5m telescope and imaging camera.The photometric quality of the data is monitored by a software“robot”that automatically rejects data observed during cloudy periods [16].

The other24CCDs in two additional dewars are also SITe chips of width204824μpixels,but they have only400rows in the scanning direction.These dewars are oriented perpendicular to the photometric dewars,with one at the top and one at the bottom of the imaging array.Two of these CCDs(one in each dewar)are used to determine changes in focus.The remaining22CCDs reach brighter magnitudes before saturating and are used to tie our observations to an astrometric reference frame de?ned by bright stars which saturate our imaging detectors[28].

The location of the survey imaging area is shown in Figure3.The northern survey area is centred near the North Galactic Pole and it lies within a nearly elliptical shape130?E-W by110?N-S chosen to minimize Galactic foreground extinction.All scans are conducted along great circles in order to minimize the transit time di?erences across the camera array.There are45great circles (“stripes”)in the northern survey region separated by2.5?.We observe three non-contiguous stripes in the Southern Galactic Hemisphere,at declinations of0,+15?and?10?,during parts of the autumn season when the northern sky is unobservable.Each stripe is scanned twice,with an o?set perpendicular to the scan direction in order to interlace the photometric columns.A completed stripe slightly exceeds2.5?in width and thus there is a small amount of overlap to allow for telescope mis-tracking and to provide multiple observations of some fraction of the sky for quality assurance purposes.The total stripe length for the45northern stripes will require a minimum of 650hours of pristine photometric and seeing conditions to scan at a sidereal rate.Based upon our current experience of observing conditions at APO,it seems likely that we will only complete about 75%of this imaging after5years of survey operations.

Figure2:SDSS photometric system response as a function of wavelength in Angstroms.The upper curve is without atmospheric extinction,the lower curve includes the e?ects of atmospheric extinction when observing at a typical altitude of56?.

Figure3:The location of the survey imaging stripes plotted in a polar projection for the North(left) and South(right)Galactic hemispheres.The grey scale indicates the amount of reddening due to dust in our own Galaxy[31],where white corresponds to no reddening and black to one magnitude of reddening in g?r colour.The circles are lines of constant Galactic latitude(|b|=30?,60?),and Galactic longitude is marked around the edge of each hemisphere.

2.4Spectroscopic Survey

The goals of the spectroscopic survey are to observe spectra for106galaxies,105quasars and105 stars.In order to obtain the spectra of over106objects in a survey covering104square degrees, we must obtain spectra of about100objects per square degree.Although some overlap of?elds is inevitable,we would like to keep this overlap to a minimum for reasons of e?ciency and cost. Hence,we need to obtain several hundred spectra per3?diameter spectroscopic?eld.

To accommodate this requirement,two identical multi-?bre spectrographs have been built which are each fed by320?bres.The spectrographs cover the wavelength range3900–9100?A at a resolution ofλ/?λ~1800,or167km s?1.Each spectrograph has two cameras,one optimized for the red and the other for the blue.Each camera has as its detector a2048×2048CCD with24μpixels. The180μ?bres,which each subtend3′′on the sky,are located in the focal plane by plugging them by hand into aluminium plates which are precisely drilled for each?eld based upon the astrometric solution obtained from the imaging data.To avoid mechanical interference,individual?bres can be placed no closer than55′′to one another.The plates and?bres are held in the focal plane, and coupled with the spectrographs,by one of9identical rigid assemblies called cartridges.Since all of the cartridges can be pre-plugged during the day,5,760spectra can be obtained during a long night without re-plugging.A mapping procedure is invoked after plugging each cartridge that automatically tags each?bre to the appropriate object on the sky.

A surface density of100galaxies per square degree corresponds roughly to an r-band magnitude limit r≈18.To obtain redshifts for galaxies of this magnitude requires exposure times of about45 minutes,which we split into three,15minute exposures to aid in rejection of cosmic rays.Cosmic ray

events occur at essentially random locations on our detectors,and so are very unlikely to appear at the same place in all three exposures.Each?eld takes about one hour,including calibration (?at?eld and comparison lamp)exposures and allowing for telescope pointing and the exchange of ?bre cartridges.Spectroscopic observations are carried out whenever observing conditions are not adequate for imaging,ie.when seeing exceeds1.5arcsec or when skies are non-photometric.

2.5Data Processing

All of the raw data from the photometric CCDs are archived.The frames are?rst read to disk, then written to DLT tape.Over16Gb per hour are generated from the photometric chips.When observing in spectroscopic mode,the amount of data generated seems trivial in comparison(about 6exposures per hour for each of two cameras for each of two spectrographs,or248Mb frames per hour).

All data tapes are shipped by overnight express courier to Fermi National Accelerator Laboratory, near Chicago,where the data reduction pipelines are run.The goal is to turn the imaging data around within a few days,so that one dark run’s worth of imaging data will be processed before the next dark run begins,allowing objects to be targeted for spectroscopy.The data?ow serially through several pipelines to identify,measure and extract astronomical images and to apply photometric and astrometric calibrations.Once a signi?cant area of sky has been imaged,a target selection procedure is then run in order to select objects for followup spectroscopy.Next,an adaptive tiling algorithm assigns targets to spectroscopic plates and chooses plate centres in order to maximize observing e?ciency[4].Since galaxies are clustered on the sky,the target density varies from place to place.In regions of high target density,the adaptive tiling algorithm allows the plates to move slightly closer together so that all targets can be observed.The plates are then manufactured and shipped to the site.

Spectroscopic reduction is also automated.We are able to obtain correct redshifts for99%of targeted objects,without human intervention.The pipelines are integrated into a specially-written environment known as Dervish,and the reduced data are stored in an object-oriented database. 2.6Spectroscopic Samples

There are several distinct spectroscopic samples observed by the survey.In a survey of this magni-tude,it is important that the selection criteria for each sample remain?xed throughout the duration of the survey.Therefore,we spent a whole year obtaining test data with the survey instruments and re?ning the spectroscopic selection criteria in light of our test data.Now that the survey proper is underway,these criteria have been“frozen in”for the duration of the survey.

The main galaxy sample[36]consists of~900,000galaxies selected by r band magnitude, r?<17.77.This magnitude limit was chosen as test year data demonstrated that it corresponds closely to the desired target density of90objects per square degree.Since galaxies are fuzzy, extended sources,there is no easy way to measure their total magnitude.Most previous surveys have measured the light within an isophote of constant surface brightness,but these isophotal magnitudes will systematically underestimate the?ux of galaxies of low intrinsic surface brightness and at high redshift z,since observed surface brightness scales as(1+z)4.Simulations have shown

that the Petrosian magnitude[27],which is based on an aperture de?ned by the ratio of light within an annulus to total light inside that radius,provides probably the least biased and most stable estimate of total magnitude.We therefore select galaxies according to their Petrosian magnitude. We also apply a surface-brightness limit,μr?<24.5mag arcsec?2,so that we do not waste?bres on galaxies of too low surface brightness to give a reasonable spectrum.This surface brightness cut eliminates just0.1%of galaxies that would otherwise be selected for observation.Galaxies in this sample have a median redshift z ≈0.104.

We will observe an additional~100,000luminous red galaxies[10].Given photometry in the ?ve survey bands,redshifts can be estimated for the reddest galaxies to?z≈0.02or better,and so one can also predict their intrinsic luminosities quite accurately.The luminous red galaxies, many of which will be so-called central dominant(cD)galaxies in cluster cores,provide a valuable supplement to the main galaxy sample since1)they have distinctive spectral features,allowing a redshift to be measured for objects to a?ux limit around1.5magnitudes fainter than the main sample,and2)they form a volume-limited sample,ie.a sample of uniform density,out to redshift z=0.38.This sample will thus be extremely powerful for studying clustering on the largest scales and for investigating galaxy evolution.

Quasar candidates[29]are selected from cuts in multi-colour space and by identifying sources from the FIRST radio catalogue[2],with the aim of observing~100,000quasars.This sample will be orders of magnitude larger than any existing quasar catalogue,and will be invaluable for quasar luminosity function,evolution and clustering studies as well as providing sources for followup absorption-line observations.

In addition to the above three classes of spectroscopic sources,which are designed to provide statis-tically complete samples,we are also obtaining spectra for many thousands of stars and for various serendipitous objects.The latter class includes objects of unusual colour or morphology which do not?t into the earlier classes,plus unusual objects found by other surveys and in other wavebands.

2.7Survey Status

First light with the imaging camera was obtained on9May1998and the?rst extra-galactic spectra were obtained in June1999.The survey o?cially began on1April2000,and observing is scheduled to end on30June2005.At the time of writing(June2002),we have imaged4278square degrees (40%of the total survey area)and obtained spectra for621plug-plates,yielding spectra for264,995 galaxies,37,612quasars and50,023stars,including some repeated observations.The spectrographs are performing extremely e?ciently,with an overall throughput,including telescope optics but excluding the atmosphere,of20%in the blue(3900–6000?A)and25%in the red(6000–9100?A). Automated spectral reduction pipelines classify these spectra and measure redshifts.Conservatively, we inspect the spectra of roughly8%of sources,whenever there is any doubt about the reliability of the automated redshift measurement.In seven-eighths of these cases,the automated redshift measurement is in fact con?rmed to be correct.The remaining eighth of these spectra(1%overall) have their redshifts manually corrected.Based on manual inspection of all≈23,000spectra from 39plugplates,this procedure correctly measures redshifts for99.7%of galaxies,98.0%of quasars and99.6%of stars.

3The Early Data Release

The?rst public release of SDSS data(hereafter EDR)took place on5June2001,and consists of images covering460square degrees of sky,photometric parameters for10million objects and spectra for54,000objects.The main access point to the data is through the website https://www.wendangku.net/doc/bf12487178.html,/ and the EDR is described in[35].

There are presently three ways to access the data,the choice of which depends on the nature of the data required and the experience of the user.

The SkyServer(https://www.wendangku.net/doc/bf12487178.html,)provides a graphical user interface to images of the sky and also enables one to download spectra of speci?ed objects.It was primarily intended as an interface for the general public and for educational purposes,but new features are being added, making it also useful for professional astronomers.Public interest in the SDSS is illustrated by the fact that this web site has been receiving around half a million hits per month.

