文档库 最新最全的文档下载
当前位置:文档库 › 超声成像新技术的物理声学基础及其应用

超声成像新技术的物理声学基础及其应用

超声成像新技术的物理声学基础及其应用
超声成像新技术的物理声学基础及其应用

超声成像新技术的物理声学基础及其应用

90年代以来,由于电子计算机容量和功能的提高,数字化技术的引入,以及各种信号处理、图像处理和控制技术的应用,医学超声成像新技术、新设备、新方法层出不穷。本文就腹部超声诊断中常用的主要新技术的物理声学基础、临床应用现状及发展前景等问题作一简要阐述。

1 与提高图像质量有关的超声成像新技术

1.1 频谱合成成像频谱合成成像即频率转换技术

(frequency convert technology,FCT)[1]。组织在超声声场的作用下,当超声波满足小振幅条件时,声源与其声场之间为线性关系,即无论在声场的任何距离上,介质质点都重复声源的振动规律,但当超声波不满足小振幅条件,而具有一定振幅(有限振幅,达到有限振幅的波为有限振幅波)时,随传播距离的增加,由于有限振幅波的传播速度不是常数,而与介质的非线性参量及质点的振速有关,致使波形发生畸变,波形的畸变必然伴随谐波的产生。当声源发射的不是单频的超声波,而是以f0为主频、具有一定频宽的超声脉冲时,经声场介质作用后,将产生具有多重频率的回波信号,且其频谱与声源发射者不同,即实现了频率转换。从成像的观点来说,回波信号中频率成分利用得越充分,图像质量就越好。利用超宽频探头、数字化处理和超大容量计算机,可将回波信号分解为多个频带进行并行处理,然后再按频谱合成为最后的信号,因此亦称为频谱合成成像,由此获得的图像分辨率更高,对比度更大,噪声伪像更低。

1.2 二次谐波成像 1995年以来,二次谐波成像(second harmonic imaging,SHI)

技术逐步趋于成熟,近几年开始用于心外脏器和组织的检查[2]。应用于临床的谐波成像分自然组织谐波成像(native tissue harmonic imaging,NTHI)和造影剂谐波成像(contrast agents harmonic imaging,CAHI)两种。

(1)物理声学基础:如前所述,当超声波不满足小振幅条件时,在组织中,随传播距

离的增加,必然有谐波成分产生,但组织的谐波信号微弱,主要反射(大界面产生反射)和散射(小界面产生散射)基波。声学造影剂多为含气体微泡的液体物质,这些微泡构

成了液体的“空化核”,在超声场作用下,微泡除常规散射基波外,尚发生运动而再“发射”超声波,回波频率与发射波频率(即基频fundamental frequency)的关系在外加声压较弱时为线性关系,明显的振动为基频共振,产生以基频为主的一次谐波,二倍和三倍于基频的二次和三次谐波稍有显示。随着外加声压的不断增加,则会出现非线性复杂运动,相继出现高次谐振,分谐振,高次分谐振等。诊断用超声声压较弱,组织和造影剂微泡除反射和散射基波外,主要产生较弱的二次和更弱的三次谐波。传统的超声仪只接收基波信息成像,二次谐波成像时,仪器通过带通滤波,只提取二次谐波信号进行成像。无造影剂存在时,二次谐波信号来自组织,称自然组织谐波成像,有造影剂存在时,二次谐波信号主要来自造影剂微泡,称造影剂谐波成像。由于二次谐波可提高图像的侧向分辨力,且随着谐波信号的增强,反射回声的长度逐渐减小,图像的轴向分辨力随之提高,同时随谐波信号增强,旁瓣作用减弱,Clutter亦减少,上述几方面因素使图像质量得以明显提高。由于造影剂微泡与周围组织声学特性的差异较大,因此比周围组织质点有更大的等效散射面积,加上微泡谐振引起的共振散射,故来自造影剂微泡的二次谐波信号较强,因此,造影剂谐波成像在临床上应用更广。

(2)临床应用:目前大多数中高档超声诊断仪均具谐波成像功能。自然组织谐波成像对不适宜声学造影或经济困难的肥胖患者深部病变的观察可首先考虑使用。造影剂谐波成像时,可使组织回声明显增强,该技术已广泛用于心脏病变的诊断与鉴别诊断。吴瑛等对比分析了基波显像和谐波显像在诊断胆总管下段——胰腺区域病变中的价值,结果表明,谐波显像能更清晰显示该区域病灶。此外,随着第三代声学造影剂的研制成功,造影剂已能到达心外脏器,实现心外脏器造影,增强实质脏器的二维图像和多普勒信号,造影剂谐波成像技术为研究组织的血流灌注提供了更加可靠的手段,有助于腹部脏器病变的诊断与鉴别诊断。

1.3 能量造影谐波成像技术

能量造影谐波成像(power contrast agent harmonic imaging,PCAHI)[3]在接收返回的谐波信号时,主要对回波的功率(振幅)信息进行分析处理,并利用该信息进行成像。PCAHI提高了谐波对造影剂的敏感性,尤其对微小颗粒的灵敏度更高,对细小病变显示更清楚,因此有利于病变的早期诊断。此外,由于造影剂和组织均具有谐波特性,而能量造影谐波成像时,血管内造影剂的功率谐波成分远远强于组织的功率谐波成分,因此,少量的造影剂即可使血流信息从组织中分离出来。

1.4 脉冲反向谐波成像

脉冲反向谐波成像(pulse inversion harmonic imaging,PIHI)[4]是二次谐波领域的又一重大突破。常规的谐波成像(conventional harmonic imaging,CHI)是仪器在接收回波信号时,使用滤波器滤掉基波成分,只接收谐波成分。这一技术的不足在于滤波器在滤掉基波的同时也滤掉同波段内的部分谐波信号,故在某种程度上减少了造影剂的灵敏度和饱和度。为克服这一缺点,ATL公司推出了脉冲反向谐波成像技术。该技术是系统在发射正向脉冲波的同时发射一个相同的反向脉冲波,并全数字化存储返回的基波信号和谐波信号,经处理使正向和反向的基波信号叠加而抵消,而结合谐波成分产生纯净的宽频谐波信号,克服了常规谐波成像频带的局限性,提高了图像的分辨率,并可减少造影剂的用量。

1.5 组织多普勒成像

一般多普勒回波信号中,既包括血流中散射粒子的散射信息,又包括运动器官的反射信息,前者的特点是运动速度快,产生的多普勒频移大,但幅度较小;而后者则速度慢,频移小,但幅度大。利用高通或低通壁滤波器(wall filter),可分别提取血流或器官的相应信息。常规多普勒成像采用高通壁滤波器,提取血流的多普勒信号,组织多普勒成像(tissue Doppler imaging,TDI)则采用低通壁滤波器,单独提取运动器官的低速多普勒信息,并以适当参数予以显示[5,6]。目前诊断仪的TDI 显示有速度(velocity)、加速度(acceleration)、分散度(variance)和能量(power)图像等,这些参数均可以彩色编码进行伪彩色显示。

