文档库 最新最全的文档下载
当前位置:文档库 › 三相分离器的结构及工作原理

三相分离器的结构及工作原理

三相分离器的结构及工作原理

三相分离器的结构及工作原理

(完整word版)三相分离器结构及工作原理

一、三相分离器结构及工作原理 1.三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2.三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

分离原理

分离器工作原理.闪蒸原理 核心提示:气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。... 气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。 一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。 或折流挡板之类的内部构件。 将气体中夹带的液体进一步凝结。 排放,以去除液体的效果。基本原理是利用气液比重不同。 在一个忽然扩大的容器中。 流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被入口高速气流甩到器壁上。 碰撞后失去动能而与转向气体分离。分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体.气液分离器。 根据分离器的类型不同,有旋涡分离。 折留板分离,丝网除沫器。 旋涡分离主要是根据气体和液体的密度。 做离心运动时,液体遇到器壁冷凝分离。基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的.使用气液分离器一般跟后系统有关。 因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。工厂里常见的气液分离器是利用闪蒸的原理。 闪蒸就是介质入渗入渗出一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水。 而游离的水和比重大的液滴会由于重力作用分离出来。 另外分离器一般带捕雾网。 通过捕雾网可将气相中部分大的液滴脱除。气液分离器无非就是让互相混杂的气相液相各自聚合成股。 液滴碰撞聚结,气体除去液滴后上升。 从而达到分离的目的。原理是利用气液比重不同,在一个忽然扩大的容器中,流速降低后,在主流体转向的过程中。

UASB三相分离器原理及运行简介

UASB三相分离器原理及运行简介 厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。 而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。 一、UASB工作原理 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。 基本要求有: (1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能; (2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度; (3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。

油气计量分离器原理

第一节 计量站 一、计量分离器 二、量油、测气操作

图5-3 储集管量油示意图 2)测气方法主要有:节流式流量计测气和垫圈流量计测气两种: A)节流式流量计测气(图5-4):V1*A1=V2*A2 气计量公式: 在不精确考虑Fx,Fy,Fz时, 图5-4 测气流程示意图(1-出气管线;2-挡板;3、4-上下流管;5-上流阀;6-下流阀;7-平衡阀;8、9-防空阀;10-U型玻璃管) B)垫圈流量计测气 垫圈流量计由测气短节和“U”形管组成(图5-5),它的下流通大气,下流压力为大气压,上流测出的压差H即为上下流压差。 气量计算公式:

图5-5 垫圈测气原理图 油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2) 碰撞聚结型:丝网聚结、波纹板聚结分离器; 3) 旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器; 4) 旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构:如图所示

1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒:储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管:通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀:保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管:油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板:在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。

三相分离器工作原理、结构、工艺参数

三相分离器工作原理、结构、工艺参数 一、工作原理 生产汇管来原油进入三相分离器,利用油、气、水密度的不同进行油、气、水三相初步分离。 1、预分离段 从三相分离器进口来的油气由切向进入预分离器,利用离心力而不是机械的搅动来分离来液成为液体和气体,进行初步气、液两相旋流分离。 分离后的气体向上进入预分离器下伞和上伞,按折流方式先后与下伞、上伞壁碰撞,从而将气中带出的液体形成较大的液滴,重力使液滴进一步分离出来,经上、下伞碰撞分离后的气体则通过气连通管导入到三相生产分离器的分离沉降段上部。 分离后的液体通过预分离器向下导液管导入到三相分离器底部,经布液管从液面以下的水层向上喷出,进入到三相分离器预分离段进行油、水初步分离,主要分离出游离水。 布液管的作用:避免了气体对液体的扰动,保持了油水界面的稳定,有利于油水更好地分离。 2、分离沉降段 经预分离段进行初步分离后的液体,沿水平方向向右移动进入分离沉降段。这一段内有较大的沉降空间(分离沉降时间20分钟左右),其中部有两段聚结填料,有助于水中油滴和油中水滴的聚结,从而有促进油、水分离。液体在水平移动过程中,密度较小的原油逐渐上浮,而密度较大的污水(主要是游离水)则向下沉入设备底部,同时使油气逐步分离开来。 气体则在分离沉降段上部空间内,沿水平方向向右运动进入到分气包,重力作用使气体中的液体沉降到三相分离器分离沉降段液面上。 3、集液段 由于油、水密度的不同,使分离沉降段中的液体出现分层,水的密度较大在下层,油的密度较小在上层。 在下层的水则通过集液段底部的喇叭口,利用连通器原理向上溢流进入三相分离器水室,水室中的水通过出水口导出进入5000m3沉降罐。 在上层的油经集液段上部堰板溢流到导油汇管,进入到三相分离器的油室,油室中的油通过油出口导出进入热化学脱水器。 4、捕雾段