The MAST interface(https://www.wendangku.net/doc/bf12487178.html,/sdss/)allows simple web-based searches around speci?ed objects or positions on the sky.It is a useful way of retrieving SDSS observations for mod-erate numbers of objects in a small region of the sky.

For accessing SDSS data on large numbers of objects,and over larger areas,the SDSS query tool sdssQT is recommended.This tool allows one to query the EDR database on any measured parameters and to specify which parameters,such as position and magnitude,are to be returned. Documentation on the query tool is available from https://www.wendangku.net/doc/bf12487178.html,/sdss/software/. The distribution of equatorial galaxies in the EDR is shown in right ascension(RA)versus redshift wedge plots in Figure4.The main galaxy sample is?ux-limited(r?<17.6)and has a median redshiftˉz≈0.11.The clustering of galaxies is clearly visible in this plot:the galaxies appear to lie within?lamentary structures enclosing regions of substantially lower density.The drop in galaxy density with redshift(distance from the centre of the plot)is entirely due to the fact that this sample is limited by apparent?ux:only the most luminous galaxies,which are rare,can be seen beyond a redshift z 0.15.

By contrast,the luminous red galaxy(LRG)sample is designed to be volume-limited,ie.to be of uniform density,out to redshift z=0.38.This sample also includes additional galaxies to z~0.5, although these high redshift galaxies do not form a complete subsample.At z<0.15,the simple linear colour cut used allows less luminous galaxies to enter the sample,hence the increase in galaxy density at these low redshifts.

The EDR includes some engineering data of sub-survey standard,and will be superseded by the ?rst o?cial data release,DR1,in January2003.This release will include spectra of more than 200,000objects over2800square degrees of sky.Subsequent data releases will follow at roughly yearly intervals.

Figure 4:Distribution of EDR galaxies in right ascension (RA)and redshift around the equator (declination |δ|<1.25deg).The left plot shows 24,915galaxies from the main ?ux-limited galaxy sample within a redshift z =0.2.The right plot shows 8025galaxies from the luminous red galaxy sample to z =0.5.

4Early Science Results

Although the primary science driver behind the Sloan Digital Sky Survey is characterization of the large scale structure of the Universe,the survey has already had a signi?cant impact on several branches of astrophysics,from the investigation of asteroids in our own Solar System to the discovery of the most distant known objects in the Universe.Here I very brie?y highlight some interesting results which have come out of the commissioning phase of the survey.For further details,please see the original articles as referenced.

4.1Asteroids

Asteroids are easily detected in SDSS imaging data since they are fast-moving and very nearby (within the Solar System),leading to a signi?cant motion relative to the background stars during the 55s integration time.They thus appear on SDSS images as trails,the length and orientation of which enable the asteroid’s orbit to be determined.Around 13,000asteroids have been detected in 500deg 2of SDSS commissioning data [18].These observations have enabled an accurate determination of the size distribution of asteroids to r ?<21.5over the range 0.4–40km.The total number of predicted asteroids with r ?<21.5is about a factor of ten smaller than that predicted by an extrapolation from previous observations of brighter asteroids (r ? 18),and the number of “killer”asteroids with diameter D >1km is a factor of about three smaller than previously thought,with a new estimate of roughly one impact per 500,000years.By completion,we estimate that the SDSS will have observed roughly 100,000asteroids in ?ve colours,enabling their approximate chemical

composition to be determined.There is already clear evidence for chemical segregation in the belt of asteroids between Mars and Jupiter.Asteroids in the inner part of the belt are composed mostly of rocky silicates,whereas the outer belt asteroids are primarily carbonaceous.These observations have important implications for the formation history of the Solar System.

4.2Brown Dwarfs and Methane Dwarfs

Moving slightly further a?eld than the Solar System,the SDSS has also been very successful at ?nding brown dwarfs in the vicinity of the Sun.Brown dwarfs are sub-stellar objects which are too small to sustain thermonuclear reactions in their cores,and are thus not true stars,but are larger than planets(they are thought to be10–70times the mass of Jupiter).They are thus cool, below2,500K,and hence very red,enabling them to be easily distinguished from true stars by their colours in the SDSS?lters.To date[15],SDSS has discovered around?fty new brown dwarfs, including four T-dwarfs,also known as methane dwarfs.The methane dwarfs are so cool,below 1,300K,that their spectra are dominated by the presence of molecules such as water vapour and methane.While a methane dwarf,Gliese229B,had already been discovered in orbit around a brighter star,the SDSS was the?rst survey to discover free-?oating methane https://www.wendangku.net/doc/bf12487178.html,ing the discovery technique pioneered by SDSS,the Two Micron All Sky Survey(2MASS)has since found more than a dozen methane dwarfs[5].Although very low in mass,these elusive objects may be very common,and thus may provide a signi?cant fraction of the“dark matter”that is known to exist in the Milky Way.To understand their contribution to the total mass of the Milky Way requires determining both their abundance and their mass.The SDSS will be important in addressing both these questions,due to its capability of obtaining precision?ve-colour photometry over a very large area of sky.

4.3Star Structures in the Galaxy

The SDSS has discovered an unexpectedly large number of blue stars within20degrees of the Galactic plane.It is thought that these stars could be part of a disrupted dwarf galaxy,or a disk-like distribution of stars that is pu?er than accepted models of the stellar disk of the Galaxy,and ?atter than the spherical distribution in the halo[26].These observations suggest that the model for our Galaxy needs to be reconsidered.One possible explanation is that these star structures came from tidal disruption of nearby dwarf galaxies such as Sagittarius,since the ages and metallicities of the stars are consistent with the stellar populations in Sagittarius.

4.4Galaxy luminosity function

The distance to a galaxy can be obtained from its spectroscopic redshift using Hubble’s law,which says that the recession velocity of a galaxy is linearly proportional to its distance.Knowing the distance to a galaxy,its intrinsic luminosity may be determined from its apparent magnitude using the inverse-square law.By calculating the maximum distance to which a galaxy of given luminosity may be seen,one can?nd the galaxy luminosity function,φ(L),the number density of galaxies as a function of intrinsic luminosity.It has long been known that the galaxy LF is well?t by the

Schechter function[30],

φ(L)dL=φ? L L? d L

Figure5:Left:(a)Expected1σuncertainty in the galaxy power spectrum P(k)we would measure from a volume-limited sample from the completed SDSS northern survey,along with predictions of P(k)from four variants of the low-density CDM model.Note that the models have been arbitrarily normalized to agree on small scales(k=0.4);in practice the COBE observations of CMB?uctu-ations?x the amplitude of P(k)on very large scales.Right:(b)Power spectrum expected from the luminous red galaxy sample(BRGs),assuming that these galaxies are four times as strongly clustered as the main sample galaxies.

4.5.1Angular clustering

A series of papers[7,9,32,37,38]have studied the angular clustering of galaxies in SDSS commis-sioning data.These papers are based on a single survey stripe(runs752/756observed in March 1999)measuring2.5×90degrees and containing some3million galaxies to r?=22.Star-galaxy separation is performed using a Bayesian likelihood and approximately30%of the area is masked out due to poor seeing[32].The angular correlation function,w(θ),which describes the excess probability over random of?nding two galaxies at angular separationθ,is consistent with that measured from the APM Galaxy Survey[22]when scaled to the same depth[7].

An important test of the star-galaxy separation and of the photometric calibration is to check that w(θ)scales as expected with apparent magnitude.(We expect w(θ)to shift to smaller angular scales and a lower amplitude as we look at more distant,and hence apparently fainter,galaxies. This scaling is quanti?ed by Limber’s equation[19].)Figure6shows that the scaling of w(θ)is well-described by Limber’s equation,particularly when a vacuum-dominated(?m=0.3,?Λ=0.7) cosmology is assumed.Further tests for possible sources of systematic errors in the SDSS data are described in detail in[32]and the angular clustering results are summarized in[7].

Λ-dominated cosmology.From[32].

4.5.2Spatial clustering

A preliminary estimate of the spatial clustering of galaxies has been made using redshift information

[41].This sample consists of29,300galaxies with r?<17.6and within±1.5magnitudes of the characteristic magnitude M?r(corresponding to the characteristic luminosity L?in the Schechter function?t to the luminosity function,see§4.4),distributed non-contiguously over690square degrees.

When using redshifts to infer distances,one relies on the Hubble relation,ie.that distance is proportional to recession velocity.In fact,galaxies have peculiar velocities relative to the Hubble expansion,leading to an error in estimated distances.It is important to take these distance errors, or redshift-space distortions,into account when measuring galaxy clustering.One way of doing this is to estimate galaxy clustering as a functionξ2(r p,π)of two components of the separation vector:the line of sight separationπ,which is a?ected by peculiar velocities,and the sky-projected separation r p,which is not.In the absence of redshift-space distortions,the contours ofξ2(r p,π) would be symmetric about the origin,but small-scale peculiar velocities cause an elongation of the contours along the line of sight directionπ,the so-called“?nger of God”e?ect.One can estimate a projected correlation function w p(r p)that is una?ected by redshift-space distortions by integrating ξ2(r p,π)along the line of sightπ,

w p(r p)=2 ∞0dπξ2(r p,π)=2 ∞0dyξ(

Figure 7:Projected correlation functions w p (r p )against projected separation r p for redshift survey galaxies subdivided by colour (left plot)and luminosity (right plot).Note that the slope of w p (r p )increases from blue to red colour,but remains approximately constant with luminosity.From [41].Table 1:Power-law parameters for the real-space correlation function ξ(r )=(r/r 0)?γ.Units for the correlation length r 0are h ?1Mpc.From [41].