2 与组织定征有关的超声成像新技术

2.1 超声背向散射积分成像声学密度定量分析是通过定量地分析某些声学参数来研究组织特性以达到组织定征的目的。超声背向散射积分成像(integrated backscatter,IBS)技术作为声学密度定量分析新技术,为组织原始回声信号的定量分析提供了新方法。

2.1.1 传统的声学密度定量分析法即视频分析法。

组织的回声信号经传统成像方式形成二维灰阶图,视频分析法即对该灰阶图的灰阶分级水平及其分布进行分析,方法有:①灰阶直方图;②计算机定量分析

回声的灰阶值及其分布;③纹理参数分析。由于视频信号是组织的回声信号经处理(检波、对数压缩等)后所得的信号,并非组织的原始回声信号,其受动态范围的限制,信号被压缩并有丢失,因此,从严格的定量角度讲,视频分析法并非真正的声学密度定量分析方法,由于影响视频信号的因素太多,所得结果不可靠,故有人称之为半定量研究。

2.1.2 超声背向散射积分成像技术

(1)超声背向散射原理[7]:由声源来的超声波在介质中传播时,若遇到两种具有不同声阻抗的介质(声阻抗差大于0.1%)所形成的界面,且界面大于超声波波长时产生反射,若界面远远小于超声波波长,则产生散射。散射是各向性的,朝向探头的散射即为背向散射,能为探头所接收。

(2)背向散射积分技术:探头所接收的背向散射信号与同时接收的反射信号相比是非常微弱的,故在经传统成像方式形成的二维图像上,由大界面来的反射回声表现为高回声,如脏器的包膜回声、血管壁回声及大的组织结构回声等,而由微小界面来的散射回声则表现为弱回声或无回声,如脏器实质回声为弱回声,血液、胆汁尿液等为无回声。然而由于背向散射信号来源于组织的微细结构,其更能反映组织的结构特性。为了有效的提取和分析微弱的背向散射信号,近几年来一种以背向散射原理为基础的超声成像技术——背向散射积分成像技术得到了较快的发展。

探头接收人体组织的回声信号,超声仪将各界面来的信号经放大、滤波,并进行各信号的延迟合成得到射频信号(组织回波的原始信号),若将射频信号经检波并输入视频处理器处理(对数压缩、数字扫描转换等)后,再输入显示器显示,则形成常规的二维图像。背向散射积分技术是通过特制的时间门控电路[8],在射频信号被处理前,提取相关区域(取样容积内)的射频信号,并将其功率谱与一理想平面反射器的回声信号功率谱相比,取其有效频率范围进行积分,单位为分贝(dB),并将积分值显示出来。目前具有该技术的仪器均为联机分析系统,一旦取样,仪器将自动报出感兴趣区域局部背向散射积分值。

(3)常用测量指标[9]:背向散射积分技术的声学参数为背向散射积分值,包括:

①图像峰-峰强度(peak to peak intensity,PPI);②图像平均强度(average image intensity,AII);③图像强度标准差(standard deviation of image intensity,SDI)。PPI即取样容积内最强与最弱射频信号强度之差,AII与SDI即为取样容积内所有射频信号强度的平均值与标准差,单位均为分贝(dB),最常用者为AII。在心脏研究中常用的指标有:①心肌背向散射

积分值(IBS)。由于个体差异,现多采用标化(校正)背向散射积分值(IBS%),以舒张末期心包的IBS值为100%,检测区IBS值与其相比即为IBS%;②心动周期心肌背向散射变化幅度(cyclic variation of integrated back scatter,CVIB)为心动周期中心肌IBS变化差值,是反映心肌运动的活性指标;③跨壁背向散射积分梯度(transmural gradient of IBS,TGIBS),为心内外膜下1/2处心肌IBS值之比。

(4)测量方法:具有IBS分析功能的超声诊断仪均具有联机自动测量及显示功能。HP 5500在AQ设置下,对二维图像的感兴趣区取样后启动Sample-data键,仪器将在2.48s内自动测值62次,并以三种方式显示测量结果:①实时动态分析图:标记在测量的时间相位;②测值表:以表格形式显示测量结果;③坐标图:以坐标形式显示测量结果,可联机或脱机分析。

(5)应用:背向散射积分技术在腹部脏器的应用研究较少且不深入,顾再荣等[10]用该技术研究尿毒症,显示尿毒症患者肾实质IBS%明显高于正常人,晚期尿毒症患者肾实质IBS%显著升高,因此认为背向散射积分值能反应肾实质病变。笔者在动物实验及临床研究中发现,急性肾小管坏死性急性肾功能衰竭时肾皮质IBS明显升高,肾髓质IBS改变不明显;各种慢性肾病晚期肾实质(包括皮质和髓质)IBS明显升高,而肾脏病变早期肾实质IBS无明显改变。由于该技术在腹部脏器病变诊断中的研究较少,其临床应用价值有待进一步探讨。

2.2 声参量成像此技术临床应用尚不普及,有的还处于理论阶段,因此本节仅简单讲述其物理声学基础。

(1)组织特性成像:组织特性成像(tissue statistic imaging,TSI)[1]目前主要是对组织的弹性参数(coefficient elasticity)及其分布进行测量和成像。其原理是利用特殊设计的声源(如聚焦调制或双束相交等)产生的低频间断性辐射力对待测组织进行激励(impulse),测量其动态位移,据此计算出相应的应变,知道了应力和应变,就可求出其弹性参数,最后将组织的这种弹性参数以彩色或灰阶编码显示为声弹性图(sonoelastogram)。最近已有关于软组织切变模量分布及其成像的研究报道。这一新技术在组织定征、病变鉴别及器官老化诊断等方面,可能具重要的潜在应用价值。

(2)非线性声参量B/A成像:B/A是描绘声波非线性效应的声学参量之一,是声波通过介质时产生非线性效应大小的一个量度,将B/A参量作为成像特性量进行的成像即B/A声参量成像[1]。研究发现,此参量与其他线性声参量相比,对组织特性的变化特别敏感,已有研究表明,软组织中密度和声速等参量的差异小5%,而B/A参量的差

异则可达50%,而且造影剂中微泡的共振还导致非线性参量B/A值的急剧增加,可比正常组织的B/A值高出数百倍。因此,将B/A声参量成像与超声造影技术结合,可望为超声组织定征和早期非占位性癌变的诊断开辟新的途径。但是,由于B/A参量不能在一般B超上用脉冲回波法直接测得,必须采用特殊发射波型,专门的信号提取和处理技术,并对接收数据进行换算和反演,才能重建出B/A值随位置分布的断面图像,即B/A参量的超声层析(CT)成像技术。目前该技术在理论及方法学上已较为成熟,但关于成像装置、重建软件的设计以及实时成像与显示等问题尚有待解决。

(3)声速及声衰减参量成像:声速及声衰减参量成像是以超声波在介质中的传播速度或超声波通过介质时的声衰减量为成像特性量进行成像的技术[11,12]。最近问世的新型设备UBIS 3000骨扫描仪能同时测量超声波在骨中的传播速度和声衰减量,并具有骨质测定成像系统,克服了以往无图像而造成取样的盲目性。国内外已有利用该技术诊断临床病例的报道[13]。声速及声衰减参量成像也有助于超声组织定征和早期非占位性癌变的诊断。