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

三相分离器资料

高效三相分离器 1.型号释疑 JM-WS3.0×8.0-0.8 设计压力MPa 设备筒体长度m 设备筒体内径m W:卧式容器 S:三相分离器 骏马集团 2.三相分离器分离原理及结构特点 刚从地下开采出来的石油我们称为原油,它是复杂的油水乳化混合物,还含有部分气体和少量泥沙。气体的主要成分是天然气和二氧化碳。为了分别得到有利用价值的高纯度的天然气和石油,我们研制出了原油用高效三相分离器,来满足原油开发开采者的需要。 所谓的三相,就是气相、液相、固相。三相分离器的工作原理就是利用原油中所含各物质的密度不同、粘度不同以及颗粒大小等的区别来进行分离的。来自井口的原料油首先经过井口阀门、管线到一个加药装置,加药装置可连续可控制的来给原油加破乳剂。这是用来降低原料油中水、油、泥沙之间的粘连混合程度以及分化乳化混合物的颗粒,有利于三相分离器更好的进行分离。我们可根据原油的参数(粘度和温度)来看是否需要在加破乳剂之前设置水套加热炉。水套加热炉就是对原油加热,来降低原油的粘度,提高原油的运输速度。 加了破乳剂的原料油首先进入三相分离器的一级分离装置,进口是在一级分离装置中部,沿切线方向旋转式进入。通过旋风分离,根据离心力和重力的作用,将原油所含的各物质由里到外、由上到下的排列为气、油、水、泥沙。为了延长分离器的使用寿命,我们在一级分离装置的入口处沿筒壁方向增加一块垫板,这样泥沙在冲涮筒壁时,只磨损到这块垫板。等于说是把一级分离装置能接触到的高

速流体的那段筒体壁厚进行了加强。 经过旋风分离,大部分气体涌向一级分离装置的上部,在分离装置的上部我们设有一个伞状板,伞状板由三根扁钢呈120°角分布支承。下部靠一个焊接在筒体内壁上的支承圈支撑。气体冲击到伞状板之后,经过伞状板和一级分离器筒体之间的空隙到达分离器的顶部出气口,由出气口进入二级分离装置。我们设置这个伞状板的原因,就是因初步分离的气体中,含有部分雾状的小颗粒,颗粒中有水和原油以及细微的泥沙,经碰撞到伞状板上之后,由于粘度的原因,大部分都附着在伞状板的内壁上,积累到一定程度会沿伞状板的内壁边缘滴落。但还是有少部液体被气流带走,进入二级分离器装置再进行精细过滤的分离。 再谈一级分离装置中的除了气体之外的其它物质,由于旋风分离利用离心力和重力的合力原理,绝大部分液相和固相物质从分离器的底部流入三相分离器的主体分离装置,我们在一级分离装置的底部出液口处设有一个防涡流挡板,呈“十”字状,这是由于流体经过旋转,在分离装置的底部易形成涡流,若不设置挡板,就会有较多一部分气体随之涌入主体分离装置,这样会使主体分离装置中流体引起较大波动,也影响到流体中各物质的分离效果。 我们根据许多科研人员的试验结果:油在水中上升的速度,远远快于水在油中下降的速度。这就是由于油的粘度大于水的粘度的原因。这一发现使我们利用这个原理将一级分离装置底部的流体出口的接管延长至主分离装置的底部区域。从底部进入主分离装置,这样流体会慢慢的涌出,而不是直接喷洒进入,这样大大减小了流体在主分离装置中的波动,慢慢上升的流体中,油上升的速度快于水下降的速度。流体中的油就会迅速的浮上水面,为了减小这些流体在主分离装置中的振动和波浪,我们在延长管的底部附近一圈焊接一块有许多小孔的方形折边向下的挡板。这样能有效地降低流体的流速和动能。而且还能够将流体中的乳状团块细化。我们也考虑到流体直接冲击主分离装置的底部,会使底部钢板受到冲涮侵蚀,寿命会大大降低,我们在主分离装置的来液底部,也设置了一块碗状垫板。这样的形状同时使来液绝大部分都可以反弹到孔板上进行团块细化分离。 当液量达到一定高度,我们在主分离装置的中部上半部设置了一段填料装置。它的结构就是规整填料,术语称TP板,又称聚结板、消泡器、斜板填料。该板每片都呈波纹形状,就象一把挂在主分离装置内部的梳子,用于油田油水处理系

