文档库 最新最全的文档下载
当前位置:文档库 › 钢的合金化介绍

钢的合金化介绍

钢的合金化介绍
钢的合金化介绍

第三章-钛合金及合金化原理

第三章-钛合金及合金化原理

第三章钛合金及合金化原理 3.1钛合金相图类型及合金元素分类 1.钛合金的二元相图 (1)第一种类型与α和β均形成连续互溶的相图。只有2个即Ti-Zr和Ti-Hf 系。钛、锆、铪是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛和β钛中溶解能力相同,对α相和β相的稳定性能影响不大。温度高时,锆的强化作用较强,因此锆常作为热强钛合金的组元。(2)第二种类型β是连续固溶体,α是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型的β-Ti形成连续固溶体,而与密排六方点阵的α-Ti形成有限固溶体。 V属于稳定β相的元素,并且随着浓度的提高,它急剧降低钛的同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V在α钛中有较大的浓度(>3%),这样可以得到将单相α合金的优点(良好的焊接性)和两相合金的有点(能热处理强化,比α合金的工艺塑性好)结合在一起的合金。Ti-V系中无共析反应和金属化合物。 Nb在α钛中溶解度大致和V相同(约4%),但作为β稳定剂的效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中的溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织.Mo的添加有效地提高了室温和高温的强度。Mo室温一个缺点是熔点高,与钛不易形成均匀的合金。加入Mo时,一般是以Mo-Al中间合金形式(通过钼氧化物的铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应的相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内的相区范围内存在有序化的α2(Ti3X)相,它会使合金的性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤ 8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn是相当弱的强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量的B可细化钛及其合金的大晶粒,Ga可以与钛良好溶合,并显著提高钛合金的热强性。氧是较“软”的强化剂,在含量允许的范围内时,不仅可保证所需的强度水平,而且可以保证足够高的塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解的相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成的Ti2Cr化合物有两种同素异晶形式,其固溶体以δ和γ表示。Cr属于β稳定元素,在α钛中的溶解度不超过0.5%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好的室温塑性并有高的强度,同时可保证有高的热处理强化效应。 Ti-W系中,会产生偏析转变:β′ ? α + β′′。偏析反应温度较高,Ti-W系的热稳定性比Ti-Cr合金高的多。W在α钛中的溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛的同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相和钛的氢化物,在共析温度下氢在α钛中的溶解度为0.18%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金的氢脆。在非合金化钛和以α组织为基的单相钛合金中,氢脆的主要原因是脆性氢化物相的析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢的过饱和固溶体区,在低速变形时引起脆性断裂。在β相含量小的合金中,这两种产生联合作用。纯钛和近α