人教版八年级物理上册《声音的特性》基础训练

《声音的特性》基础训练 一、选择题(本大题共10小题,共100.0分) 1.(10分)一曲《梁祝》哀婉动听,用小提琴或钢琴演奏能呈现不同的特点,你能区分出是钢琴还是小提琴,主要是依据声音的() A.音调B.响度C.音色D.节奏 2.(10分)如图所示,小演员们演奏古筝时,手指不停地在弦上不同位置按下,这主要是 为了改变声音的() A.音调B.响度C.振幅D.音色 3.(10分)音叉也是一种乐器,甲音叉每分钟振动12000次,乙音叉每秒钟振动600次,则甲的() A.音调高B.音调低C.响度大D.响度小 4.(10分)如图所示,8个相同的水瓶中灌入不同高度的水,分别用嘴吹瓶口,可以发出“1、 2、3、4、5、6、7、”的声音来。这些声音产生的原因和决定音调的因素分别是() A.瓶内空气振动,用力的大小 B.水振动,瓶内空气柱的高度 C.水振动,水的高度 D.瓶内空气振动,瓶内空气柱的高度 5.(10分)2018年春节,泰安市举行了丰富多彩的联谊活动,丰富了群众生活。观众能区别出不同的演员发出的声音,主要是根据他们发出的声音有不同的() A.响度B.音色C.音调D.三者皆有6.(10分)12月28日我校管乐团在新年音乐会上奉献了一场精彩的演出,下列说法正确的是() A.钢琴上的黑白键弹奏是音调不同 B.高低音部指的是响度不同的音部

C.鼓手时重时轻敲击鼓面改变了鼓声的音色 D.我们根据音调来辨别不同的乐器 7.(10分)如图所示,湘西苗族的“鼓舞”是国家首批非物质文化遗产,该舞是围绕“苗鼓”展开的。下列说法正确的是() A.鼓手敲鼓的频率越快,鼓声的响度越大 B.鼓手敲鼓的力量越大,鼓声的音调越高 C.距离苗鼓越近,听到的鼓声的频率越高 D.有经验的人听下鼓声,就能区别是“苗鼓”还是其它地区鼓,是因鼓的音色不同8.(10分)调节手机的音量按键是为了改变声音的() A.频率B.响度C.音调D.音色 9.(10分)老师敲击了一下音叉,同学们发现,音叉在一段时间内都能发出声音,但响度逐渐变小,原因是() A.有回声 B.音叉还在振动,振幅变小 C.音叉已停止振动,空气还在振动 D.音叉还在振动,振幅不变 10.(10分)对于以下声现象的解释错误的是() A.“悦耳动听”说明声音的音色好 B.图书馆中要求保持安静说明要求声音的响度小 C.“怕得鱼惊不应人”说明水可以传声 D.“闻其声知其人”说明可以根据音调来辨别来人

声学基础试题

一、 名词解释(3分×4=12分) 自由振动――系统只在弹性力作用下的振动。 临界入射――入射角等于临界角时的声波斜入射。 声功率――单位时间内通过垂直于声传播方向的面积S 的平均声能量。 体应变――在外力作用下,介质体积的变化率。 二、 填空(1分×23=23分) 1、 对于强迫振动系统而言,当外力频率__等于___系统固有频率时,系统的 振动速度出现__共振现象__。 2、自由振动系统的固有频率 。 3、由于阻尼力的作用,使得衰减振动系统的固有频率__低于__自由振动系统的固有频率。 4、声波在两种流体分界面上产生反射、折射时,应满足边界条件。即分界面两侧介质内声场的__声压_________、____质点振动速度____在分界面上____连续_______。 5、声波在两种流体分界面上产生反射、折射时,声功率的反射系数与折射系数之和___1_____。 6、声波在两种流体分界面上产生临界斜入射的条件是___入射波速度v1小于折射波速度v2__,临界入射角为___12arcsin()v v θ=___。 7、一维情况下理想流体媒质中的三个基本方程分别为__运动方程_、 ____连续性方程__、____物态方程_____。 8、媒质的特性阻抗(即波阻抗)等于_媒质声波速度与媒质密度的乘积。 9、两个同相小球源的指向特性__sin(2)()2sin() k D k θ?=?__。 10、辐射声波波长为λ,间距为l 的n 个同相小球源组成的声柱的主声束的角宽度_2arcsin()nl λ θ=__。

11、均匀各向同性线弹性介质的正应力与正应变的关系___2ii ii T λθμε=+_;切应力与切应变的关系__jj jj T με=_。 12、根据质点振动特点,薄板中的兰姆波可分为___对称型_和____非对称型两类。 13、根据瑞利波和兰姆波的周期方程可知,瑞利波的速度与频率___无关__,是无频散波;而兰姆波相速度与频率___有关__,是__频散波_。 三、 判断并改错(2分×7=14分) 1、 在无限大介质中传播的波称为瑞利波。错误 沿无限大自由表面传播的波称为瑞利波。 2、 当考虑弹簧质量时,自由振动系统的固有频率增大。错误 当考虑弹簧质量时,自由振动系统的固有频率降低。 3、 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动位移出现共振现象。 错误 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动速度出现共振现象。 4、 衰减振动的衰减系数δ与系统所受的阻力系数Rm 、振子质量Mm 成反 比。错误 衰减振动的衰减系数δ与系统所受的阻力系数成正比,与振子质量成反比。 5、 声场对小球源的反作用力与小球源的辐射阻抗、表面质点振动速度的 关系为 r r F Z u =- 正确 6、 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射 系数之和等于1。 错误 声波在两种流体分界面上发生反射、折射时,声功率的反射系数与折射系数之和等于1。 或 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射系数之和不一定等于1。

声学基础课后题答案

声学基础(南京大学出版社) 习题1 1-1 有一动圈传声器的振膜可当作质点振动系统来对待,其固有频率为f ,质量为m ,求它的弹性系数。 解:由公式m m o M K f π21 =得: 1-2 设有一质量m M 用长为l 的细绳铅直悬挂着,绳子一端固定构成一单摆,如图所示,假设绳子的质量和弹性均可忽略。试问: (1) 当这一质点被拉离平衡位置ξ时,它所受到的恢复平衡的力由何产 生?并应怎样表示? (2) 当外力去掉后,质点m M 在此力作用下在平衡位置附近产生振动,它 的振动频率应如何表示? (答:l g f π21 0=,g 为重力加速度) 图 习题1-2 解:(1)如右图所示,对m M 作受力分析:它受重力m M g ,方向竖直向下;受沿 绳方向的拉力T ,这两力的合力F 就是小球摆动时的恢复力,方向沿小球摆动轨迹的切线方向。 设绳子摆动后与竖直方向夹角为θ,则sin l ξθ= 受力分析可得:sin m m F M g M g l ξ θ== (2)外力去掉后(上述拉力去掉后),小球在F 作用下在平衡位置附近产生摆动,加速度的方向与位移的方向相反。由牛顿定律可知:22d d m F M t ξ=- 则 22d d m m M M g t l ξξ-= 即 22d 0,d g t l ξξ+= ∴ 20g l ω= 即 0f = 这就是小球产生的振动频率。