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

制冷系统中油分离器结构及工作原理

一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有油膜时,将使蒸发温度降低℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至~1m/s);同时改变流向,使密度较大的润

空气分离器结构及原理

空气分离器结构及原理 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气分离器结构及原理 目前应用最多的是卧式空气分离器和立式空气分离器。 卧式空气分离器也称四重套管式空气分离器,一般应用在大中型氨制冷系统的冷库,一座冷库只选用一台卧式空气分离器就够了。立式空气分离器一般用在中小型氨制冷系统。卧式空气分离器的分离效果好。 一、卧式空气分离 器 1、结构及原理:卧式 空气分离器如右图所示,它 是由4根直径不同的无缝钢 管组成,管1与管3相通, 管2与管4相通。混合气体 自冷凝器来,通过混合进气 阀进入管2,氨液自膨胀阀 来,进入管1后吸收管2内 的混合气体热量而气化,氨 气出口经降压管接至总回气 管道,则氨气被压缩机吸 入。管2里的混合气体被降 温,其中氨气被凝结为氨液 流入管4的底部,空气不会 被凝结为液体,仍以气态存 在,将分离出来的空气经放 空气阀放出,达到使系统内空气分离出去的目的。 2、操作方法:首先打开混合气体阀,让混合气体进入管2,再打开回气阀,使管3与回气总管相通,然后微开与管1相连接的膨胀阀,向管1供液,供液不能过快过多,以降压管自控器分离器接口向上的1.5m以内结霜为最好。放空气阀外接一根钢管,管上套一根橡皮管通入水桶内,橡皮管入水一端系一重物,防止橡皮管出口露出水面。微微开启放空气阀,水中便有气泡由下向上浮起,放空气阀不要开启过大,以水内有一定速度气泡跑出为准。管4的底部外表面逐渐开始结霜,当霜结到外管直径的1/3高度时,将管1外来供液的膨胀阀关闭,打开空气分离器本身自有的节流阀,让管4底部凝结的氨液经节流阀供入管1内,这样就实现放空气自身凝结的氨液给自己供液。一般地说,此时已进入自行放空气阶段。操作人员要经常查看降压管的霜不可结得过高;再看空气分离器外壁上的霜不可结得太少或没有,如果太少或没有,证明凝结的氨液量少,给管1供液会不足。此时应再利用管1外接的膨胀阀补充一点氨液,使管外霜结到外管直径的1/3高度的地方。水桶内气泡上升过程中,体积不缩小,水温不升高,放出的是空气。如果在上升过程中,体积逐渐缩小,甚至无气泡产生而只有水的流动,证明放空气完毕。因为氨气与水相溶,不产生气泡,甚至水呈乳白色,水温上升。 放空气完毕,应关闭混合气体阀、放空气阀,并检查外接膨胀阀是否关闭。自身节流阀仍为开启的,让氨气仍旧被压缩机抽走,空气分离器内的余氨被尽量抽走后,

三相分离器的结构形式

三相分离器的结构形式(图) 下图是厌氧反应器中常见的几种三相分离器结构,下面就没中分离器分别进行讨论。 图(a),气、固、液三相流体进入三相分离器后,气体由集气罩收集后排出反应器,泥和水则通过集气罩和阻气板之间的缝隙进入沉淀区,进行泥水分离,上清液排出,沉淀污泥则返回反应区,这种三相分离器结构简单,气室面积和体积都比较大,但由于进水和污泥回流都在同一个环形缝隙上,因而回流污泥必然受到进水水流干扰。此外,沉淀器出水槽和进水槽在同一侧,易引起短流 图(b),混合流体进入三相分离器后,在反射锥的阻挡作用下折向两边,由于气体上升过程中气泡不断凝并,形成气泡较大,导致上升的速度较快,水流速度相比较慢,因此气泡上升过程中逐渐脱离泥水混合液,进入集气室,而泥水混合液则进入沉降区。由于消除了气泡的提升作用,在沉降区的水流流态为层流,