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

不锈钢不生锈的原理

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。 不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 当锈蚀不深时,当然可以很容易擦去。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 不锈钢为什么也生锈?当不锈钢管表面出现褐色锈斑(点)的时候,人们大感惊奇:认为"不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题"。其实,这是对不锈钢缺乏了解的一种片面的错误看法。不锈钢在一定的条件下也会生锈的。不锈钢具有抵抗大气氧化的能力---即不锈性,同时也具有在含酸、碱、盐的介质中耐腐蚀的能力---即耐蚀性。但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。如304钢管,在干燥清洁的大气中,有绝对优良的抗锈蚀能力,但将它移到海滨地区,在含有大量盐份的海雾中,很快就会生锈了;而316钢管则表现良好。因此,不是任何一种不锈钢,在任何环境下都能耐腐蚀,不生锈的。 不锈钢是靠其表面形成的一层极薄而坚固细密的稳定的富铬氧化膜(防护膜),防止氧原子的继续渗入、继续氧化,而获得抗锈蚀的能力。一旦有某种原因,这种薄膜遭到了不断地破坏,空气或液体中氧原子就会不断渗入或金属中铁原子不断地析离出来,形成疏松的氧化铁,金属表面也就受到不断地锈蚀。 这种表面膜受到破坏的形式很多,日常生活中多见的有如下几种: 1、不锈钢表面存积着含有其他金属元素的粉尘或异类金属颗粒的附着物,在潮湿的空气中,附着物与不锈钢间的冷凝水,将二者连成一个微电池,引发了电化学反应,保护膜受到破坏,称之谓电化学腐蚀。 2、不锈钢表面粘附有机物汁液(如瓜菜、面汤、痰等),在有水氧情况下,构成有机酸,长时间则有机酸对金属表面的腐蚀。 3、不锈钢表面粘附含有酸、碱、盐类物质(如装修墙壁的碱水、石灰水喷溅),引起局部腐蚀。 4、在有污染的空气中(如含有大量硫化物、氧化碳、氧化氮的大气),遇冷凝水,形成硫酸、硝酸、醋酸液点,引起化学腐蚀。 以上情况均可造成不锈钢表面防护膜的破坏引发锈蚀。 所以,为确保金属表面永久光亮,不被锈蚀,我们建议: 1、必须经常对装饰不锈钢表面进行清洁擦洗,去除附着物,消除引发修饰的外界因素。 2、海滨地区要使用316材质不锈钢,316材质能抵抗海水腐蚀。 3、市场上有些不锈钢管化学成分不能符合相应国家标准,达不到304材质要求。因此也会引起生锈,这就需要用户认真选择有信誉厂家的产品。 201不锈钢是非食品级的不锈钢,他是二战时候为了缓解镍的压力而研发的节镍不锈钢产品,

第一章 钢的合金化原理作业题 参考答案要点

第一章钢的合金化原理作业题参考答案要点 1、名词解释: 1)合金元素:特别添加到钢中用以改变钢的组织、提高钢的性能的化学元素。2)微合金元素:有些合金元素如V,Nb,Ti和B等,当其含量只在0.2%左右甚至更低时(如B 0.002%)时,也会显著地影响钢的组织与 性能,将这种化学(合金)元素称为微合金元素。 3)原位析出:在淬火回火过程中,合金元素溶解于原渗碳体中,当其溶解度超过其最大溶解量后,合金渗碳体转变为特殊碳化物的析出方式。4)离位析出:在淬火回火过程中,直接从α相中析出特殊碳化物的析出方式。5)二次硬化:在强K形成元素含量较高的合金钢淬火后,在500- 600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的 HRC和强度提高的现象。 6)二次淬火:在强K形成元素含量较高的合金钢淬火后,残余奥氏体十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在 冷却时部分转变成马氏体,使钢的硬度和强度提高的现象。 2、说明钢中常用合金元素(V,Mo,Cr,Ni,Mn,Si,Al, B)对珠光体(贝 氏体)转变影响的作用机制。 答:(1)对珠光体转变影响的作用机制:P20 (2)对贝氏体转变影响的作用机制:P20 3、以低碳回火马氏体钢20SiMn2MoVB 为例,说明其合金化及热处理(淬火 加低温回火)中存在哪些强化与韧化途径?

答:低碳回火马氏体钢通过合金化与热处理工艺相结合,在实现强化的同时,保证有较好的韧性。主要体现在以下方面: (1)强化: ①C及合金元素的固溶强化; ②加入Si, Mn等合金元素能提高奥氏体的过冷能力,从而细化晶粒; ③加入V、Ti后的弥散强化; ④加入V、Ti后的细化晶粒作用; ⑤马氏体中大量位错的位错强化。 (2)韧化: ①低碳马氏体为位错型马氏体,韧性较好; ②Ni,Mn韧性元素的加入有利于提高韧性; ③工艺中的快冷、加入的合金元素对奥氏体过冷能力的提高、第二相粒子对晶粒长大的抑制作用,均能使马氏体晶粒细化,从而提高韧性; ④通过加入Si对低温回火脆性温度的延迟作用以及钢的回火稳定性的增加,可以适当提高回火温度,从而提高韧性水平。 4、为何Si-Mn-Mo-V复合添加可以大大提高钢的淬透性? 答:Si、Mn、Mo、V这四种合金元素提高过冷奥氏体稳定性的机制不同。 (1)Si在钢中不形成碳化物,也不溶于体,因此碳化物晶核形成必须等待硅的扩散(推迟P转变)。另外,Si能提高铁原子间作用力,提高铁的自扩散激活能,推迟P和B转变; (2)Mn是扩大γ相区元素,大大增加了α形核功;且锰也是碳化物形成元素,推迟合金渗碳体的形核与长大,因此锰不仅使C曲线向右移,且使之向下移; (3)Mo是中强碳化物形成元素,除了推迟珠光体转变时碳化物的形核与长