Sample r 0γ

0200

400

600

800

u ′ Luminosity 02468M a s s

01234 g ′ Luminosity M a s s 0.512230246 0200

400

600

800

r ′ Luminosity 05101520M a s s 0246810 β 0.5 1.0 1.5 2.0i ′ Luminosity M a s s 024605101520250.00.5 1.0

1.5

2.0

β0

200

400

600

800

? (h M O ? /L O ?)z ′05101520Luminosity 0510152025M a s s Figure 8:Mass-luminosity relation in the ?ve SDSS bands estimated from weak lensing.The inset in each panel plots estimated mass within 260h ?1kpc (M 260)as a function of lens luminosity.The contours show 1,2and 3sigma con?-dence limits on the scale factor Υand the power-law index βin the relation M 260=Υ(L/1010L ⊙)β.Note that inferred mass has only very weak dependence on u -band luminosity,but in the redder survey bands griz ,the mass-luminosity relation appears to be linear.From [25].

Figure 7shows the clustering properties for two subsamples of the galaxy population selected by restframe u ?r colour at (u ??r ?)0=1.8,corresponding roughly to bulge (red)and disk (blue)dominated galaxies.The red galaxies exhibit a steeper power-law slope and longer correlation length than the blue galaxies,as indicated by the power-law ?t parameters in Table 1.Also shown in Figure 7are the correlation functions for three,volume-limited samples,with luminosities centered on M ??1.5,M ?and M ?+1.5(bright,medium and faint).The power-law slopes for these samples are all consistent with γ=1.8,although the correlation length r 0decreases as expected from bright to faint luminosities.

4.6Galaxy-mass correlation function

So far,I have summarized recent SDSS results concerning the distribution of luminous matter in the Universe.Direct constraints on the dark matter distribution may be obtained from gravita-tional lensing,in which the images of background sources are distorted by the gravitational ?eld of foreground masses.McKay et al.[25]have made weak lensing measurements of the surface mass density contrast around foreground galaxies of known redshift.Although the lensing signal is too weak to detect about any single lens,by stacking together around 31,000lens galaxies a clear lensing signal is detected.The galaxy-mass correlation function is well ?t by a power-law of the

form?Σ+=2.5(r/Mpc)?0.8hM⊙pc?2,where M⊙represents the mass of the Sun.The strength of correlation is found to increase with the following properties of the lensing galaxy:late→early-type morphology,local density and luminosity in all bands apart from u′.Figure8shows the relationship between inferred mass within a260h?1kpc radius and luminosity in each of the survey bands.

4.7High-redshift quasars

The SDSS has broken the z=6redshift barrier,with the discovery of a quasar at a redshift z=6.28, along with two new quasars at redshifts z=5.82and z=5.99[11].These objects were selected as i-dropouts:i??z?>2.2and z?<20.2.Contaminating L and T dwarfs were eliminated with followup near-IR photometry and con?rming spectra were obtained with the ARC3.5m telescope. The SDSS has now observed a well-de?ned sample of four luminous quasars at redshift z>5.8. The Eddington luminosities of these quasars are consistent with a central black hole of mass several times109M⊙,and with host dark matter halos of mass~1013M⊙.The existence of such mass concentrations at redshifts z≈6,when the Universe was less than1Gyr old,provides important constraints on models of formation of massive black holes.We expect to discover~27z>5.8 quasars and one z≈6.6quasar by the time the survey is complete.Such observations will set strong constraints on cosmological models for galaxy and quasar formation.

5Conclusions and Acknowledgments

The Sloan Digital Sky Survey is now fully operational and is producing high quality data at a prodigious rate.We have imaged4278deg2of sky in?ve colours and have obtained more than 350,000spectra.Much exciting science has already come out of just a small fraction of the?nal dataset and we look forward to many more exciting discoveries in the coming years.

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Aeronautics and Space Adminis-tration,the National Science Foundation,the U.S.Department of Energy,the Japanese Monbuka-gakusho,and the Max Planck Society.The SDSS Web site is https://www.wendangku.net/doc/bf12487178.html,/.

The SDSS is managed by the Astrophysical Research Consortium(ARC)for the Participating Institutions.The Participating Institutions are The University of Chicago,Fermilab,the Institute for Advanced Study,the Japan Participation Group,The Johns Hopkins University,Los Alamos National Laboratory,the Max-Planck-Institute for Astronomy(MPIA),the Max-Planck-Institute for Astrophysics(MPA),New Mexico State University,Princeton University,the United States Naval Observatory,and the University of Washington.

It is a pleasure to thank SDSS colleagues for supplying some of the?gures.I would particularly like to thank Donald York for his careful reading of the manuscript.

References

[1]Bahcall N.A.et al.,2002,submitted to ApJ(astro-ph/0205490)

[2]Becker,R.H.,White,R.L.&Helfand,D.J.,1995,ApJ,450,559

[3]Blanton M.,et al.,2001,AJ,121,2358

[4]Blanton M.R.,Lupton R.H.,Maley F.M.,Young N.,Zehavi I.,Loveday J,2001,submitted to

AJ

[5]Burgasser A.J.,2001,astro-ph/0101242

[6]Colless M.,et al.,2001,MNRAS,328,1039

[7]Connolly A.,et al.,2001,submitted to ApJ(astro-ph/0107417)

[8]Disney,M.J.,1976,Nature,263,573

[9]Dodelson,S.,et al.,2001,submitted to ApJ(astro-ph/0107421)

[10]Eisenstein,D.J.,et al.,2001,AJ,122,2267

[11]Fan,X.et al.,2001,AJ,122,2833

[12]Fong,R.,Hale-Sutton,D.&Shanks,T.,1992,MNRAS,257,650

[13]Fukugita,M.,et al,1996,AJ,111,1748

[14]Gunn J.E.,et al,1998,AJ,116,3040

[15]Hawley L.S.et al.,2002,AJ,123,3409

[16]Hogg D.W.,Finkbeiner D.P.,Schlegel D.J.,Gunn J.E.,2001,AJ,122,2129

[17]Hull C.L.,Limmongkol S.,Siegmund W.A.,1994,Proc.SPIE,2199,852

[18]Ivezi′c Z.,et al.,2001,AJ,122,2749

[19]Limber,D.N.,1953,ApJ,117,134

[20]Lin,H.,et al.,1999,ApJ,518,533

[21]Loveday,J.,Maddox,S.J.,Efstathiou,G.,&Peterson,B.A.,1995,ApJ,442,457

[22]Maddox,S.J.,Efstathiou,G.,Sutherland,W.J.&Loveday,J.,1990,MNRAS,242,43P

[23]Maddox,S.J.,Efstathiou,G.,&Sutherland,W.J.,1996,MNRAS,283,1227

[24]Maddox,S.J.,Sutherland,W.J.Efstathiou,G.,&Loveday,J.,1990,MNRAS,243,692

[25]McKay T.A.,et al.,2001,astro-ph/0108013

[26]Newberg H.J.et al.,2002,ApJ,569,245

[27]Petrosian,V.,1976,ApJ,209,L1

[28]Pier J.R.et al.,2002,submitted to AJ

[29]Richards G.T.et al.,2002,AJ,in press

[30]Schechter,P.L.,1976,ApJ,203,297

[31]Schlegel,D.J.,Finkbeiner,D.P.&Davis,M.,1998,ApJ,500,525

[32]Scranton R.,et al.,2001,submitted to ApJ(astro-ph/0107416)

[33]Shapley,H.&Ames,A.,1932,Annals of the Harvard College Observatory,88,No.2

[34]Smith J.A.,et al,2002,AJ,123,2121

[35]Stoughton C.et al.,2002,AJ,123,485

[36]Strauss M.A.et al.,2002,AJ,in press(astro-ph/0206225)

[37]Szalay A.S.et al.,2001,submitted to ApJ(astro-ph/0107419)

[38]Tegmark M.,et al.,2002,ApJ,571,191

[39]Waddell,P.,Mannery,E.J.,Gunn,J.,Kent,S.,1998,Proc.SPIE,Vol.3352

[40]York D.G.,et al.,2000,AJ,120,1579

[41]Zehavi I.,et al.,2002,ApJ,571,172

Jon Loveday is a Lecturer in the Astronomy Centre,University of Sussex.He has been interested in galaxy surveys and observational cosmology since studying for his PhD in Astronomy at the University of Cambridge.After spending three years in Australia,he became one of the?rst SDSS participants while at Fermilab and then the University of Chicago.He is still occasionally seen carrying a violin case.

2014科学知识与能力训练六年级(下册)练习册参考答案

第一单元微小世界 1 放大镜 探究起跑线 1、说说哪些工作需要用到放大镜?放大镜的作用是什么? 探究接力棒 一、填一填 1.放大镜是我们在科学学习中经常用到的观察工具,也叫__凸透镜__ ,它的特点是中间_厚__,边缘__薄__。 2.人类很早就发现某些___透明的宝石__ 可放大物体的影像,在13世纪,英国一位主教__格罗斯泰斯特,最早提出放大装置的应用,他的学生培根设计并制造了能增进视力的眼镜。 3.放大镜不仅能将物体图像____放大__,而且能让我们观察到_肉眼_观察不到的细节。 二. 选一选 1.在下列器材中加上水,哪些器材可以用来制作放大镜。(B)

A、不透明的杯子 B、透明塑料袋 C、方形的玻璃器具 2.放大镜的放大倍数和镜片的(A)有关。 A凸度 B材料 C面积 3、放大镜的放大倍数越大,所能观察到的视野就(C)。 A、越大 B、不变 C、越小 2放大镜下的昆虫世界 探究接力棒 一.填一填 1.在放大镜下我们可以看到蟋蟀的“耳朵”在足的侧。 2.触角是昆虫主要的感觉器官,有识别气味功能,也有平衡、帮助呼吸、识别异性等作用。不同昆虫触角的形状不同,科学研究表明昆虫触角就是的它“鼻子”。 3.草蛉是蚜虫的天敌。蚜虫在植物嫩枝上吸食汁液,每个蚜虫只有针眼般大小,我们用肉眼只能看见它们是密密麻麻的一片,但在10倍放大镜下我们可以看清它们的肢体。4.在放大镜下我们观察到蝴蝶的翅膀表面上布满了彩色小鳞片,这些鳞片其实是扁平的细毛。 3. 放大镜下的晶体 探究接力棒 一、填一填 1.将溶液风干或加热使其水分蒸发可使物质重新结晶析出,得到的是这种溶液的晶体。2.像食盐、白糖、碱面、味精的颗粒都是有规则几何外形,称为晶体。常见的晶体有立方体、金字塔形、针形等形状。 二、选一选