在上升过程中流速逐渐降低,使污泥沉降,并沿着锥体表面滑回反应区。这种三相分离器结构简单,由于进水口位于中部,而出水槽在周边。因此沉淀区内死区小,沉淀效率高。但和图(a)的情况一样,进水口和污泥回流口设在一处,易引起互相干扰,影响污泥正常回流,并增加进水污泥浓度,若污泥颗粒表面附有小气泡时会影响泥水分离效果。这种三相分离器一般用于实验室的小型装置或中试反应器中。 图(c)结构实质上是图(a)的改进形式,它相当于在图(a)的基础上沿水平方向增加一层填料,以防止由于附着微小气泡而上升到水面的大颗粒污泥随出水带出。集气罩顶部也装有填料,对气体进行过滤,以消除气体泡沫。这种结构气体收集效率高,得到沼气较干净,能在沼气泡沫多、污泥上附着微气泡的条件下正常工作。但其结构复杂,所占容积大,易堵塞,大污泥颗粒附在填料上不断产气,干扰固液分离,且使沉降性能差的污泥也无法排出。 图(d)结构为一带有污泥回流装置的三相分离器。与气体分离后的液固混合物沿一狭形通道进进入沉淀区,固液分离后澄清液从溢流口排出,污泥在回流口形成泥层,增加了回流的动力,同时也保证固、液混合液不会通过回流口进入沉淀区,这样的结构使污水和污泥回流严格分开,有利于沉淀区工作,提高沉淀效率,但如果设计不合理,会使进水短路,从污泥回流口而不是进水口进入沉淀区,污泥难于返回反应区,此时与图(b)所示分离器效果相同。 图(h)所示三相分离器进水、出水和回流各自分离,气体分离后,固体悬浮物和液体进入沉淀室,其中的溶解性气体由于扩张关系而释放溢出,并缓冲了由反应器带来的原有紊流情况。最后在处于层流状态的沉淀室中污泥被分离出来,并在格室下部形成污泥层,浓缩污泥由格室返至反应器,这种分离器将沉淀格室与扩张和回流格室分隔开,分离效率高,但结构复杂,所占空间不适合大型反应器中。 图(i)结构在传统三相分离器下部增设几个集气罩,强调预先排出大部分气体的重要性,可避免大量污泥被带入三相分离器,锥体部分还可以阻止下部污泥上升,减轻三相分离器的负担。这种改进结构分离效率很高,并使反应器负荷明显提高。 图(j)所示为分离器大型反应器中常用的结构。工程上采用矩形钢筋混凝土结构,可以根据单元组合的方法设计,三相分离器可划分为单元,在每个池子内由相同结构、相同尺寸的几个分离器组成上部结构,这样在设计和施工上均较简单。 通过前面的分析可知,尽管三相分离器结构形式各种各样,单分离器均由一个集气室、沉降室、混合液入流口和污泥回流口及反射锥或阻气板组成,大型反应器的结构基本相同,可采用圆形或矩形结构。

三相分离器简介

9.8MPa测试用三相分离器研制 项目简介 北京化工大学机电学院 2008.4.28

一、综述 测试用三相分离器主要应用于油气田勘探开发初期的自喷井(油气井)测试过程中,为分析油藏求得地层流体的井口压力、温度、产能及物性等参数而建立的一套地面临时生产流程。根据测试方案选用不同规格的油嘴通过对流体流量、压力、温度的控制并借助分离器将流体各相(油、气、水)分离并分别精确计量,最终求得该规格油嘴状态下油、气、水的产量。该系统是石油勘探开发过程中对油藏进行综合评价的重要工具和手段,适用于陆上、海上气田、凝析油气田和油田。 二、三相分离器结构及原理 重力式分离器分立式和卧式。卧式分离器气液流动方向与液滴沉降方向垂直,分离阻力较立式小,并且气液接触面积大,利用气泡上浮,在系统分离体积下分离效果好。更适合量大、高油气比的场合。高压油气井三相测试分离器主要为卧式橇装结构, 主要由容器本体、分离机构、控制阀、液面控制器、流量计、安全阀及相应配管和附件等组成。 油井来液自流体进口进入设备后, 首先冲击入口动能吸收器, 被吸收一部分动能之后, 折流进入分离器实现气液的预分离,然后经过多级整流聚结填料进行气液重力分离,分理出的气体通过丝网捕雾器从气出