1-3 有一长为l 的细绳,以张力T 固定在两端,设在位置0x 处,挂着一质量m M ,如图所示,试问: (1) 当质量被垂直拉离平衡位置ξ时,它 所受到的恢复平衡的力由何产生?并应怎样 表示? (2) 当外力去掉后,质量m M 在此恢复力作用下产生振动,它的振动频率应如何表示? (3) 当质量置于哪一位置时,振动频率最低? 解:首先对m M 进行受力分析,见右图, (0x ??ε ,2022020220)()(,x l x l x x -≈+-≈+∴εε 。) 可见质量m M 受力可等效为一个质点振动系统,质量m M M =,弹性系数)(00x l x Tl k -=。 (1)恢复平衡的力由两根绳子拉力的合力产生,大小为ε)(00x l x Tl F -=,方向为竖直向下。 (2)振动频率为m M x l x Tl M K )(00-==ω。 (3)对ω分析可得,当20l x = 时,系统的振动频率最低。 1-4 设有一长为l 的细绳,它以张力T 固定在两端,如图所示。设在绳的0x 位置处悬有一质量为M 的重物。求该系统的固有频率。提示:当悬有M 时,绳子向下产生静位移0ξ以保持力的平衡,并假定M 离平衡位置0ξ的振动ξ位移很小,满足0ξξ<<条件。 图 习题1-4 图 习题1-3

肺部超声的临床应用及研究进展

Advances in Clinical Medicine 临床医学进展, 2018, 8(7), 632-637 Published Online September 2018 in Hans. https://www.wendangku.net/doc/bb2434224.html,/journal/acm https://https://www.wendangku.net/doc/bb2434224.html,/10.12677/acm.2018.87106 Advances in the Clinical Application of Lung Ultrasonography Songfei Wu Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian Liaoning Received: Sep. 4th, 2018; accepted: Sep. 18th, 2018; published: Sep. 25th, 2018 Abstract With the development of ultrasonic technique, lung ultrasonography has become an important tool for early diagnosis, dynamic assessment and follow-up of various lung diseases around all kinds of people. This review summarizes the advances in the clinical application of lung ultraso-nography. Keywords Lung Ultrasonography, Lung Diseases, Lung Ultrasound Score, Intensive Care Unit, Children 肺部超声的临床应用及研究进展 吴松霏 大连医科大学附属第二医院麻醉科,辽宁大连 收稿日期:2018年9月4日;录用日期:2018年9月18日;发布日期:2018年9月25日 摘要 近年来随着超声技术的不断发展,肺部超声已成为多种肺部疾病早期诊断、动态评估及病情随访的重要工具,广泛应用于各种人群。本文就肺部超声的临床应用及研究进展作一综述。 关键词 肺部超声,肺疾病,肺部超声评分,重症监护病房,儿童

噪声污染控制工程习题题目练习

噪声复习题及参考答案 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(第三册噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 5、国标(GB-9660-88)《机场周围飞机噪声环境标准》和国标(GB-9661-88)《机场周 围飞机噪声测量方法》 6、环境监测技术基本理论(参考)试题集,中国环境科学出版社 7、环境噪声电磁辐射法规和标准汇编(上册),北京市环境辐射管理中心 一、填空题 1.测量噪声时,要求气象条件为:无、无、风力 (或)。 答:雨雪小于5.5米/秒(或小于四级) 2.从物理学观点噪声是指;从环境保护的观点,噪声是指。 答:频率上和统计上完全无规则的声音人们所不需要的声音 3.噪声污染属于污染,污染特点是其具 有、、。 答:能量可感受性瞬时性局部性 4.环境噪声是指,城市环境噪声按来源可分为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声其它噪声 5.声压级常用公式L P= 表示,单位。 答:L P=20 lgP/P°dB(分贝) 6.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计 为,一般用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得

7.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在Hz 范围内必定有峰值。 答:低频高频2000-5000 8.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比为;工程频谱测量常用的八个倍频程段是Hz。 答:2 21/363,125,250,500,1k,2k,4k,8k 9.由于噪声的存在,通常会降低人耳对其它声音的,并使听 阈,这种现象称为掩蔽。 答:听觉灵敏度推移 10.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 11.我国规定的环境噪声常规监测项目为、 和;选测项目有、 和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声夜间道路交通噪声高空噪声 12.扰民噪声监测点应设在。 答:受影响的居民户外1米处 13.建筑施工场界噪声测量应在、、、四个施工阶段进行。 答:土石方打桩结构装修 14.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 15、声压级的定义公式为。其中P0代表声压,它的值是。如有一个噪声的声压是20帕,声压级是分贝,给人的感觉是。2×10-2帕的声压其声压级是分贝。 答:L P=20 lgP/P°基准2×10-5120 疼痛60 16、可听声的频率范围是HZ至HZ次声的频率小于H

超声技术在医学的发展及应用

超声技术在医学的发展及应用 摘要: 随着声学原理和电子计算机科学的迅速发展,医学超声影像学的新技术层出不穷,从B型、M型、彩色多普勒超声发展到三维、声学造影、血管内超声等多种技术,极大地拓展了超声影像学的临床应用范围,几乎包括对所有疾病的超声诊断、结构成像和运动成像,医学超声诊断技术已成为临床诊断中必不可少的甚至是首选的方法。 关键词:超声;影像学;临床应用 医学超声诊断技术产生于20世纪40年代,其发展主要依赖于声学原理、探头技术、电子电路、计算机技术、实验研究及临床应用的紧密配合。由于其操作无创伤及对患者无电离辐射损伤而深得医学界推崇。目前医学超声影像学的新技术层出不穷,诸如三维超声成像、谐波成像、腔内超声已广泛应用于疾病诊断、治疗和预后评估。现对医学超声的进展和临床应用作一综述。 1 医学超声技术的发展及其临床应用 1.1 二维超声成像 B型超声应用回声原理,即发射脉冲超声进入人体,然后接受各层组织界面的回声作为诊断依据。由于B超能直观地显示脏器的大小、形态、内部结构,并可将实质性、液性或含气性组织区分开来,故医生根据得到的一系列人体切面声像图进行诊断。它所构成的二维(2D)实时动态图像具有真实性强、直观性好、无损伤、操作方便等优点,目前应用最广泛。主要用于心脑血管疾病、腹部脏器损伤、肿瘤、儿科和妇产科疾病及其它疾病的诊断。如二维超声诊断感染性心内膜炎时可清楚地观察到心内膜赘生物的形状大小及部位,检查率达80%~100%,特异性达80%以上,还可以发现腱索断裂瓣周脓肿、心包积液等并发症[1]。但二维超声对含气空腔(胃、肠)和含气组织(肺)以及骨骼显示不清,还由于切面范围和扫查深度有限,对病变所在脏器或组织的毗邻结构显示不清。 1.2 三维超声成像三维(3D)超声成像的基本原理主要有立体几何构成法、表现轮廓提取法和体元模型法。3D超声成像的基本步骤是利用二维超声成像的探头,按一定的空间顺序采集一系列的2D图像存入3D重建工作站中,计算机对按照某一规律采集的2D图像进行空间定位,并对相邻切面之间的空隙进行像素补差平滑,形成一个3D立体数据库,即图像的后处理,然后勾划感兴趣区,通过计算机进行3D重建,将重建好之3D图像在计算机屏幕上显示出来。3D超声成像技术包括数据获取、三维图像重建和三维图像的显示。1961年Baum和Greewood最先提出3D超声的概念,但其后的30年发展比较缓慢。近十年来,随着计算机技术与超声影像技术的不断发展,3D超声成像技术已由实验研究阶段走向临床应用阶段[2],可分为(1)静态3D:收集一定数量的2D图后作3D组图,然后作各种3D显示,其中又分脏器实质3D和血管流道3D。(2)动态 3D:在不同时间点取不同空间的多幅2D图输入存储,然后用心电统一时间点,将原不同时间中取得的图形作3D组图,依心电图时间序列组图后回放。目前在心脏、妇产科、小器官、