上个世纪的飞雪和溪流阅读训练题及答案

上个世纪的飞雪和溪流迟子建去年深冬,在回故乡的慢行列车上,我遇见了两个老者。他们一胖一瘦,愉快地交谈。其中的一个说,四十多年前的一个夜晚,他驾着手推车,从山上拉烧柴回家。走到半程时,天飘起了雪花。雪越下越大,到了一个三岔路口时,他习惯地上了一条路。然而走了一会儿,他发现那路越走越生,于是掉转车头,又回到岔路口。雪花纷纷扬扬的,天又黑,他分辨不出南北东西了,于是凭着直觉,又踏上了一条路。可是他越走越心虚,因为那条路似乎也是陌生的,他害怕了,又一次回到岔路口。深夜时,家人寻来了。他这才知道,他第一次踏上的路,是正确的。只不过因为雪太大,改变了路的风貌。那人说:“谁能相信,我让雪花给迷了路呢!要是搁现在,可能吗?”他指着车窗外的森林说:“看看,这雪一年比一年小,风一年比一年大,这还叫大兴安岭吗?”透过车窗,我看见稀疏的林地上,覆盖着浅浅的积雪,枯黄的蒿草在风中舞动。而在雪大的年份,那些蒿草会被雪深深地埋住,你是看不到的。天虽然仍是蓝的,可因为雪少得可怜,那幅闪烁的冬景给人残破不堪的感觉。而这样的景象,在大兴安岭,自新世纪以来,是越来越司空见惯了。我想起童年在小山村的时候,每逢冬天来临,老天就会分派下一项活儿,等着我们小孩子来接收,那就是扫雪。那个年代的雪,真是恋人间啊!常常是三天一小场,十天一大场,很少碰到一个月没有雪的时候。雪会大到什么程度呢?有的时候,它闷着头下了一夜,清晨起来,你无法出去抱柴了,因为大雪封门了。这个时候,就得慢慢地推门,让它渐渐透出缝隙,直到能伸出笤帚,一点点地掘开雪,门才会咧开嘴,将满院子的白雪推进你的视野,有如献给你一个明朗的笑。那个年代,不光是雪多,溪流也是多的。夏天,我们常到山上玩,渴了,随时捧山间的溪水来喝。溪水清冽甘甜,带着草木的清香,我喝的这世上最好的水,就是大兴安岭的溪水。那时植被好,雨水丰沛,因而溪流纵横。女孩们夏天洗衣服,爱到溪水旁。省了挑水,可以洗个透彻。洗衣服的时候,蝴蝶和蜻蜓在你眼前飞来飞去的,它们的翅膀有时会温柔地触着你的脸;而溪水中呢,不仅浸泡着衣服,还浸泡着树和云的影子,好像它们嫌自己不干净,要你帮着洗一洗似的。大兴安岭的河流,到了冬天都封冻了。柔软的水遇到零下三四十度的严寒,哪有不僵的呢?可母亲告诉我,我们家在设计队住的时候,后山上有一道泉水,冬天是不冻的。母亲说,我们后来搬家了,所以那道泉水在那座山上,究竟活了多少个冬天,她是不知道的。大兴安岭的开发,使林木资源日渐匮乏,小时候常见的参天大树,好像都被老天召走,做了另一个世界晚祷的蜡烛,难觅踪影了。而那如丰富的神经一样遍布大地的溪流,也悄然消逝了。我已故的爱人,他曾天真地对我说:“大兴安岭全境人口不过五十多万,我看不如把所有的人口都迁出去,异地安置,做到真正的封山。几十年后,树茂盛了,溪水也充沛了,中国会留下最好的一片原始森林。”可我知道,这样的想法,无论是在他生前还是死后,都是“天上的想法”。我怀念上个世纪故乡的飞雪和溪流。我幻想着,有一天,它们还会在新世纪的曙光中,带着重回人间的喜悦,妖娆地起舞和歌唱。(有删改)文中写到了上个世纪大兴安岭的飞雪和溪流,请结合全文用简洁的语言分别概括其特点。(4分) 飞雪:雪大,雪多。溪流:多(溪流纵横,遍布大地),清冽甘甜,有些经冬不冻。文章第一段写两个老者的对话,这样写有何用意?请简要分析。(6分)⑴内容上,回忆了曾经的大兴安岭雪大的特点,表现了作者对上个世纪大兴安岭飞雪的怀念之情;⑵结构和手法上,与后文现在残破不堪的冬景形成鲜明对比,为回忆上个世纪大兴安岭飞雪和溪流做铺垫;⑶效果上,起到吸引读者的作用。本文是围绕“大兴安岭的飞雪和溪流”展开的,请梳理全文的行文思路。(6分)⑴开篇借老者之口讲述雪夜迷路的故事,突出了上个世纪大兴安岭雪大的特点,与现在残破不堪的冬景形成鲜明对比。⑵回忆起上个世纪雪和溪流的景象。⑶回到现实,说明人们对大兴安岭的开发、对林木资源的破坏是这一改变的根源。⑷作者怀念上个世纪大兴安岭飞雪和溪流,憧憬它们重回人间。请结合全文分条归纳,作者主要流露出了哪些情感。(6分)⑴怀念、惋惜之情;⑵憧憬、期盼之情;⑶对人们破坏林木资源的批判,对封山

儿童歌谣大全

儿童歌谣大全 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 篇一:儿童歌谣歌词大全 [小螺号]儿歌歌词 小螺号,嘀嘀嘀吹海鸥听了展翅飞小螺号,嘀嘀嘀吹浪花听了笑微微小螺号,嘀嘀嘀吹 声声唤船归啰 小螺号,嘀嘀嘀吹 阿爸听了快快回啰。 茫茫的海洋,蓝蓝的海水 吹起了小螺号,心里美吔 [小鸟小鸟] 蓝天里有阳光,树林里有花香 小鸟小鸟,你自由地飞翔 在田野,在草地,在湖边,在山冈 小鸟小鸟迎着春天歌唱 啦啦啦啦啦。爱春天,爱阳光,爱湖水,爱花香小鸟小鸟,我的好朋友让我们一起飞翔歌唱

一起飞翔歌唱 啦啦啦啦啦 [让我们荡起双桨] 让我们荡起双桨,小船儿推开波浪海面倒映着白塔,四周环绕着绿树红墙小船儿轻轻飘荡在水中 迎面吹来了凉爽的风 红领巾迎着太阳,阳光洒在海面上 水中鱼儿望着我们 悄悄听我们愉快歌唱 小船儿轻轻飘荡在水中 迎面吹来了凉爽的风 做完了一天的功课,我们来尽情欢乐 我问你亲爱的伙伴 谁给我们安排下幸福的生活? 小船儿轻轻飘荡在谁中 迎面吹来了凉爽的风 [小红花]儿歌歌词 金波词尚疾曲 花园里,篱笆下,我种下一朵小红花

春天的太阳当头照,春天的小雨沙沙下 啦啦啦啦啦,啦啦啦啦啦 小红花张嘴笑哈哈 花园里,篱笆下,我种下一朵小红花 春天的太阳当头照,春天的小雨沙沙下 啦啦啦啦啦,啦啦啦啦啦 小红花张嘴笑哈哈[我家几口] 金苗苓词曲我家有几口? 让我扳指头 爸爸,妈妈,还有我 再加一个布娃娃 哟!有四口我家有几口? 让我扳指头 爸爸,妈妈,还有我 再加一个布娃娃 哟!有四口 [谁会这样] 少数民族儿歌潘振声曲 谁会飞呀,鸟会飞

鸟儿鸟儿怎样飞? 拍拍翅膀飞呀飞 谁会游呀,鱼会游 鱼儿鱼儿怎样游? 摇摇尾巴点点头 谁会跑呀,马会跑马儿马儿怎样跑?四脚离地身不摇。[我叫轻轻] 张友珊词汪玲曲 走路轻轻轻轻 上夜班的阿姨还没醒呀 敲门轻轻轻轻 给邻居叔叔送呀送封信 说话轻轻轻轻 姐姐灯下看书多用心呀 大家夸我是好孩子 给我取个名字叫呀叫轻轻 走路轻轻轻轻 上夜班的阿姨还没醒呀 敲门轻轻轻轻 给邻居叔叔送呀送封信 说话轻轻轻轻 姐姐灯下看书多用心呀

青少年人际关系问题.doc

青少年人际关系问题 近年来,青少年的人际关系问题逐渐受到人们的关注,青少年人际关系问题有哪些呢?下面是我搜集整理的一些内容,希望对你有帮助。 青少年人际关系问题:社交恐怖症 社交恐怖症是中学生群体中常见的人际关系障碍,是指个体对正常的社交活动有一种异乎寻常的强烈恐惧和紧张不安的内心体验,从而出现回避反应的一种人际交往障碍,是恐怖症在人际交往中的表现形态。中学生渴望友谊,希望广交朋友,但有些学生一到具体交往或别人主动与自己打交道时,就出现恐惧反应。表现为不敢见人,遇生人面红耳赤,神经处于一种非常紧张的状态。社交恐怖症往往会发生泛化,严重者拒绝与任何人发生社交关系,将自己孤立起来,对日常生活和学习造成极大障碍。 社交恐怖症伴有强迫性恐怖情绪,是后天形成的一种条件反应,通常是在学习的基础上建立起来的。这其中有两种情况:一是直接经验。有道是"一朝被蛇咬,十年怕井绳"。中学生在交往过程中屡遭挫折、失败,就会形成一种心理上的打击或威胁,在情绪上产生种种不愉快的甚至痛苦的体验,久而久之,就会不自觉地形成一种紧张、不安、焦急、忧虑、恐惧等情绪状态。这种状态一旦定型,进而形成固定的心理结构,那么他在以后遇到新的类似的刺激情境时,便可能旧病发作,产生恐惧感。二是间接经验,即社会学习。如看到或听到别人在某种交往情境中遭受挫折,陷入窘境,或受到难堪的讥笑、拒绝,自己就会感到痛苦、羞耻、害怕。甚至通过电影、电视、小说、报刊等途径也可以学到这种经验。他们会不自