金属材料学教学大纲

金属材料学 (Science of Metal Materials) 课程编号:07171390 学分:3 学时: 48 (其中:讲课学时:38 课堂讨论学时:10 ) 先修课程:金属学、热处理原理、热处理工艺、工程材料力学性能 适用专业:金属材料工程、材料成型加工、冶金专业。 教材:戴起勋主编.金属材料学.北京:化学工业出版社,2005.9 开课学院:材料科学与工程学院 一、课程的性质与任务: 《金属材料学》是一门综合性应用性较强的专业必修课。在金属学、金属组织控制原理及工艺和力学性能等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。通过课堂讲授、实验等教学环节,使学生系统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 二、课程的基本内容及要求 绪论(金属材料的过去、现在和将来): 1.教学内容 (1)金属材料发展简史 (2)现代金属材料 (3)金属材料的可持续发展与趋势 2.基本要求 了解金属材料在国民经济中的地位与作用、金属材料的发展概况和本课程的性质、地位和任务。 第一章钢的合金化概论 1.教学内容 (1)钢中的合金元素:合金元素和铁基二元相图;合金元素对Fe-C相图的影响;合金钢中的相组成;合金元素在钢中的分布; (2)合金钢中的相变:合金钢加热奥氏体化,合金过冷奥氏体分解;合金钢回火转变; (3)金元素对强度、韧度的影响及其强韧化; (4)合金元素对钢工艺性能的影响; (5)微量元素在钢中的作用 (6)金属材料的环境协调性设计基本概念; (7)钢的分类、编号方法。 2.基本要求 (1)掌握钢中合金元素与铁和碳的作用;铁基固溶体、碳(氮)化合物的形成规律;合金元素在钢中的分布;合金元素对铁-碳状态图的影响(2)了解钢的分类、编号方法 (3)掌握合金元素对合金钢工艺过程的影响 (4)掌握合金元素对合金钢力学性能的影响规律 (5)理解微量元素在钢中的作用 (6)了解材料的环境协调性设计基本概念

第三章-钛合金及合金化原理

第三章钛合金及合金化原理 3.1钛合金相图类型及合金元素分类 1.钛合金的二元相图 (1)第一种类型与α和β均形成连续互溶的相图。只有2个即Ti-Zr和Ti-Hf 系。钛、锆、铪是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛和β钛中溶解能力相同,对α相和β相的稳定性能影响不大。温度高时,锆的强化作用较强,因此锆常作为热强钛合金的组元。 (2)第二种类型β是连续固溶体,α是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型的β-Ti形成连续固溶体,而与密排六方点阵的α-Ti形成有限固溶体。 V属于稳定β相的元素,并且随着浓度的提高,它急剧降低钛的同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V在α钛中有较大的浓度(>3%),这样可以得到将单相α合金的优点(良好的焊接性)和两相合金的有点(能热处理强化,比α合金的工艺塑性好)结合在一起的合金。Ti-V系中无共析反应和金属化合物。 Nb在α钛中溶解度大致和V相同(约4%),但作为β稳定剂的效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中的溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织.Mo的添加有效地提高了室温和高温的强度。Mo室温一个缺点是熔点高,与钛不易形成均匀的合金。加入Mo时,一般是以Mo-Al中间合金形式(通过钼氧化物的铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应的相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内的相区范围内存在有序化的α2(Ti3X)相,它会使合金的性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤ 8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn是相当弱的强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量的B可细化钛及其合金的大晶粒,Ga可以与钛良好溶合,并显著提高钛合金的热强性。氧是较“软”的强化剂,在含量允许的范围内时,不仅可保证所需的强度水平,而且可以保证足够高的塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解的相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成的Ti2Cr化合物有两种同素异晶形式,其固溶体以δ和γ表示。Cr属于β稳定元素,在α钛中的溶解度不超过0.5%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好的室温塑性并有高的强度,同时可保证有高的热处理强化效应。 Ti-W系中,会产生偏析转变:β′?α + β′′。偏析反应温度较高,Ti-W系的热稳定性比Ti-Cr合金高的多。W在α钛中的溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛的同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相和钛的氢化物,在共析温度下氢在α钛中的溶解度为0.18%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金的氢脆。在非合金化钛和以α组织为基的单相钛合金中,氢脆的主要原因是脆性氢化物相的析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢的过饱和固溶体区,在低速变形时引起脆性断裂。在β相含量小的合金中,这两种产生联合作用。纯钛和近α组织的钛合