2014年海南中考物理试题及答案

海南省2014年初中毕业生学业考试 物理科试题 特别提醒: 1.请将答案写在答题卡上,写在试题纸上无效。 2.请在考试前阅读考试的有关说明。 3.请合理分配答题时间。 一、选择题(共10小题,每小题3分,共30分) 1.列能源中属于可再生能源的是 A.石油B.天然气C.太阳能D.核能 2.中考期间跳广场舞的阿姨为了减弱噪声,自觉把音响的音量调小,这种控制噪声的途径A.在声源处B.在传播过程中C.在人耳处D.在声源和人耳处 3.下列物体中,通常情况下属于绝缘体的是 A.铁线B.人体C.铅笔芯D.塑料尺 4.内燃机工作时,将内能转化为机械能的冲程是 A.吸气冲程B.压缩冲程C.排气冲程D.做功冲程 5.下列现象中,由于光的折射形成的是 A. 小孩在平面镜中的像B. 水中的筷子向上翘

C. 山羊的影子 D. 白鹭在水中的倒影第5题图 6.下列关于新材料及信息传递的说法中,正确的是A.超导体主要用于制作电饭锅等电热器 B.半导体可用来制作LED灯的发光二极管 C.移动电话(手机)利用超声波传递信息 D.声呐利用电磁波传递信息 7.下列工具中,使用时属于费力杠杆的是 A.核桃夹B. B.羊角锤 C. C.筷子 D. D.起子 第7题图 8.下列做法中,符合安全用电要求的是 A.在一个插座上同时使用多个大功率用电器 B.电冰箱、洗衣机等用电器使用三角插头 C.家庭电路中,控制灯泡的开关装在零线上 D.家用电器起火时,先灭火后切断电源 9.如图是探究凸透镜成像规律时观察到的现象,下列光学仪器中成像原理与其相同的是 第9题图 A.放大镜B.幻灯机C.照相机D.近视眼镜10.如图,在探究磁生电的实验中,能产生感应电流的操作是

声学基础课后习题详解

习题1 1-1 有一动圈传声器的振膜可当作质点振动系统来对待,其固有频率为f ,质量为m ,求它的弹性系数。 解:由公式m m o M K f π 21= 得: m f K m 2)2(π= 1-2 设有一质量m M 用长为l 的细绳铅直悬挂着,绳子一端固定构成一单摆,如图所示,假设绳子的质量和弹性均可忽略。试问: (1) 当这一质点被拉离平衡位置ξ时,它所受到的恢复平衡的力由何产生?并应怎样表示? (2) 当外力去掉后,质点m M 在此力作用下在平衡位置附近产生振动,它的振动频率应如何表示? (答:l g f π 21 0= ,g 为重力加速度) 图 习题1-2 解:(1)如右图所示,对m M 作受力分析:它受重力m M g ,方向竖直向下;受沿绳方向的拉力T ,这两 力的合力F 就是小球摆动时的恢复力,方向沿小球摆动轨迹的切线方向。 设绳子摆动后与竖直方向夹角为θ,则sin l ξ θ= 受力分析可得:sin m m F M g M g l ξ θ== (2)外力去掉后(上述拉力去掉后),小球在F 作用下在平衡位置附近产生摆动,加速度的方向与位 移的方向相反。由牛顿定律可知:22d d m F M t ξ =- 则 22d d m m M M g t l ξξ-= 即 22d 0,d g t l ξξ+=

∴ 2 0g l ω= 即 01,2πg f l = 这就是小球产生的振动频率。 1-3 有一长为l 的细绳,以张力T 固定在两端,设在位置0x 处,挂着一质量m M ,如图所示,试问: (1) 当质量被垂直拉离平衡位置ξ时,它所受到的恢复平衡的 力由何产生?并应怎样表示? (2) 当外力去掉后,质量m M 在此恢复力作用下产生振动,它 的振动频率应如何表示? (3) 当质量置于哪一位置时,振动频率最低? 解:首先对m M 进行受力分析,见右图, 0)(2 2 02 2 00=+-+--=ε ε x x T x l x l T F x (0x ??ε ,2022020220)()(,x l x l x x -≈+-≈+∴εε 。) 2 2 2 2 0)(ε ε ε ε +++-=x T x l T F y x T x l T ε ε +-≈ ε) (00x l x Tl -= 可见质量m M 受力可等效为一个质点振动系统,质量m M M =,弹性系数) (00x l x Tl k -= 。 (1)恢复平衡的力由两根绳子拉力的合力产生,大小为ε) (00x l x Tl F -= ,方向为竖直向下。 (2)振动频率为m M x l x Tl M K )(00-== ω。 (3)对ω分析可得,当2 0l x = 时,系统的振动频率最低。 1-4 设有一长为l 的细绳,它以张力T 固定在两端,如图所示。设在绳的0x 位置处悬有一质量为M 的重物。求该系统的固有频率。提示:当悬有M 时,绳子向下产生静位移0ξ以保持力的平衡,并假定M 离平衡位置0ξ的振动ξ位移很小,满足0ξξ<<条件。 图 习题1-3

安徽省芜湖市2018-2019学年八年级(上)期末物理试卷(解析版)