觉地依据间接经验,来预测自己将在特定的社交场合遭受令人难堪的对待,于是紧张不安,焦虑恐惧。正是这种情绪状态的泛化导致了社交恐怖症。 社交恐怖症是一种由心理紧张造成的心因性疾病,只要积极治疗,是完全可以治愈的。一般的做法有:①消除自卑,树立自信。对自己要有正确的认识,过于自尊和盲目自卑都没有必要。可以暗示自己:我只不过是集体中的一分子,谁也不会专门注意我一个人的。力求摆脱那种过多考虑别人评价的思维方式。②改善自己的性格。害怕社交的人多半比较内向,故应该加强锻炼自己的性格。多参加一些文体活动或集体活动,尝试主动与同学和陌生人交往,逐渐去掉羞怯和恐惧感。③满灌疗法。即让人反复接触引起恐怖的刺激,使其逐步适应,进而消除恐惧感。④系统脱敏法。其一般做法是:先用轻微、较弱的刺激,然后逐渐增强刺激的强度,使行为失常的患者消除焦虑和恐怖情绪,最后达到矫正异常行为的目的。例如可以先引导患者与家人接触、一步一步引导脱敏,并通过奖励、表扬使其巩固。此外,中学生要克服社交恐怖症,还必须掌握人际交往的知识和技能。 案例1:某某,初二男生,因其父是知青,政策允许他来沪寄住祖父母家。该生见人腼腆,遇生人或校领导更局促不安,如遇女性,会手足无措,面红心悸,交谈时口吃,惹同学嗤笑;性格内向,孤独,同班中无知心好友,严重时,心烦意乱,消沉苦闷,经常失眠,纳呆。他多次要求中止学业,回江西弋阳农村父母身边。 分析:这是典型的社会适应障碍。失眠、纳呆、心烦意乱、精绪抑

战神的挑战2——图文流程攻略

战神的挑战2——图?流程攻略 【游戏封?】 游戏名称:P u z z l e Q u e s t2 中?名称:战神的挑战2 游戏发?:N a m c o N e t w o r k s A m e r i c a,I n c. 游戏制作:I n?n i t e I n t e r a c t i v e 游戏语种:英? 游戏类型:R P G??扮演 发??期:2010年8?13?

%{p a g e-b r e a k|游戏介绍|p a g e-b r e a k}% 野蛮?的技能表(括号中学得该技能所需的等级): 连捶(1):战场上有多少红宝?,则造成1/2数量的伤害值,需要4的红魔法。 部落的标记(2):消掉战场上所有的红宝?,每4颗红宝?增加1点头?伤害奖励,该效果?直持续。 狂怒(3):在战场上随机位置?成14颗红宝?。 部落的守护(4):消掉战场上所有的绿宝?,没颗绿宝?增加2点防御,效果?直持续。 猛击(5):减少敌?每种颜?的魔法值各10。 头?粉碎者(6):消掉所有头?,敌?损失的回合数为1+1/5消掉的头?数。 野蛮咆哮(7):敌?防御减少75%,持续3回合,本回合未结束。 破坏狂(8):消掉所有的绿宝?,增加相等数量的红魔法。 反冲(10):使?后该回合内通过武器攻击造成的伤害增加50%。 战争狂嚎(12):随机位置增加3颗红?头?,如果当前红魔法值不少于25则本回合未结束。 最后的反击(15):使?后每损失25点?命值增加1点头?伤害,该技能

践踏(20):选择?颗宝?,消掉周边3*3区域的宝?并获得所有这些宝?的效果,对敌?造成8的伤害。 残暴(25):在后6回合内使头?伤害加倍。 猎头者(30):消掉最上2?的宝?,获得它们的效果。对敌?造成10的伤害。 嗜?(35):接下来的6个回合,对敌?造成伤害值的25%转化为??的?命值。 毁灭者(40):增加50点武器攻击点数,本回合未结束。 迷幻之怒(50):选择?种宝?,战场上所有该颜?的宝?转变为头?,红魔法不少于25则本回合未结束。 战?的?些分析:消宝?增加该颜?魔法,六个?格为装备的武器,拳头形状表?武器攻击点数,消掉战场中的拳头增加该点数,满?武器使?需求后点击武器?格可以释放,图中我?3、3的数值分别标?了?前的头?伤害加成值和防御值,前者增加消掉头?后对敌?的伤害值,后者标?有该数值%的机会使任何敌?对我?造成的伤害减半。左下?为现在装备的五个技能,注意战?中只能装备五个所以需要在战?前在技能选项中先选择好最有利于战?的技能。 野蛮?战?的?些?得: 消4个或以上的宝?能奖励?个回合,单回合连续消掉?批宝?会有更多奖励(?如稀有武器)。 消宝?时注意看看消去后是否会给对?造成机会,如果没有什么好的

2014科学知识与能力训练六年级下册练习册参考标准答案

第一单元微小世界 1放大镜 探究起跑线 1、说说哪些工作需要用到放大镜?放大镜的作用是什么? 探究接力棒 一、填一填 1.放大镜是我们在科学学习中经常用到的观察工具,也叫__凸透镜__ ,它的特点是中间_厚__,边缘__薄__。 2.人类很早就发现某些___透明的宝石__可放大物体的影像,在13世纪,英国一位主教__格罗斯泰斯特,最早提出放大装置的应用,他的学生培根设计并制造了能增进视力的眼镜。 3.放大镜不仅能将物体图像____放大__,而且能让我们观察到_肉眼_观察不到的细节。二.选一选 1.在下列器材中加上水,哪些器材可以用来制作放大镜。( B) A、不透明的杯子 B、透明塑料袋 C、方形的玻璃器具 2.放大镜的放大倍数和镜片的(A)有关。 A凸度B材料C面积 3、放大镜的放大倍数越大,所能观察到的视野就( C)。 A、越大 B、不变 C、越小 2 放大镜下的昆虫世界 探究接力棒

一.填一填 1.在放大镜下我们可以看到蟋蟀的“耳朵”在足的内侧。 2.触角是昆虫主要的感觉器官,有识别气味功能,也有平衡、帮助呼吸、识别异性等作用。不同昆虫触角的形状不同,科学研究表明昆虫触角就是的它“鼻子”。 3.草蛉是蚜虫的天敌。蚜虫在植物嫩枝上吸食汁液,每个蚜虫只有针眼般大小,我们用肉眼只能看见它们是密密麻麻的一片,但在10倍放大镜下我们可以看清它们的肢体。 4.在放大镜下我们观察到蝴蝶的翅膀表面上布满了彩色小鳞片,这些鳞片其实是扁平的细毛。 3. 放大镜下的晶体 探究接力棒 一、填一填 1.将溶液风干或加热使其水分蒸发可使物质重新结晶析出,得到的是这种溶液的晶体。2.像食盐、白糖、碱面、味精的颗粒都是有规则几何外形,称为晶体。常见的晶体有立方体、金字塔形、针形等形状。 二、选一选 1.选出相应的晶体形状:水晶(A)雪花( B )维生素C( C)。 A、立方体 B、六角形C、针形 2.下面全是晶体的一组是( A)。 A、糖、碱、维生素C B、水晶、雪花、玻璃 C、盐、味精、珍珠 三、判一判 1.自然界中所有的固体都是晶体。(×) 2.碱面的晶体像花瓣,而食盐的晶体像树枝。 (×) 3.许多岩石是由矿物晶体集合而成的。(√) 4.晶体的形状多种多样,没有规则。( ×) 4.怎样放得更大 探究接力棒 一、填一填 1.两个不同放大倍数的凸透镜组合起来,调整它们之间的距离来观察物体,这样物体的图像被放得更大。 2.显微镜的发明,是人类认识世界的一大飞跃,把人类带入一个崭新的微观世界。

苏雪林《溪水》阅读答案

苏雪林《溪水》阅读答案 导读:溪水 苏雪林 ⑴我们携着手走进林子,溪水漾着笑窝,似乎欢迎我们的双影。这道溪流,本来温柔得像少女般可爱,但不知何时流入深林,她的身体便被囚禁在重叠的浓翠中间。 ⑵早晨时她不能更向玫瑰色的朝阳微笑,深夜时不能和娟娟的月儿谈心,她的chè莹晶的眼波,渐渐变成忧郁的深蓝色,时时凄咽着忧伤的调子,她是如何的沉闷呵!在夏夜的时候。 ⑶几番秋雨之后,溪水涨了几篙;早diāo的梧楸,飞尽了翠叶;黄金色的晓霞,从杈桠树隙里,深入溪中;泼靛的波面,便泛出彩虹似的光。 ⑷现在,水恢复从前活泼和快乐了,一面疾忙的向前走着,一面还要和沿途遇见的落叶、枯枝……淘气。 ⑸一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来顽玩,走到半路上,风偷偷儿的溜走了,他便一交跌在溪水里。 ⑹水是怎样的开心呵,她将那可怜的失路的小红叶儿,推推挤挤的推到一个xuán涡里,使他滴滴溜溜的打圆转儿;那叶向前不得,向后不能,急得几乎哭出来;水笑嘻嘻的将手一松,他才一溜烟的逃走了。 ⑺水是这样欢喜捉弄人的,但流到坝塘边,她自己的磨难也来

了。你记得么?坝下边不是有许多大石头,阻住水的去路。 ⑻水初流到水边时,还是不经意的涎着脸撒嗔痴的要求石头放行,但石头却像没有耳朵似的,板着冷静的面孔,一点儿不理。于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,漏出雪白的胸臂,肺叶收放,呼吸极其急促,发出怒吼的声音来,缕缕银丝头发,四散飞起。 ⑼辟辟拍拍,温柔的巴掌,尽打在石头皱纹深陷的颊边,---- 她真的发怒了,不是儿嬉。 ⑽谁说石头是始终顽固的呢,巴掌来得狠了,也不得不低头躲避。于是谁得安然度过难关了。 ⑾她虽然得胜了,然而弄得异常疲倦,曳了浅碧的衣裳去时, 我们还听见她继续的chuǎn息声。 ⑿我们到这树林中来,总要到这坝塘边参观水石的争执,一坐总要一两个钟头。 1.文章着重刻画了溪水流经途中的哪两件事?表现出溪水怎样的 性格特点?请根据文意简要回答。 2.下列句子生动形象,富有表现力,请加以赏析。 1).一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来顽玩,走到半路上,风偷偷儿的溜走了,他便一交跌在溪水里。 2).于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,漏出雪白的胸臂,肺叶收放,呼吸极其急促,发