口流出,并经过计量装置计量;分离出的液体在沉降分离器中进一步沉降分离。分离出的油溢流过隔板进入储油室,从油出口流出并经过流量计计量后进入油罐;分离后处在下部的水通过水出口流出,经计量后进入污水罐。另外还设有排污口、超压时的安全保护阀等装置。 三、主要设计内容 1.所需的设计参数: (1)设计压力;(2)操作压力;(3)设计温度;(4)操作温度;(5)最大气、液处理量;(6)液体密度;(7)气体比重(标态);(8)油水相粘度;(9)载荷波动系数;(10)液体停留时间等。 2.主要设计内容 (1)罐体部分;(2)入口分离系统;(3)沉降系统;(4)除雾系统;(5)存储系统;(6)液面控制系统;(7)其它辅助系统等。 四、主要工作内容 (1)罐体部分设计;(2)内聚结构件仿真优化;(3)总体设计和计算;(4)油液界面控制部分计算;(5)技术培训;(6)现场测绘和实验。 五、设计步骤 (1)根据设计参数确定罐体尺寸;(2)利用FLUENT优化内聚结构件;(3)现场测绘;(4)内聚结构件完善确定;(5)总体规划与设计;(6)油液界面控制部分计算;(7)仪表选型;(8)完善修改;(9)技术培训。

三相分离器的布置形式

●三相分离器的布置形式 ●三相分离器的设计方法 ①沉淀区的设计:表面负荷应小于1.0m3/m2.d;集气罩斜面的坡度应为55~60 ;沉淀区的总水深应不小于1.5m,并保证废 水在沉淀区的停留时间为1.5~2.0h。②回流缝的设计:③气液分离的设计: 1、出水系统的设计 2、浮渣清除系统的设计 3、排泥系统设计 4、其他设计中应考虑的问题:加热和保温;沼气的收集、贮存和利用;防腐;等 三、UASB反应器的应用实例 ●颗粒污泥的性质与形成 ——能形成沉降性能良好、活性高的颗粒污泥是UASB反应器的重要特征; ——颗粒污泥的形成与成熟,是保证UASB反应器高效稳定运行的前提。 1、颗粒污泥的外观: ——多种多样,呈卵形、球形、丝形等;平均直径为1 mm,一般为0.1~2 mm,最大可达3~5 mm;反应区底部的颗粒污泥多以无机粒子作为核心,外包生物膜;颗粒的核心多为黑色,生物膜的表层则呈灰白色、淡黄色或暗绿色等;反应区上部的颗粒污泥的挥发性相对较高;颗粒污泥质软,有一定的韧性和粘性。 2、颗粒污泥的组成 ——只要包括:各类微生物、无机矿物以及有机的胞外多聚物等,其VSS/SS一般为70~90%;颗粒污泥的主体是各类为微生物,包括水解发酵菌、产氢产乙酸菌、和产甲烷菌,有时还会有硫酸盐还原菌等,细菌总数为1~4×1012个/gVSS;常见的优势产甲烷菌有:索氏甲烷丝菌、马氏和巴氏甲烷八叠球菌等;一般颗粒污泥中C、H、N的比例为C约为40~50%、H约为7%、N约为10%;灰分含量因接种污泥的来源、处理水质等的不同而有较大差距,一般灰分含量可达8.8~55%;灰分含量与颗粒的密度有很好的相关性,但与颗粒的强度的相关性不是很好;灰分中的FeS、Ca2+等对于颗粒污泥的稳定性有着重要的作用。 ——颗粒污泥中金属元素的含量:①铁的含量比例特别高;②镁的含量比钙高。 ——胞外多聚物是另一重要组成,在颗粒污泥的表面和内部,一般可见透明发亮的粘液状物质,主要是聚多糖、蛋白质和糖醛酸等;含量差异很大,以胞外聚多糖为例,少的占颗粒干重的1~2%,多的占20~30%;有人认为胞外多聚物对于颗粒污泥的形成有重要作用,但现在仍有较大争议;但至少可以认为其存在有利于保持颗粒污泥的稳定性。 3、颗粒污泥的类型 ——一般认为有三种类型:A型、B型、C型 ①A型颗粒污泥: ●以巴氏甲烷八叠球菌为主体,外层常有丝状产甲烷杆菌缠绕;比较密实,粒径很小,约为0.1~0.1 mm。 ②B型颗粒污泥: ●以丝状产甲烷杆菌为主体,也称杆菌颗粒;表面规则,外层绕着各种形态的产甲烷杆菌的丝状体;在各种UASB反应 器中的出现频率极高;密度为1.033~1.054 g/cm3,粒径约为1~3 mm。 ③C型颗粒污泥: ●有疏松的纤丝状细菌绕粘连在惰性微粒上所形成的球状团粒,也称丝菌颗粒;C型颗粒污泥大而重,粒径一般为1~5