安徽省芜湖市2018-2019学年八年级(上)期末物理试卷 一、单选题(本大题共7小题,共21.0分) 1.关于物理实验的测量,下列说法正确的是() A. 弹簧测力计必须竖直使用 B. 长度测量结果的倒数第一位代表所用刻度尺的分度值 C. 如果砝码磨损,会使托盘天平测量的结果偏小 D. 在“测量平均速度”实验中,斜面的坡度要小 2.关于质量与密度,下列说法正确的是() A. 把铁块压成铁片,它的密度变小了 B. 密度是物质的一种特性,不同种物质的密度一般不同 C. 空气也有密度,而且空气密度的数值在任何情况下都不会改变 D. 同一种物质,它的密度跟它的质量成正比,跟体积成反比 3.关于声音,下列说法正确的是() A. 人们小声说话时,声音的音调一定低 B. 利用回声可以测地球到月球间的距离 C. 在市区高架桥两侧修隔音墙是为了在传播过程中减弱噪声 D. 超声“碎石”是利用声音能传递信息 4.小希对下列光学成像实例进行了分析,判断正确的是() 实例:①针孔照相机内所成的像;②潜望镜中看到的景物的像;③放大镜看到的物体的像;④幻灯机屏幕上所成的像;⑤照相机中所成的像。 A. 反射成像的有②③⑤ B. 折射成像的有①③⑤ C. 属于实像的是①④⑤ D. 属于虚像的是②③④ 5.把质量为180g的冰完全熔化成水时,下列关于它质量与体积变化的说法正确的是 () A. 质量增加了20g,体积不变 B. 质量减小了20g,体积减小了 C. 质量不变,体积增加了 D. 质量不变,体积减小了 6.如图所示,两条光线会聚于主光轴MN上的b点,在虚线框内放入甲透镜后光线将 会聚于主光轴MN上的c点;在虚线框内放人乙透镜后,光线将会聚于主光轴MN 上的a点,则() A. 甲是凹透镜,可用于矫正近视眼 B. 乙是凸透镜,可用于矫正近视眼 C. 甲是凸透镜,可用于娇正远视眼 D. 乙是凹透镜,可用于矫正远视眼 7.一弹簧右侧连接一个小球,小球向左运动压缩弹簧后,经历了如图甲、乙所示过程, 下列说法错误的是()

水声习题解答(1)

工程水声学基础习题 1. 已知,两个声压幅值之比为2、5、10、100,求它们声压级的差;若它们的声压 级之差为1、3、6、10dB 时,它们的声压幅值之比又是多少? 解:由声压级的表达式: 20log e ref p SPL p =,若它们的幅值之比 12 p n p =,则声压级之差为: 1211122 2 20log 20log 20log 20log 20log e e e ref ref e p p p p SPL SPL n p p p p -=-=== 当2,5,10,100n =时相应的声压级差为: 20log 6,14,20,40SPL n dB dB dB dB ?== 反之,若()12SPL SPL SPL m dB ?=-=, 即:()12112 2 20log 20log 20log 20log e e e ref ref e p p p p m dB p p p p -=== 于是, 120 2 10 m p p =;当1,3,6,10m dB =时相应的声压幅值之比是: 12 1.122, 1.413, 1.995, 3.16 p p = 2. 房间内有n 个人各自无关地说话,假如每个人单独说话时在某位置均产生声压 级为()0SPL dB 的声音,那么,当n 个人同时说话时在该位置上的总声压级是多少? 解:由声压级的表达式: 2 210log 20log ref e e ref p p SPL p p == 当e p 是多个声源的共同作用时产生的声压,则1 n e ei i p p == ∑ ,并且2 21 e n ei i p p =??=??? ? ∑ 只有这些声源辐射的声波彼此互不相关时,才有2 2 2 11 e ei n n ei i i p p p ==??== ???? ∑∑ 。 于是: 2 2 2 1 02 2210log 10log 10log 10log 10log 20log 10log ei ei ref n e i ei ref ref ref p p p p SPL n n SPL n p p p p ====+=+=+∑

驻波在乐器中的应用研究剖析

驻波在乐器中的应用研究 摘要:本文先从声学的基本理论研究开始,以弦振动为主体对驻波的产生、传播及引起的声学规律进行研究,再把这些原理应用到弦乐器中进行分析,从物理学的角度以吉他为例讨论了驻波在弦乐器中的应用。 关键字:声学;驻波;弦乐器;音乐 1.引言 声学是近代科学中发展最早、内容最丰富的学科之一,它是物理学的一个分支,是一门既古老又迅速发展着的学科。在19世纪末已发展成熟,对声学的研究达到高潮,其应用渗透到几乎所有重要的自然科学,与各门学科相互交叉,从而具有边缘学科的特点[1]。从历史上讲,声学的发展离不开音乐,我国如此在国外也是如此。我国古代曾侯乙编钟就是一组杰出的声学仪器,外国的亥姆霍兹发展声学也是与乐器联系在一起的。物理学的发展,在理论上、方法上或技术上都会用到音乐上,比如非线性理论、瞬态分析等。 乐器是什么?从物理的角度来看,它就是一种仪器,一种人造的为人们所用产生音乐声的仪器[2]。那么对于音乐从物理的角度来看,它的实质就是一种声波,要产生声波还得有相应的振动[3]。比如乐器吉他、二胡的弦振动都是利用了驻波的传播而发声,然而声学在物理学中“外在性”最强,所以具体事物要具体分析。 从古至今踊跃出许多的音乐家、乐器演奏家,现时的音乐已经深入到我们生活的许多方面,琴声、歌唱声、说话声,电话、电铃的响声……其中,音乐声占了很大的比重。由此可见,音乐是每个人、每个家庭生活不可缺少的一部分。可以想象,如果生活中没有了音乐,世界将会变成怎样!然而不是任何一种声音都可以叫做音乐,必须是一定音调的声音才可以算得上是音乐。那影响音调的因素又有哪些,它们又有什么样的规律?那么本文将以吉他来研究,从根本上说明其发声的物理本质。 2.弦乐器的发声 在声学中我们知道,声音是一种波,是由物体的振动产生的,声波使它附近

噪声与振动复习题及答案

噪声与振动复习题及参考答案(40题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 一、填空题 1.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 2.测量噪声时,要求风力。 答:小于5.5米/秒(或小于4级) 3.从物理学观点噪声是由;从环境保护的观点,噪声是 指。 答:频率上和统计上完全无规的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 5.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 6.声压级常用公式Lp= 表示,单位。 答: Lp=20 LgP/P° dB(分贝) 7.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 8.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz 范围内必定有峰值。 答:低频性高频性 2000-5000 9.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比 为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 2-1/3 63,125,250,500,1K,2K,4K,8K 10.由于噪声的存在,通常会降低人耳对其它声音的,并使听阈,这种现象称为掩蔽。 答:听觉灵敏度推移 11.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 12.我国规定的环境噪声常规监测项目为、和;选测项目有、和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 13.扰民噪声监测点应设在。 答:受影响的居民户外1米处