儿歌歌词大全

《樱桃小丸子》 小小年纪谈起理想一串串 想当专家、想做博士、想出唱片老爸老妈老师老友都夸赞 想来容易,说来简单,做做就难要数一百,先数一二三 要过明天先过好今天 瞄准目标看齐 噼里啪啦,噼里啪啦 做事不偷懒 噼里啪啦,噼里啪啦

学习不怕难 我们脚踏实地地干 瞄准目标看齐 噼里啪啦,噼里啪啦 读书真勤快 噼里啪啦,噼里啪啦 今天学得好 噼里啪啦,噼里啪啦 明天理想能实现 《多啦A梦》 如果我有仙女棒变大变小变漂亮

还要变个都是漫画巧克力和玩具的家 如果我有机器猫我要叫他小叮当 竹蜻蜓和时光隧道能去任何的地方 让小孩大人坏人都变成好人 (hi 大家好,我是小叮当) ang ang ang小叮当帮我实现所有的愿望 躺在草地上幻想想动想西想玩耍 想到老师还有考试一个头就变成两个大好在我有小叮当困难时候求求他 万能笔和时间机器能做任何的事情 让我的好朋友一齐分享他 (啊!救命啊!有老鼠!) ang ang ang 小叮当帮我实现所有的愿望 躺在草地上幻想想动想西想玩耍 想到老师还有考试一个头就变成两个大好在我有小叮当困难时候求求他 万能笔和时间机器能做任何的事情 让我的好朋友一齐分享他 (小叮当永远是你们的好朋友喔!) ang ang ang 小叮当帮我实现所有的愿望

ang ang ang 小叮当帮我实现所有的愿望 《铁臂阿童木》 越过辽阔天空,啦啦啦飞向遥远群星,来吧!阿童木,爱科学的好少年。善良勇敢的啦啦啦铁臂阿童木,十万马力七大神力,无私无畏的阿童木。穿过广阔大地,啦啦啦潜入深深海洋,来吧!阿童木,爱和平的好少年。善良勇敢的啦啦啦铁臂阿童木,我们的好朋友啊, 无私无畏的阿童木。 《小龙人之歌》 天上有,无数颗星星,那颗最小的就是我,我不知道我从哪里来,也不知道我在哪里生。地上有,无数个龙人,那个最小的就是我,我不知道我从哪里来,也不知道我在哪里生。啊----这是我将在妈妈怀 抱里,啊寻遍天涯,去找他 《我是一条小青龙》我头上有只角,我身后有尾巴,谁也不知道,我有多少秘密?我头上有只角,我身后有尾巴,谁也不知道,我有多少秘密。我是一条小青龙(小青龙,小青龙)我有许多小秘密(小秘

如何改善初中生人际关系

如何改善初中生人际关系 摘要:初中生人际交往中存在误区和不足,人际关系的质量对青少年的学习态度、自我意识、学习成绩和心理健康有着重要的影响。误区和不足产生原因有社会、家庭、学校、自身等方面。对学生的人际交往能力的改善应加以关注。文章提出了处理人际关系是一种能力,也是一种技术,它可以通过学习和训练来培养和提高。营造良好的学生人际关系环境,加强学生个性修养,学习一定的交往技能和交往方法,就能基本改善初中生的交往情况,为今后的学习、工作、健康发展打下基础。 关键词:初中生人际关系改善交往技能 古语云:“天时不如地利,地利不如人和。”一项统计表明,100年前,286位获诺贝尔奖的科学家中,有2/3是与人合作完成其发明的,而在近25年的获奖者中,竟有80%是合作获奖的。美国著名成人教育家戴尔-卡耐基经过大量的研究发现说:“一个人事业上的成功,只有百分之十五是由于他的专业技术,另外的百分之八十五要靠人际关系、处世技巧。”此话也许说得绝对些,但也从另一侧面说明良好人际关系对成就事业的重要性。人际关系的质量对青少年的学习态度、自我意识、学习成绩和心理健康有着重要的影响。 学生进入初中后,和父母在一起的时间逐渐减少,与父母的感情也就逐渐淡化,与教师和同伴之间关系逐渐上升。初中生正值十三四岁,是危险年龄阶段。良好的人际关系,有利于学生对学校产生积极的情感态度,与同学形成积极的情感关系。不良的人际关系可能使学生在学校中表现出与老师、同学关系疏远,攻击性强等特性,从而影响学生的学业成绩,进而产生违纪、辍学等现象。 1、初中生正确处理人际关系的能力较差,存在以下不足: 1.1把同学当成利用工具。 1.2对人冷漠、多疑,缺少知心朋友。 1.3情绪变化无常,交了朋友没过几天就闹翻了。 1.4自以为是,唯我独尊,毫不顾忌别人的感受。 1.5胆小退缩,报复心强。 1.6是非淡漠,交友不慎,有江湖义气。 1.7老是把父母、老师、同学的关心当罗嗦。 2、存在不足的原因:

《战神3》图文流程攻略Chapter 11 -奥林

《战神3》图文流程攻略Chapter 11 -奥林匹亚要塞 跟随赫尔墨斯的脚步,抵达木桥上,桥会被迎空飞来的火球砸断,并且背后会不断燃烧,被火追上便会坠崖而亡,中途桥会更改一起方向,不用搭理摇杆向上推一路按×注意面前的平民会阻挡你的道路,用攻击键杀死他们而不是圆圈,跨上平台,平台上有许多平民,抓住处决可以回血,他们的生杀大权就掌握在你的手中。 一路上连跑带揍也没能追上神使,不过最终这个罗嗦的家伙还是被逼在一个锁头上,去左边触发剧情,不用被赫尔墨斯所干扰,掌握自己的节奏一路上利用跳跃点抵达安全区域,上面拼命、小恶魔、狗仔龙蛇混杂,推荐使用太阳神的头颅△蓄力镇住他们,然后L ?清理。

接着向前走,赫尔墨斯把正门关了没办法,我们只能绕远路了,从门左边的楼梯左右开工跃上房顶,发现点赫尔墨斯已经跑到很远的地方等奎托斯了,无奈ing到圆台下方右侧拉动摇杆,腾出缺口跳上平台,拉动巨型投石车,利用QTE跟随巨石抵达赫尔墨斯所在的雅典娜巨像上,酷毙了~ 跟随赫尔墨斯的血迹到达与赫尔墨斯决战的平台,这家伙的速度非常快,天天跑路可不是 盖的,也许一开始会适应不来,用L ?来攻击命中率会比较大,或者直接重攻击的收尾重击的伤害非常大看准时机可以给予赫尔墨斯很大的伤害,途中会有QTE对抗,无外乎是正转或者是反转半圈摇杆,几下重击周后赫尔墨斯被击倒在地,显然他累了,这家伙临死之前还唧唧歪歪拿斯巴达人的荣耀来说事。

已经没有力气的赫尔墨斯坐在地上任你鱼肉,按下圈就开始华丽的表演,非常非常的血腥……未成年人绝对禁止观看…以上以及以下的图片纯属欣赏,完事之后获得“赫尔墨斯之靴”这件物品可以让你跑得飞快。

溪流的阅读答案

溪流的阅读答案 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

①我愈来愈爱着生我养我的土地了。 ②就像山地里纵纵横横的沟岔一样,就像山地里有着形形色色的花木一样,我一写山同,似乎思路就开了,文笔也活了。 ③甚至觉得,我的生命,我的笔命,就是那山溪哩。虽然在莽莽的山的世界里,它只是那么柔得可怜,细得伤感的一股儿水流。 ④我常常这么想:天上的雨落在地上,或许会成洪波,但它来自云里;溪是有根的,它凉凉地扎在山峰之下。人都说山是庄严的,几乎是死寂的,其实这是错了。它最有着内涵,最有着活力;那山下一定是有着很大很大的海的,永远在蕴涵的感情,永远是不安宁,表现着的,恐怕便是这小溪了。 ⑤或许,是从小草的根下一个泡儿一个泡儿冒出来的。但是,太阳晒不干、黄风刮不跑的。天性是那么晶莹,气息是那么清新;它一出来,便宣告了它的生命,寻着自己的道路要流动了。 ⑥正因为寻着自己的道路,它的步伐是艰辛的。然而,它从石板上滑下,便有了自己的铜的韵味的声音;它从石崖上跌落,便有了自己白练般的颜色,它回旋在穴潭之中,便有了自己叵不可测的深沉。

⑦它终于慢慢地大起来了,要走更远的道儿;它流过了石川,流过了草地,流过了竹林,它要拜访所有的山岭,叩问每一次石头,有时会突然潜入河床的沙石之下去了呢。(A于是,轻风给了它的柔情,鲜花给了它的芬芳,竹林给了它的凉绿,那多情的游鱼,那斑斓的卵石,也给它增添了美的色彩。) ⑧它在流着,流着。它要流到啊里去呢?我想,山既然给了它的生命,它该是充实的,富有的;(B或许,它是做一颗露珠儿去滋润花瓣,深入到枝叶里了,使草木的绿素传送);或许,它竟能掀翻一坯污泥,拔脱了一从腐根呢。那么,让它流去吧,山地这么大,这么复杂,只要它流,它探索,它就有了自己的路子。 ⑨我是这么想的,我提醒着我,我鼓励着我,我便将它写成了淡淡的文字,聊作这本小书的小序了。 1.作者笔下的溪流有什么特点?(一排空) 2.简要归纳文中小溪的成长过程。(一排空) 3.细读6、7段,说说这两段有什么思想含义。(一排空) 4.作者为自己的书作序,写的却是溪流,这有什么用意?(一排空) 5.这篇文章有什么特色?(两排空) ⒈以时间为序,从小溪的过去写起,写小溪的现在,再想象它的未来。