合金化的特点

转炉炼钢脱氧合金化的特点 贾卫国 (陕西略阳钢铁有限责任公司炼钢分厂) 摘要:论述了转炉炼钢脱氧、合金化的特点,并结合实际对脱氧剂使用、合金化工艺进行了探索。 关键词:硅钡钙硅钒氮 一、前言 略阳钢铁有限责任公司二炼钢自投产以来,通常采用硅钡钙、增碳剂、硅铁、锰硅铁、钒氮等作为脱氧、合金化材料。在冶炼HRB335钢时,合金易结块,造成[SI]、[Mn]成分波动大,冶炼HRB400钢时,钒氮合金回收率不稳定,易出现废品等问题,为此,对原有的脱氧、合金化特点进行了解,改进合金加入量,加入方法,有效解决上述问题。 二、各种合金特点 (一)硅钡钙 主要成份Ca30.16%,Ba10.69,Si20.38,采用硅钡钙脱氧,由于在炼钢温度下Ca的蒸汽压非常高,故反应激烈,加上有部分脱氧产物为气体CO,钢液搅动比较强,有利于合金的快速溶化和成分的均匀。 加入到钢中的硅钡钙是以氧化钙、硫化钙、铝酸钙的形式存在于钢中,由于钢中的AI2O3与钙钡的脱氧产物生成复合的钙酸盐夹杂,因此,钢中单纯的铝夹杂减少。 钡在炼钢温度范围内有效地降低钙的蒸气压,增加钙在钢液中的溶解度,同硅钙合金相比,用硅钡钙合金作为钙源加入钢液中,加入的钙量即

使是钙合金加入量的一半时,钢液中的钙含量却是硅钙合金的两倍左右,钙在钢液中也显著提高,充分显示钡在钢液中有效的保护了钙,降低了钙的氧化,从而达到对钢液钙处理的目的。 (二)锰的特点 锰是一种非常弱的脱氧剂,在碳含量非常低,氧含量很高时,可以显示出脱氧作用。 锰的作用是消除钢中硫的热脆倾向,改变硫化物的形态和分布以提高钢质。 锰对铁素体的固溶强化能力极强,可以提高钢的强度,钢含锰量高时,具有明显的回火脆性,锰对钢有使钢过热的倾向,为了克服这一倾向,可在钢中配加少量细化晶粒的元素钒等。钒产生极稳定的碳化物,可以强烈细化晶粒,所以钢中加钒对钢的性能特别有利。 (三)硅的特点 硅是钢中最基本的脱氧剂。普通钢中硅在0.17—0.37%,1450℃钢凝固时,能保证钢中与其平衡的氧小于碳平衡的量,抑制凝固过程中CO气泡的产生。 硅在钢中溶于铁素体内使钢的强度,硬度增加,塑性、韧性降低,硅与钢水中的FeO能结成密度较小的硅酸盐炉渣而被除去。 硅能还原钒 ①2/5V2O5+Si=4/5V+SiO2 ②1/2 V2O4+Si=V+SiO2 ③2/3 V2O3+Si=4/3V+SiO2