2019-2020年八年级物理上学期期中试卷(解析版)新人教版(I).docx

2019-2020年八年级物理上学期期中试卷(解析版)新人教版(I)一、选择题(每题 2 分,共 30 分.将答案填写在下面的答题卡中) 1.( 2 分)观察身边的物理现象﹣﹣下列估测最接近实际的是() A.人步行的速度约为 5 m/s B.课桌的高度约为 1.5 m C.人体的正常体温约为37℃D.一张试卷厚度的大约1mm 考点:长度的估测;温度;速度与物体运动.. 专题:估算综合应用题. 分析:不同物理量的估算,有的需要凭借生活经验,有的需要简单的计算,有的要进行单位的换算,最后判断最符合实际的是哪一个. 解答:解: A、人步行的速度约为 B、课桌的高度约为 1.2m/s 左右,所以 80cm=0.8m左右,所 以 A 不符合实际情况; B 不符合实际情况; C、人体的正常体温约为 D、 10 张纸的厚度约为37℃左右,所以 C 符合实际情况; 1mm,因此一张试卷厚度的大约0.1mm左右,所 以 D 不符合实 际情况. 故选 C. 点评:物理学中,对各种物理量的估算能力,也是我们应该加强锻炼的重要能力之一,这种能力的提高,对我们的生活同样具有很大的现实意义. 2. 2011 年 11 月 9 日,我国第一个火星探测器“萤火一号”与俄罗斯“火卫一”探测器捆绑 发射.在捆绑发射升空的过程中,以下列哪个物体为参照物,“萤火一号”是静止的 (A.地球 B.“火卫一”探测器 C.太阳 D.火星 ) 考点:参照物及其选择.. 专题:应用题. 分析:研究物体的运动情况时,首先要选取一个物体作为标准,这个被选作标准的物体叫做参照物.研究对象的运动情况是怎样的,就看它与参照物的相对位置是否变化. 解答:解:“萤火一号”与“火卫一”探测器捆绑发射.在捆绑发射升空的过程中,以“火卫一”探测器为参照物,它们这间的位置没有变化,处于静止状态,以地球、太阳、 火星为参照物,位置都发生变化,是运动的. 故选 B. 点评:一个物体的运动状态的确定,关键取决于所选取的参照物.所选取的参照物不同,得到的结论也不一定相同.这就是运动和静止的相对性. 3.( 2 分)下列有关声音的说法中,正确的说法是() A.真空中能传声B.戴耳罩是在声源处减弱噪声 C.发声体的振幅越大,频率越高D.发声体振动频率越高,音调越高 考点:声音的传播条件;频率及音调的关系;响度与振幅的关系;防治噪声的途径. 专题:声现象. . 分析:( 1)声音能够在固体、液体、气体中传播,真空不能传声; ( 2)防治噪声的三条途径:在声源处减弱、在传播过程中减弱、在人耳处减弱;

音乐声学基础知识

音乐声学基础知识 音乐是一种艺术形式,一切艺术都包括两个方面,一是艺术表现,一是艺术感知,音乐这种艺术也概莫能外,它通过乐器(包括人的歌喉)所发出的声音来表现,依靠人耳之听觉来欣赏。这声音的产生和听觉的感知之间有什么关系呢?这是我们要讨论的第一个问题——音乐声学。 1、声音的产生与主客观参量的对应关系 关于声音的产生,国外有一个古老的命题:森林里倒了一棵大树,但没有人听见,这算不算有声音?这个命题首先点出了声音产生的两个必要条件,即声源和接收系统。所谓声源,就是能发出声响的本源。以音乐为例,一件正在演奏着的乐器就是声源,而观众的听觉器官就是接收系统。从哲学的角度讲,声源属于客观世界,而接收系统则属于主观世界,声音的产生正是主观世界对客观世界的反映。 但如果只有声源和接收系统,是否就能接到声音呢,并不是这样。如果没有传播媒介,人耳仍不能听到声音。一般来讲,物体都是在有空气的空间里振动,那么空气也就随之产生相应的振动,产生声波。正是声波刺激了人们的耳膜,并通过一系列机械和生物电的传导,最终使我们产生了声音的感觉。如果物体在真空中振动,由于没有传播媒介,就不会产生声波,人耳也就听不到声音。由此,我们可以说,任何声音的存在都离不开这三个基本条件:1)声源;2)媒介;3)接收器。 先来看看产生声音的客观方面——声源——都有哪些特征。 当我们弹一个琴键,通过钢琴机械传动装置,琴槌敲击琴弦,这时如果我们用手触弦,就会明显感到琴弦在振动。当我们拉一把二胡或小提琴时,也会感到琴弦的振动。振动是声源最基本的特征,也可以说是一切声音产生的基本条件。但如果没有我们手对琴键施加压力,使琴槌敲击琴弦,也不会产生振动。实际上,一个声源得以存在,还依赖于两个基本条件:其一是能够激励物体振动的装置(称激励器);其二是能够使装置运动起来的能量;演奏任何一件乐器都不能缺少这两个条件。例如,当我们敲锣打鼓时,锣槌或鼓槌便是激励器,能量则由我们的身体来提供。一架能自动演奏的电子乐器,也同样少不了这两个条件:电子振荡器就是激励器,能量则由电源来提供。 人们常用“频率”(frequecy,振动次数/1秒)来描述一个声源振动的速度。频率的单位叫“赫兹”(Hz),是以德国物理学家赫兹(H.R.Hertz)的名字命名。频率低(即振动速度慢)时,声音听起来低,反之则高。人耳对振动频率的感受有一定限度,实验证明:常人可感受的频率范围在20—20,000Hz左右,个别人可以稍微超出这个范围。音乐最常用的频率范围则在27.5Hz—4186Hz(即一架普通钢琴的音域)之间。超出此范围的乐音,其音高已不能被人耳清晰判别,因而很少用到。语言声的频率范围比音乐还要窄,一般在100Hz—8,000Hz范围内。 声音的强度与物体的振动幅度有关:“幅度越大,声音越强,反之则弱。”声学中用“分贝”(dB)作为计量声音强度的单位。通过实验,人们把普通人耳则能听到的声音强度定为1分贝。音乐上实际应用的音量大约在25分贝(小提琴弱奏)—100分贝(管弦乐队的强奏)之间。音乐声学中称声音强度的变化范围为“动态范围”,动态范围大与小,常常是衡量一件乐器的质量或乐队演奏水平的标志:高质量乐器或高水平乐队能奏出动态范围较大的音乐音响,让人们听起来痛快淋漓,较差的乐器或

声学基础课后答案

习题1 1-1 有一动圈传声器的振膜可当作质点振动系统来对待,其固有频率为f ,质量为m ,求它的弹性系数。 解:由公式m m o M K f π 21= 得: m f K m 2)2(π= 1-2 设有一质量m M 用长为l 的细绳铅直悬挂着,绳子一端固定构成一单摆,如图所示,假设绳子的质量和弹性均可忽略。试问: (1) 当这一质点被拉离平衡位置ξ时,它所受到的恢复平衡的力由何产生?并应怎样表示? (2) 当外力去掉后,质点m M 在此力作用下在平衡位置附近产生振动,它的振动频率应如何表示? (答:l g f π21 0= ,g 为重力加速度) 图 习题1-2 解:(1)如右图所示,对m M 作受力分析:它受重力m M g ,方向竖直向下;受沿绳方向的拉力T ,这两 力的合力F 就是小球摆动时的恢复力,方向沿小球摆动轨迹的切线方向。 设绳子摆动后与竖直方向夹角为θ,则sin l ξ θ= 受力分析可得:sin m m F M g M g l ξ θ== (2)外力去掉后(上述拉力去掉后),小球在F 作用下在平衡位置附近产生摆动,加速度的方向与位 移的方向相反。由牛顿定律可知:22d d m F M t ξ =- 则 22d d m m M M g t l ξξ-= 即 22d 0,d g t l ξξ+=