56首经典儿歌歌词大全

56首经典儿歌歌词大全 1、做早操 早上空气真叫好,我们都来做早操。 伸伸臂,弯弯腰,踢踢腿,蹦蹦跳,天天锻炼身体好。 2、饭前要洗手 小脸盆,水清请,小朋友们笑盈盈,小手儿,伸出来, 洗一洗,白又净,吃饭前,先洗手,讲卫生,不得病。 3、小手绢 小手绢,四方方,天天带在我身上。 又擦鼻涕又擦汗,干干净净真好看。 4、搬鸡蛋 小老鼠,搬鸡蛋,鸡蛋太大怎么办?一只老鼠地上躺, 紧紧抱住大鸡蛋。一只老鼠拉尾巴,拉呀拉呀拉回家。 5、大骆驼 骆驼骆驼志气大,风吹日晒都不怕。 走沙漠,运盐巴,再苦再累不讲话。 6、螳螂 螳螂哥,螳螂哥,肚儿大,吃得多。飞飞能把粉蝶捕, 跳跳能把蝗虫捉。两把大刀舞起来,一只害虫不放过 7、大蜻蜓 大蜻蜓,绿眼睛,一对眼睛亮晶晶, 飞一飞,停一停,飞来飞去捉蚊蝇。 8、小鸭子 小鸭子,一身黄,扁扁嘴巴红脚掌。 嘎嘎嘎嘎高声唱,一摇一摆下池塘。 9、拍手歌 你拍一,我拍一,天天早起练身体。 你拍二,我拍二,天天都要带手绢。 你拍三,我拍三,洗澡以后换衬衫。 你拍四,我拍四,消灭苍蝇和蚊子。 你拍五,我拍五,有痰不要随地吐。 你拍六,我拍六,瓜皮果核不乱丢。 你拍七,我拍七,吃饭细嚼别着急。 你拍八,我拍八,勤剪指甲常刷牙。 你拍九,我拍九,吃饭以前要洗手。

你拍十,我拍十,脏的东西不要吃。 10 、小螃蟹 小螃蟹,真骄傲,横着身子到处跑, 吓跑鱼,撞倒虾,一点也不懂礼貌 11 、庆六一 儿童节,是六一,小朋友们真欢喜。 又唱歌来又跳舞,高高兴兴庆六一。 12、花猫照镜子 小花猫,喵喵叫,不洗脸,把镜照, 左边照,右边照,埋怨镜子脏,气得胡子翘。 13、蚂蚁搬虫虫 小蚂蚁,搬虫虫,一个搬,搬不动,两个搬,掀条缝, 三个搬,动一动,四个五个六七个,大家一起搬进洞。 14、小青蛙 小青蛙,呱呱呱,水里游,岸上爬, 吃害虫,保庄稼,人人都要保护它。 15、花儿好看我不摘 公园里,花儿开,红的红,白的白, 花儿好看我不摘,人人都说我真乖。 16 、红绿灯 大马路,宽又宽,警察叔叔站中间, 红灯亮,停一停,绿灯亮,往前行。 17 、七个果果 一二三四五六七,七六五四三二一。 七个阿姨来摘果,七个篮子手中提。七个果子摆七样。 苹果、桃儿、石榴、柿子、李子、栗子、梨。 18、睡午觉 枕头放放平,花被盖盖好。 小枕头,小花被,跟我一起睡午觉,看谁先睡着。 19 、吃荸荠 荸荠有皮,皮上有泥。洗掉荸荠皮上的泥,削去荸荠外面的皮,荸荠没了皮和泥,干干净净吃荸荠。 20 、小云骑牛去打油 小云骑牛去打油,遇着小友踢皮球,皮球飞来吓了牛,摔下小云撒了油。 21 、盆和瓶 车上有个盆,盆里有个瓶,乒乒乒,乓乓乓,不知是瓶碰盆,还是盆碰瓶。

青少年人际交往小组活动方案

夏青20053237 活动一: 来自于https://www.wendangku.net/doc/bf12487178.html,/heyoufang/blog/item/11a429dd13a272d98d10291e.html 青少年人际交往小组活动方案 活动背景:心理学研究表明,人际交往具有六种功能:获得信息的功能;自知、知人的功能;自我表现的功能;人际协调的功能;社会化的功能;身心保健的功能。人际关系能力是情感智力的外部表现,是衡量一个人情感智力水平的重要标志,良好的人际关系是一个人学业优异心理健康的重要前提,它在很大程度上影响着一个人的受社会欢迎程度,领导权威、人际互动的效等。在人际关系能力显得愈来愈重要的同时,我们发现,青少年人际交往障碍已成为不容忽视的问题。人际交往障碍,也叫人际关系障碍,通常是指在人们的社会交往活动中,影响个体正常行为和活动效能,阻碍人际关系建立的各种因素。这些因素主要来自三方面:首先是文化因素。民族情感和倾向,教育程度的差别等等。其次是社会因素。再次是个体心理因素。包括个体的需求、动机、态度、价值观、人生观等方面的差异以及个性品质特征的某些不良表现。 人际交往障碍的表现有多种多样:被动、攻击、固执、自我表现 本次活动选取6种技能类型即分6节内容包括:加入集体、合作、决断性、处理社交中的问题、竞争、赞美,来展开对缺乏社交技能的儿童的技能训练。 第一节加入这个团体(开始团体) 目标:让成员了解参加这个团体所必须遵守的规则。并使成员能够尽快彼此认识。且在这个过程中,学会向别人介绍自己以及记住别人的重要性。 活动时间:60分钟 活动材料:若干张纸与笔、一个深色小盒子里面有6张写着规则的纸条、遮盒子的布、一块干净手帕。 活动过程: 开场白: (3’) ①对成员的来到表示高兴。②强调此次小组的目的(学习社交技能)③说明活动主要所采用的方式(如游戏)④说明领导者在活动中主要起的作用⑤引出热身游戏。 热身游戏:“魔箱的指示” (5’)目的是以较有趣的方式让成员自己念出规则,使他们能对规则有深刻的印象。 先报数分组,以2人一组。然后领导者拿出准备好的“魔箱”,告诉成员里面有魔箱的指示,让每一组派一名成员来摸。摸出后,大声向全体念出纸条上所写的“魔箱的指示”即小组规则。并要求成员能一起遵守“魔箱的指示”。 具体规则如下:A、等轮到你时再发言或活动。B、待在你自己的座位上。C、小声说话。D、发言之前要举手。E、遵守每次游戏规则。F、集中注意听讲。G、每次活动都能准时参加。

PSP《战神-奥林匹斯之链》图文攻略流程

【首发】PSP战神Ω奥林匹斯之链图文流程攻略! https://www.wendangku.net/doc/bf12487178.html,-自由自在游戏社区奉献 《战神Ω奥林匹斯之链》(God of War:Chains of Olympus)是以PS2上大畅销的《战神》(God of War)系列为题材的PSP原创新作,本作由 Ready at Dawn研发,充分发挥PSP所具备的 3D处理性能,呈现出不亚于PS2版壮阔的游 戏场景以及细腻角色。此外,在日前SCEA旗下 工作室Ready at Dawn高级制作人Eric Koch也 通过官方博客PlayStation Blog对外确认,自 2007年起就备受注目的PSP游戏《战神Ω奥 林匹斯之链》已经顺利宣告完工,游戏已经交厂 压碟准备上市,现在这款PSP超级大作将于2008 年3月4日在北美地区发售。 游戏承袭相同的故事背景与游戏类型,玩家将再 度扮演斯巴达战士奎托斯,继续施展“浑沌双刃” 等致命武器,面对全新的难关、敌人与奥林匹斯 诸神的试炼,体验与不同于本传的原创故事剧 情。游戏承袭PS2系列作的特色,在PSP上 重现了广受欢迎的电影运镜式精采游戏画面与 刺激的动作战斗系统,并加入全新的招式、关卡、 机关与怪物,以及以希腊神话为基础的全新剧 情。玩家将扮演斯巴达战士奎托斯,从人间的雅 典一直到冥王哈帝斯的冥府之门,一路朝向地狱 的深渊迈进,体验希腊神话中黑暗且残暴的世 界,并对抗各种传说中的怪物以及强大的头目角 色。 游戏名称:战神Ω奥林匹斯之链/战神Ω奥林帕斯之链 英文名称:God of War:Chains of Olympus 代理发行:SCEA/Ready At Dawn Studios LLC.游戏类型:ACT-Action Game(动作游戏) 制作厂商:SCEA/Ready At Dawn Studios LLC.对应主机:Play Station Portable(PSP) 语言版本:英文(美版)发行日期:2008年03月04日 载体容量:UMD×1参考价格:$:39.99美元 介绍网站点击进入

14小学科学知识与能力训练五年级下册练习册参考答案

2014小学科学知识与能力训练五年级下册练习册参考答案 第一单元沉和浮1物体在水中是沉还是浮探究接力棒一、1.泡沫块充了气的游泳圈塑料玩具石块砖头鸡蛋2.体积轻重二、× √ × 2沉浮与什么因素有关探究接力棒一、√ √ √ 二、BA3橡皮泥在水中的沉浮探究接力棒CBCBB4造一艘小船探究接力棒1.浸入水中的体积增大,更容易浮起来;增加轮船浸入水的体积2.体积大、质量轻、容易上浮5浮力探究接力棒一、浮力乙二、√ √ √ 6下沉的物体会受到水的浮力吗探究接力棒一、√ × √ √ × 二、BC7马铃薯在液体中的沉浮探究接力棒√ √ × √ 8探索马铃薯沉浮的原