分步式三相分离器的结构与设计

中国沼气蕊妇Biogas2006,25(2) 分步式三相分离器的结构与设计 黄正隼 (东南大学环境科学与工程系。南京210096) 摘要:三相分离器是UASB反应器中的关键组成部分。本文比较了几种常见的三相分离器的结构形式与优缺点,基于三相分离器的作用原理,设计了分步式三相分离器。该分离器中,气体进入沉降区前充分释放,混合液进入分离区不会干扰污泥回流,沉降区表面负荷较低,具有良好的分离效果。 关键词IUASB反应器;三相分离器;厌氧生物处理 中图分类号:X703.3;¥216.4文献标识码:A文章编号:1000—1166(2007)02-0025—03 StructureandDesignofstep-by?stepGas-Liquid?SludgeSeparator/HUANGZheng-hua/(DepartmentofEnvi-ronmentalScienceandEngineeringofSoutheastUniversity,Nanjing210096,China) Abstract:Gas?IjqIlid-Sludgeseparatoristhekeyequipment0fUASBreactor.Severalseparatorswerecomparedinthispaperontheirstructures。strongpointsanddisadvantages.Accordingtotheseparationprinciple ofG∞-Liquid-Sludgeseparator,step-by-stepGas-nqIlid?SludgeseparatorWasdesignedanddescribed.Thenewlydesignedseparatorcouldreleasegaseufll?ciently bdoreliqIlidmixtureenterssedimentationarea.Theliqllidmixturewouldnotdisturb,ludgecircumtluence.I.Mwerhy-draulicloadinsedimentationareacouldhavehigherseparationeffect. Keywords:UASBreactor,step-by-stepGas-IJqIlid?Sludgeseparator,anaerobictreatment. 上流式厌氧污泥床(简称vmB)反应器,是由荷兰Lettlnga,等人于70年代开发的新型高效污水厌氧处理装置,具有结构简单、负荷高、适应性广等特点,可有效地处理高浓度有机废水中的难降解有机物。 1999年统计了国外1303个厌氧反应器,UASB反应器占59%,国内219个厌氧处理项目中120座以上采用了UASB反应器…。UASB反应器由进水和配水系统、反应器的池体和三相分离器3部分组成,其中三相分离器是最重要的设备,它的功能、效率对整个系统的处理能力有极大的影响BJ。目前国内外有多种结构的三相分离器,大多按固液和气液两相分离的方法进行设计,在负荷较高时仍会出现污泥流失,限制了反应器负荷的提高,因此能大规模生产应用的三相分离器并不多【3】。本文分析了几种常见三相分离器的结构及特点,基于三相分离器的作用原理。设计出结构简单、分离效果好的分步式三相分离器。提出简易设计方法,在多个工程实际中得到应用,收到很好的效果。 1三相分离器的作用原理 三相分离器同时具有两个功能:收集反应室产生的沼气,使分离器内的悬浮物有效沉降。图l为传统的三相分离器,是德国的专利设计。其工作过程是:反应器内含有大量气泡的三相混合流上升至分离器底部,碰到反射板,气体折流而上,与固、液相分离,集中到气室排放。固液混合液进入分离器,在沉淀区分离,澄清液通过溢流堰排出。失去气泡搅动作用的污泥发生絮凝、沉降和浓缩,然后沿斜壁下滑,通过污泥回流口返回反应区。由于沉淀区内液体无气泡,污泥回流口以上的混合液比重大于反应器内液体比重,使浓缩后的污泥能够返回反应区。由此,三相分离器要实现良好分离效果,应满足:1.水和污泥的混合物进入沉淀区之前,气泡必须分离;2.污泥在沉淀器中的停留时间要短,以避免在沉淀区中产气;3.沉淀区内表面负荷采用较小值,使污泥有效沉降。 沼气 图1传统三相分离器 收稿日期:2006-06-12修回日期:2007-02?12 作者简介:黄正华,(1957一)。男,硕士,主要从事水处理和固体废弃物处理教学科研工作,Emailhuangzhh@剃.edu.cn 沼气

相关文档
相关文档 最新文档