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

合金化原理

1、影响加热速度的因素有哪些?为什么? 答:(1)加热方法(加热介质)的不同。 由综合传热公式Q=а(T介-T工)得知,当加热介质与被加热工件表面温度差(T 介-T工)越小,单位表面积上在单位时间内传给工件表面的热量越小,因而加热速度越慢。 (2)工件在炉内排布方式的影响。 工件在炉内的排布方式直接影响热量传递的通道,例如辐射传递中的挡热现象及对流传热中影响气流运动情况等,从而影响加热速度。 (3)工件本身的影响。 工件本身的几何形状、工件表面积与其体积之比以及工件材料的物理性能(C、λ、γ等)直接影响工件内部的热量传递及温度,从而影响加热速度。同种材料制成的工件,当其特征尺寸s与形状系数k的乘积相等时,以同种方式加热时则加热速度相等 2、回火炉中装置风扇的目的是什么?气体渗碳炉中装置风扇的目的是什么? 答:回火炉中装置风扇的目的是为了温度均匀,避免因为温度不均而造成材料回火后的硬度不均。气体渗碳炉中装置的风扇的目的是为了气氛的均匀,避免造成贫碳区从而影响组织性能。 3、今有T8钢工件在极强的氧化气氛中分别与950度和830度长时间加热,试述加热后表层缓冷的组织结构,为什么? 答:根据题意,由于气氛氧化性强,则炉火碳势低。在950℃长时间加热时,加热过程中工件表面发生氧化脱碳。工件最外层发生氧化反应,往里,由于950℃高于Fe-C状态图中的G点,所以无论气氛碳势如何低,脱碳过程中从表面至中心始终处于A状态,缓冷后,由表面至中心碳浓度由于脱碳和扩散作用,碳含量依次升高直至0.8%,所以组织依次为铁素体和珠光体逐渐过渡到珠光体,再至相当于碳含量为0.8%的钢的退火组织(P+C)。当工件在830℃加热时,温度低于G点,最外层依然会发生氧化反应。往里,工件将在该温度下发生脱碳。由于气氛氧化性极强,则碳势将位于铁素体和奥氏体的双相区,所以工件发生完全脱碳。由外及里的组织在缓冷后依次是铁素体,铁素体加珠光体,珠光体加渗碳体。 4、今有一批ZG45铸钢件,外形复杂,而机械性能要求高,铸后应采用何种热处理?为什么? 答:实现应该采用均匀化退火,以消除铸件的偏析和应力(如果偏析不严重,也可以采用完全退火。就机械性能而言,45最好为调质,如果形状确实太复杂,淬火时容易变形、开裂、可用正火代替。 5、20GrMnTi钢拖拉机传动齿轮,锻后要进行车内孔,拉花键及滚齿等机械加工,然后进行渗碳淬火,回火。问锻后和机械加工前是否需要热处理?若需要,应进行何种热处理?主要工艺参数如何选择? 答:锻后和机械加工前需要正火处理,这样可使同批毛坯具有相同的硬度(便于切削加工),可以细化精粒,均匀组织,为后续的渗碳与淬火提供良好的组织状态;二则应该是把硬度调整到利于切削加工的硬度 正火工艺:正火加热温度为Ac3以上120~150(即在960℃左右),其原则是在不引起晶粒粗话的前提下尽量采用高的加热温度,以加速合金碳化物的溶解和奥氏体的均匀化,然后风冷5分钟左右,接着在640℃等温适当时间后空冷,硬度在HB180左右,利于切削加工。 6、45钢普通车床传动齿轮,其工艺路线为锻造---热处理---机械加工----高频淬火—回火。试问锻后应进行何种热处理,为什么? 答:常用淬火介质及冷却特性;进行正火处理,45钢市中碳钢,正火后其硬度接近于最佳切削加工的硬度。对45钢,虽然碳含量较高,硬度稍高,但由于正火生产率高,成本低,随意采用正火处理。