因探究接力棒一、√ × 二、AC单元练习一、1.浮力2.轻重体积密度3.物体排开的水量二、√ × 三、选择题BBAB四、往水里放盐改变橡皮泥的形状,增大排开水量第二单元热1热起来了探究接力棒一、热热热二、太阳辐射矿物燃烧物体摩擦2给冷水加热探究接力棒一、不变变大不变变小二、不能。冷水受热时体积会变大,太满容易溢出来浇天火焰发生危险3液体的热胀冷缩探究接力棒一、上升增大下降变小热胀冷缩二、1.铺木地板要留伸缩缝;野外的电线夏天时会粘一起;煮饺子时,饺子鼓起来2.防止热胀损坏包装4空气的热胀冷缩探究接力棒一、1.变大变小2.大二、丘丘球放入热水后变球壁变软,同时内部空气受热膨胀就把凹下去的地方鼓起来了。

5金属热胀冷缩吗探究接力棒1.热胀冷缩2.防止铁轨因热胀冷缩而发生弯曲或断裂3.缩短伸长6热是怎样传递的探究接力棒1.高低2.高低7传热比赛探究接力棒一、铁、铝、铜、金、银玻璃、塑料、棉布、纸、土、空气、陶瓷、木头、水二、言诚理可8设计制作一个保温杯探究接力棒1.独自完成,说明原理即可2.是的。因为保温和冷藏的原理相同,只是目的相反。单元练习一1.热热热2.不良导体散失3.鼓起来凹下去4.不高小不变大5.热胀冷缩6.大7.高低8.高低9.热的良导体热的不良导体10.铁、铝、铜、金、银玻璃、塑料、棉布、纸、土、空气、陶瓷、木头、水11。不锈钢好好二、1.因热胀冷缩,钢制桥梁温度升高时变长,温度下降时变短,放磙子上可防止气温

苏雪林《溪水》阅读题的答案

苏雪林《溪水》阅读题的答案 我们携着手走进林子,溪水漾着笑涡,似乎欢迎我们的双影。这道溪流,本来温柔得像少女般可爱,但不知何时流入深林,她的身体便被囚禁在重叠的浓翠中间。 早晨时她不能更向玫瑰色的朝阳微笑,夜深时不能和娟娟的月儿谈心,她的明澈莹晶的眼波,渐渐变成忧郁的深蓝色,时时凄咽着忧伤的调子,她是如何的沉闷呵!在夏天的时候。几番秋雨之后,溪水涨了几篙;早凋的梧楸,飞尽了翠叶;黄金色的晓霞,从杈枒树隙里,深入溪中;泼靛的波面,便泛出彩虹似的光。 现在,水恢复从前活泼和快乐了,一面疾忙的向前走着,一面还要和沿途遇见的落叶、枯枝??淘气。 一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来游玩,走到半路上,风偷偷儿溜走了,他便一交跌在溪水里。 水是怎样的开心呵,她将那可怜的失路的小红叶儿,推推挤挤的推到一个漩涡里,使他滴滴溜溜的打圆转儿;那叶向前不得,向后不能,急得几乎哭出来;水笑嘻嘻的将手一松,他才一溜烟的逃走了。

水是这样欢喜捉弄人的,但流到坝塘边,她自己的魔难也来了。你记得么?坝下边不是有许多大石头,阻住水的去路?水初流到石边时,还是不经意的涎着脸撒娇撒痴的要求石头放行,但石头却像没有耳朵似的,板着冷静的面孔,一点儿不理。于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,露出雪白的胸臂,肺叶收放,呼吸极其急促,发出怒吼的声音来,缕缕银丝头发,四散飞起。 噼噼啪啪,温柔的巴掌,尽打在石头皱纹深陷的颊边,──她真的怒了,不是儿戏。谁说石头是始终顽固的呢?巴掌来得狠了,也不得不低头躲避。于是水安然渡过难关了。她虽然得胜了,然而弄得异常疲倦,曳了浅碧的衣裳去时,我们还听见她断续的喘息声。我们到树林中来,总要到这坝塘边参观水石的争执,一坐总是一两个钟头。 1.这是一首优美的散文,作者赋予溪水以少女般的性格。请你说说文章先写溪水______________; 再写溪水______________;最后写溪水_________________。(3分) 2.结合文章内容,说说作者笔下的溪水具有怎样的个性特征?(4分)

中学生人际交往中常见的心理问题及心理调适

中学生人际交往中常见的心理问题及心理调适 人际交往即人与人之间的交往。人际交往伴随着人的一生,人的幸福、快乐、成功或痛苦、烦恼、失败,都或多或少的与自身的人际交往状况有关。成功的人际交往是人们生活幸福,学业、事业成功的关键。 而中学时期正是人生发展的关键时期。这一时期,随着身体的发育,他们的自我意识和独立意识逐渐增强。一方面对社会有各种强烈的需求,极力地想表现出自己的力量。另一方面,他们对社会的复杂性缺乏认识,对自身行为的合理性与可能性了解得还不够深刻,加之人生的价值观尚未稳定地建立。因此,他们的愿望与现实有时可能一致,优势有时可能遇到冲突。因而伴随着愿望的实现和落空,情绪也会随之浮动。这种心理发展的不平衡,往往会造成他们在交往心理上的障碍。据调查,目前有28%初中生、55%的高中生存在着交往上的障碍。最典型的表现为以下几个方面: 1.自卑心理:自卑是一种性格上的缺陷,来源于心理学上的一种消极的自我暗示。自卑是中学生的大忌,有自卑心理的同学,在人际交往中总认为自己不行,缺乏自信,总是想象成功的经验少,失败的经验多,丧失了交往的勇气和信心。 2.自傲心理:与自卑心理相反,自傲心理表现在交往中是不切实际地对自己作高度评价,在他人面前盛气凌人,自以为是,甚至不愿与人交往,常常使别的同学处在难堪、窘境中。 3.自私心理:在交往中,以自己为中心,以满足自己的欲望为目的,不顾他人利益和需求,常常引起同学的不满和反感,影响交往的产生和发展。怎么在当前独生子女占多数的中学生中,是较为普遍的一种心理。 4.恐惧必理:在交往中,特别是在大庭广众面前,不由自主地感到紧张、担心和害怕,以至手足无措,语无伦次,严重的会发展为交往恐惧症。 5.封闭心理:具有封闭心理的同学主要有两种:一是害怕别人算计自己,而把自己封闭起来,不敢与人交往。二是学习时间太紧,无暇与人交往,颇有点“两耳不闻窗外事,一心只读圣贤书”的味道。这种心理严重者对任何人都不信任,怀有很深的戒备心理,从此也就隔绝了人际交往。 6.害羞心理:害羞心理有较大的普遍性。中学生在交往中过多地约束自己的言行,表情羞涩,神情不自然,往往不能充分表达自己的思想感情,成为交往中的被动者,从而使他们失去许多社会交往和比较的机会,推动他人的鼓励以及自我进取的动力。 7.嫉妒心理:这种病态心理比较常见,是对他人所取得的地位、名誉、成绩、进步等的一种不服气、不友好,甚至是敌对的情感,是由一种想保住自己的优越地位而极力要排除他人优越地位的心理倾向。嫉妒给自己带来的不是上进,而是忌惮、愤恨和人际关系的不和谐。8.猜疑心理:表现为在交往过程中,自我牵连倾向太重,长期处于“疑神疑鬼”的情绪生活中,对他人的言行过分敏感,多疑、不信任,往往陷入痛苦和焦虑之中。 9.逆反心理:逆反心理是中学生日益增强的独立性和闭锁性,与家长和教师闹对立而形成的。这种心理表现为对所交往同学的言行举止不加分析地批判、对抗和抵制,使双方关系紧张,致使同学之间的交往难以顺利进行。 10.干涉心理:干涉心理表现为对别的同学的事情过分关心,表现为以打听、传播和干预别人的私事、私密为乐趣,从而引起别人的不满和厌恶,影响同学之间的关系。 以上不良心理并非彼此孤立,而往往是相互交错,相互作用不同的交往过程中。中学生日常学习生活中出现一些人际交往困难和不适应是难免的,而对这些青少年的不良交往心理,在加强青少年心理健康教育的同时,必须从调节交往认知结构和学习交往技能两方面着手。首先要求中学生必须端正交往态度,纠正不良认知,树立正确的交往观念。 1.树立平等交往的观念。每个人都是独立的有理性的主体,都有自己的尊严。在交往中,不管性别、家庭条件、地位、学习成绩如何,都是平等的主体,而无尊卑优务之分。这

《战神的挑战2》图文流程攻略

《战神的挑战2》图文流程攻略 事情还没有结束,在更深的地下有人知道Laurella母亲的情况,打开通往下面的门离开地下墓穴的世界我们进入了地精实验室。 这扇巨大的金门在其他3个地方上锁了,分别拉下这3个地方的闸门。

石器时代的食人魔,有铁头功技能:造成20伤害并震晕一回合,附加当前对方蓝魔法数值的伤害。

来自希腊神话故事的人身牛头怪守卫第一道闸门的开关,战斗时你的武器会被替换成一件“斗牛士的披风”(需要8行动点数),它的作用是防止被神牛冲倒。神牛的冲刺技能:造成10的伤害并击倒对方5个回合。另一个技能Gore:造成5的伤害,如果对方处于击倒状态则附加25点的伤害。 [pagesplitxx][pagetitle][/pagetitle] 这只枭守卫着南方闸门的开关,没有什么特殊的能力。

西方闸门开关由著名的美杜莎驻守,除了石化技能之外,它的毒武器造成14*8(回合)的伤害并给自己增加10的防御。其他生命和防御都较低,不难对付。拉下第三个开关,任务更新:逃离地精实验室。

看起来暴乱已经激怒了堕落的精灵,精灵boss和它的两个手下以及一个巨大的钢铁侠一起出现在这里。一番嘘寒问暖之后站在最前面的精灵族战士手持双刀前来切磋,解决掉开胃菜之后,对上身后那位女性战法师。她有一个Mirror Shield技能:将对方的防御值全部吸到自己身上,持续10+1/8自身蓝魔法的回合,而她初始防御就有47,所以使用该技能后基本上防御值超过100,注意使用减防技能。另一个Dark Blast技能如果紫色魔法多的话伤害也会很高,而且只消耗3的红色魔法。

相关文档
相关文档 最新文档