∴ 2 0g l ω= 即 01 ,2πg f l = 这就是小球产生的振动频率。 1-3 有一长为l 的细绳,以张力T 固定在两端,设在位置0x 处,挂着一质量m M ,如图所示,试问: (1) 当质量被垂直拉离平衡位置ξ时,它所受到的恢复平衡的 力由何产生?并应怎样表示? (2) 当外力去掉后,质量m M 在此恢复力作用下产生振动,它 的振动频率应如何表示? (3) 当质量置于哪一位置时,振动频率最低? 解:首先对m M 进行受力分析,见右图, 0)(2 2 02 2 00=+-+--=ε ε x x T x l x l T F x (0x ??ε ,2 022020220)()(,x l x l x x -≈+-≈+∴εε 。) 2 2 2 2 0)(ε ε ε ε +++-=x T x l T F y x T x l T ε ε +-≈ ε) (00x l x Tl -= 可见质量m M 受力可等效为一个质点振动系统,质量m M M =,弹性系数) (00x l x Tl k -= 。 (1)恢复平衡的力由两根绳子拉力的合力产生,大小为ε) (00x l x Tl F -= ,方向为竖直向下。 (2)振动频率为m M x l x Tl M K )(00-== ω。 (3)对ω分析可得,当2 0l x = 时,系统的振动频率最低。 1-4 设有一长为l 的细绳,它以张力T 固定在两端,如图所示。设在绳的0x 位置处悬有一质量为M 的重物。求该系统的固有频率。提示:当悬有M 时,绳子向下产生静位移0ξ以保持力的平衡,并假定M 离平衡位置0ξ的振动ξ位移很小,满足0ξξ<<条件。 图 习题1-3

2.1《声音的产生与传播》练习题B

2.1《声音的产生与传播》练习题B 一.选择题(共20小题) 13.(2011?金平区)在飞机起飞和降落的过程中,机上人员要张口做吞咽动作或咀嚼口香糖;在遇到巨大声响时,要迅速张口,使咽喉管张开或闭嘴同时堵住双耳,以保持鼓膜内外气压的平衡,以防止

15.当自己在嚼饼干时,会感到声音很大,但是站在你旁边的人却感觉不到那么大的声音,这主要是 16.大音乐家贝多芬晚年耳朵听不到声音,他将木棒的一端咬在口中,另一端顶在钢琴上,倾听钢琴 18.音乐家贝多芬耳聋后,就用牙咬住木棒的一端,另一端顶在钢琴上来听自己演奏琴声,主要是能19 .初次用收录机把自己的歌声录下,在播放自己录制的磁带的声音好象不是自己的声音,其原因是 二.填空题(共4小题) 21.声音是由物体_________产生的,平时我们听到声音主要是通过_________传入我们耳朵里面的;音乐家贝多芬耳聋后,就用牙齿咬住木棒的一端,另一端顶在钢琴上来听自己的琴声,他靠的是_________. 22.一个声源2min内振动了720次,它的频率为是_________Hz,人耳_________(能/不能)听到该声音;小明同学练声时,发出声音的频率是200Hz,则他的声带每秒钟振动_________次.23.声波的频率范围很宽,由10﹣4Hz到l012Hz,但正常人的耳朵只能听到20Hz到_________Hz 之间的声音,低于或高于此频率范围的声音入耳都听不到.请你设想一下,如果人的听力可以听到20Hz 以下的声音,我们的听觉世界会发生什么变化?写出一个与此有关的合理的场景:_________. 24.我们感知声音的基本过程:外界传来的声音引起_________振动, 这种振动经过听小骨及其组织传给_________,_________把信号传给大脑,这样人们就听到了声音. 三.解答题(共6小题) 25.(2005?芜湖)生活中常常有这样的感受和经历:当你吃饼干或者硬而脆的食物时,如果用手捂紧自己的双耳,自己会听到很大的咀嚼声,这说明_________能够传声;但是你身旁的同学往往却听不到明显的声音,请从物理学的角度提出一个合理的猜想:_________. 26.叫一位同学蒙住眼睛坐在房间中央,请他安静地坐着不动,也不要把头转动.然后,你拿两枚硬币敲响起来,你所站的位置要总是在他的正前方或者正后方.现在请他说出敲响硬币的地方,他的回答会令你吃惊.例如,声音本发生在房间的这一角,他却会指着完全相反的一角! 请你和同学讨论这种现象,想想其中的原因是什么. 27.根据声音传播速度和效果的知识,在下列横线上写出对应的原因: (1)夜晚,进行侦察的侦察员为了及早发现情况,常将耳朵贴在大地上倾听远处敌人的人踏地声和车辆的轰鸣声,其原因是_________的缘故 (2)夜晚,把手表放在枕头下睡觉,隔着枕头能清楚地听到手表的“嘀嗒”声,若把枕头拿掉,反而听不到这种声音,这是因为_________的缘故. 28.(2012?淮安)如图所示为人和一些动物的发声频率、听觉频率的范围信息,试归纳出上述信息的共性特征,井简述其合理性. 29.看图说理: (1)观察如图所示,你能得出的结论是 _________;

音响基础知识之绝对基础

新音响基础知识之绝对基础 一、声学基础 1、人耳能听到的频率范围是20—20KHZ。 2、把声能转换成电能的设备是传声器。 3、把电能转换成声能的设备是扬声器。 4、声频系统出现声反馈啸叫,通常调节均衡器。 5、房间混响时间过长,会出现声音混浊。 6、房间混响时间过短,会出现声音发干。 7、唱歌感觉声音太干,当调节混响器。 8、讲话时出现声音混浊,可能原因是加了混响效果。 9、声音三要素是指音强、音高、音色。 10、音强对应的客观评价尺度是振幅。 11、音高对应的客观评价尺度是频率。 12、音色对应的客观评价尺度是频谱。 13、人耳感受到声剌激的响度与声振动的频率有关。 14、人耳对高声压级声音感觉的响度与频率的关系不大。 15、人耳对中频段的声音最为灵敏。 16、人耳对高频和低频段的声音感觉较迟钝。 17、人耳对低声压级声音感觉的响度与频率的关系很大。 18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。 19、等响曲线中,每条曲线上标注的数字是表示响度级。 20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。 21、响度级的单位为phon。 22、声级计测出的dB值,表示计权声压级。 23、音色是由所发声音的波形所确定的。 24、声音信号由稳态下降60dB所需的时间,称为混响时间。 25、乐音的基本要素是指旋律、节奏、和声。 26、声波的最大瞬时值称为振幅。 27、一秒内振动的次数称为频率。 28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。 29、人耳对1~3KHZ的声音最为灵敏。 30、人耳对100Hz以下,8K以上的声音感觉较迟钝。 31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。 32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。 33、声音在空气中传播速度约为340m/s。 34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加0.1s延时。 35、反射系数小的材料称为吸声材料。 36、透射系数小的材料称为隔声材料。 37、透射系数大的材料,称为透声材料。 38、全吸声材料是指吸声系数α=1。 39、全反射材料是指吸声系数α=0。 40、岩棉、玻璃棉等材料主要吸收高频和中频。 41、聚氨酯吸声泡沫塑料主要吸收高频和中频。 42、薄板加空腔主要吸收低频。

相关文档
相关文档 最新文档