(完整版)金属材料学复习文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合金 钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区)C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形成 [M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳化 物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影响 程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成元素影响不大。

Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提高铁 素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从而使 钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对的 提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响 1.钢的焊接性能主要由焊后开裂敏感性和焊接区的硬度来评价

第三章钛合金及合金化原理

第三章钛合金及合金化原理 钛合金相图类型及合金元素分类 1.钛合金的二元相图 (1)第一种类型与α和β均形成连续互溶的相图。只有2个即Ti-Zr和Ti-Hf 系。钛、锆、铪是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛和β钛中溶解能力相同,对α相和β相的稳定性能影响不大。温度高时,锆的强化作用较强,因此锆常作为热强钛合金的组元。(2)第二种类型β是连续固溶体,α是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型的β-Ti形成连续固溶体,而与密排六方点阵的α-Ti形成有限固溶体。 V属于稳定β相的元素,并且随着浓度的提高,它急剧降低钛的同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V在α钛中有较大的浓度(>3%),这样可以得到将单相α合金的优点(良好的焊接性)和两相合金的有点(能热处理强化,比α合金的工艺塑性好)结合在一起的合金。Ti-V系中无共析反应和金属化合物。 Nb在α钛中溶解度大致和V相同(约4%),但作为β稳定剂的效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中的溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织.Mo的添加有效地提高了室温和高温的强度。Mo室温一个缺点是熔点高,与钛不易形成均匀的合金。加入Mo时,一般是以Mo-Al中间合金形式(通过钼氧化物的铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应的相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内的相区范围内存在有序化的α2(Ti3X)相,它会使合金的性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn 是相当弱的强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量的B可细化钛及其合金的大晶粒,Ga可以与钛良好溶合,并显著提高钛合金的热强性。氧是较“软”的强化剂,在含量允许的范围内时,不仅可保证所需的强度水平,而且可以保证足够高的塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解的相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成的Ti2Cr化合物有两种同素异晶形式,其固溶体以δ和γ表示。Cr属于β稳定元素,在α钛中的溶解度不超过%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好的室温塑性并有高的强度,同时可保证有高的热处理强化效应。 Ti-W系中,会产生偏析转变:β′?α + β′′。偏析反应温度较高,Ti-W系的热稳定性比Ti-Cr合金高的多。W在α钛中的溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛的同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相和钛的氢化物,在共析温度下氢在α钛中的溶解度为%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金的氢脆。在非合金化钛和以α组织为基的单相钛合金中,氢脆的主要原因是脆性氢化物相的析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢的过饱和固溶体区,在低速变形时引起脆性断裂。在β相含量小的合金中,这两种产生联合作用。纯钛和近α组织的钛合金

金属材料学复习思考题2016.5

金属材料学复习思考题 (2016.05) 第一章钢的合金化原理 1-1名词解释 (1)合金元素;(2)微合金化元素;(3)奥氏体稳定化元素;(4)铁素体稳定化元素;(5)杂质元素;(6)原位析出;(7)异位析出;(8)晶界偏聚(内吸附);(9)二次硬化;(10)二次淬火;(11)回火脆性;(12)回火稳定性 1-2 合金元素中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? C相图的S、E点有什么影响?这种影响意味着什么? 1-3简述合金元素对Fe-Fe 3 1-4 为何需要提高钢的淬透性?哪些元素能显著提高钢的淬透性?(作业) 1-5 能明显提高钢回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?(作业) 1-6合金钢中V,Cr,Mo,Mn等所形成的碳化物基本类型及其相对稳定性。 1-7试解释含Mn和碳稍高的钢容易过热,而含Si的钢淬火温度应稍高,且冷作硬化率较高,不利于冷加工变形加工?(作业) 1-8 V/Nb/Ti、Mo/W、Cr、Ni、Mn、Si、B等对过冷奥氏体P转变影响的作用机制。 1-9合金元素对马氏体转变有何影响? 1-10如何利用合金元素来消除或预防第一次、第二次回火脆性? 1-11如何理解二次硬化与二次淬火两个概念的异同之处? 1-12钢有哪些强化机制?如何提高钢的韧性?(作业) 1-13 为什么合金化基本原则是“复合加入”?试举两例说明复合加入的作用机理?(作业) 1-14 合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?(作业) 1-15 40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透性直径分别为25~30 mm、40~60mm和60~100mm,试解释淬透性成倍增大的现象。(作业) 1-16在相同成分的粗晶粒和细晶粒钢中,偏聚元素的偏聚程度有什么不同?(作业)

工程结构钢的合金化原理

一、工程结构钢的合金化原理 1、低碳:由于低温韧性、焊接性和冷成型性能的要求高,其碳质量分数一般不超过0.25%。 2、加入以锰为主的合金元素,起固溶强化作用,提高钢的强度和韧性。 3、加入铌、钛或钒等辅加元素,起弥散强化作用,提高钢的强度和韧性。 4、加入少量铜(<0.4%)和磷(0.1%左右)等,可提高抗腐蚀性能。 二、调质钢合金化特点 1、中碳,碳质量分数一般在0.25%~0.50%之间,以0.4%居多。碳量过低,不易淬硬,回火后强度不够;碳量过高则韧性不够。 2、加入提高淬透性的元素,如Cr、Mn、Ni、Si、B等。 3、加入防止第二类回火脆性的元素,如Mo、W等。 三、轴承钢的合金化特点 1、高碳,为了保证轴承钢的高硬度、高耐磨性和高强度,碳质量分数应较高,一般为0.95%~1.10%。 2、铬为基本合金元素,铬含量为0.40%~1.65%。铬能提高淬透性,并与基体金属形成合金渗碳体(Fe,Cr)3C,呈细密、均匀分布,从而提高钢的耐磨性,特别是疲劳强度。 3、加入硅、锰、钒等提高淬透性 四、渗碳钢的合金化特点 (1)碳质量分数一般在0.10%~0.25%之间,以保证零件心部有足够的塑性和韧性。 (2)加入提高淬透性的合金元素,常加入Cr、Ni、Mn等,以提高经热处理后心部的强度和韧性。Cr还能细化碳化物、提高渗碳层的耐磨性,Ni则对渗碳层和心部的韧性非常有利。 (3)加入阻碍奥氏体晶粒长大的元素,主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。除了能阻止渗碳时奥氏体晶粒长大外,还能增加渗碳层硬度,提高耐磨性。 五、氮化钢的合金化特点 1、低碳 2、铬、钼、锰可使钢获得足够的淬透性。 3、钼及钒能使钢在500~580℃之间长时间保温时保持强度。为了防止或减轻钢发生回火脆化,往往须要在氮化钢中加入0.2~0.5%钼。 六、弹簧钢的合金化特点 1、中、高碳。一般为0.50%~0.70%。碳质量分数过低,强度不足。碳质量分数过高时,塑性、韧性降低,疲劳抗力也下降。 2、加入以Si、Mn为主的提高淬透性的元素。 七、耐磨钢的合金化特点 1、高碳:保证钢的耐磨性和强度。其碳质量分数不超过1.4%。 2、高锰:提高钢的加工硬化率及良好的韧性。 3、一定量的硅:硅可改善钢水的流动性,并起固溶强化的作用。 八、高速钢的合金化主要特点 1、工作温度可达500~600℃,有很高的热硬性(593℃HRC>55)。 3、高碳(0.70~1.10%C),保证硬度和耐磨性。 4、加入较多的钨、钼、钒、铬等元素。钨、钼、可产生“二次硬化”以保证热硬性,同时较多的碳化物可显著地提高耐磨性。 九、热作模具钢的合金化特点 1、中碳(0.30~0.50%C)范围 2、加入铬、硅、锰等提高淬透性,铬和硅还能提高抗氧化和抗烧蚀性。 3、镍可提高钢的韧性,并与铬、钼一起提高耐热疲劳性能。 4、钨、钼、钒可产生二次硬化效果,钼还能防止第二类回火脆性、提高高温硬度和回火稳定性。

相关文档