文档库 最新最全的文档下载
当前位置:文档库 › 高等数学积分学总结

高等数学积分学总结

高等数学积分学总结
高等数学积分学总结

《高等数学》中的积分学总结

高等数学中涉及的积分类型主要有:定积分(含广义积分)、二重积分、三重

积分、曲线积分(对弧长、对坐标)、曲面积分(对面积、对坐标)。 一、符号形式

1()b

a

I f x dx =?;2(,)D

I f x y d σ=??;3(,,)I f x y z dV Ω

=???;

4(,,)C

I f x y z ds =?;5C

C

I F dr Pdx Qdy Rdz ==++??;

6(,,)I f x y z dS ∑

=??;7I F ndS F dS Pdydz Qdzdx Rdxdy ∑

===++??????

二、共同点

2.1 定义方法:划分—>微元—>求和—>取极限 2.2 性质:线性性质、可加性、估值

三、不同点

四、重要联系及公式

4.1 Newton-Leibniz 公式:()()()b

a f x dx F

b F a =-?

4.2 Green 公式: 环量—旋度形式:

(

)C

D

D

Q P x y D

Pdx Qdy rotF kd F kd d σσ

σ

????+==??=-???????

通量—散度形式:

()C

D

D

Q

P

x y

D

Pdy Qdx F nd divFd d σσ

σ

????-===+???????

4.3 Stokes 公式:

()()(

)C

Q

Q

R

P R

P y z

z x x

y Pdx Qdy Rdz rotF ndS F ndS

dydz dzdx dxdy

????????????∑

++==??=-+-+-???????

4.4 Gauss 公式:

()Q

P

R x y

z Pdydz Qdzdx Rdxdy F ndS divFdV FdV

dV

Ω

Ω

??????Ω

++===?=++?????????????

五、基本计算方法

5.1 定积分

方法:凑微分法、换元法、分部积分法 特殊结论:(1)对称性与奇偶性:

02(),()()

()0

,()()a

a

a

f x dx f x f x f x dx f x f x -?-=?=?

?-=-???

(2)周期性:0

()()a T T

a

f x dx f x d x +=??

(3)无界性:(),(),(),()A b

b A

a

a

f x dx f x dx f x dx f x dx -

++∞

-∞

?

???

2(,)D

I f x y d σ=??,其中D 为平面有界区域。

3(,,)

I f x y z dV

Ω

=???,其中Ω为空间有界区域

(功或沿着曲线方向的流量)β→

(())())y t dt '++ )dr

dt

dt dt dr dt dr t dt ==((),)x t dt 5()Px t α'=+?

5.5 曲面积分 (流量或者通量)定侧(即选定∑g g p

d g p

d ?±+”,否则取“-”

(往zox 面投影)或(往xoy 面投影)|g

g p d ||

g p d ?

六、Green 公式

环量—旋度形式:

(

)C

D

D

Q P x y D

Pdx Qdy rotF kd F kd d σσ

σ

????+==??=-???????

通量—散度形式:

(

)C

D

D

Q P x

y

D

Pdy Qdx F nd divFd d σσ

σ

????-===+

???????

大前提:曲线C 分段光滑。 条件:① 曲线C 正向;

② 曲线C 封闭;

③ P 、Q 在C 及其内部具有一阶连续偏导数。 6.1 满足所有条件

直接使用Green 公式的两种形式之一进行计算皆可,效果相同。

6.2 若仅不满足条件①,则在C -上满足Green 公式的条件,在C -上的技术结果乘以(-1)即可。即有:

(

)C

D

D

C Q P x

y

D

Pdx Qdy Pdx Qdy rotF kd F kd d σσ

σ

-

????+=-+=-=-??=--

????????或

()C

D

D

C Q

P

x y

D

Pdx Qdy Pdy Qdx F nd divFd d σσ

σ

-

????+=--=-=-=-+

????????

6.3 若仅仅不满足条件②,则可采用添加光滑曲线1C 以便使用Green 公式。

添加时候,应注意:1)在1C C +以及1C C +内部应该满足Green 公式的条件,

2)1C 尽量简单且积分1

C Pdx Qdy +?容易计算。即有:

1

1

C

C C C Pdx Qdy Pdx Qdy Pdx Qdy ++=+-+??

?

上式等号右边的第一个积分可用Green 公式计算。

6.4 若P 、Q 在C 内部的仅有m 个点上不满足条件③,则可采用添加封闭 光滑曲线12,,,m C C C 。应注意:

1)12,,,m C C C 完全包含于C 内; 2)12,,

,m C C C 定向为顺时针方向;

3)每个i C 内部有且只有一个点不满足条件③,1,2,,i m =;

4)曲线积分

i

C Pdx Qdy +?容易计算,1,2,

,i m =。

则在曲线12m C C C C ++++及其内部满足Green 公式的条件。于是

11

m

m

C

C C C C C Pdx Qdy Pdx Qdy Pdx Qdy Pdx Qdy ++++=

+-

+-

-

+??

??

七、Gauss 公式

(

)Q P R x

y

z

Pdydz Qdzdx Rdxdy F ndS divFdV FdV

dV

Ω

Ω

??????Ω

++===?=+

+

?????????????

大前提:曲面分片光滑。 条件:① 曲面∑取外法线方向;

② 曲面∑封闭;

③ P 、Q 、R 在曲面∑及其内部具有一阶连续偏导数 7.1 满足Gauss 公式的所有条件,则直接使用Gauss 公式计算。 7.2 若仅有条件①不满足,则可在-∑上使用Gauss 公式。即

()Q P R

x y z Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy

F ndS divFdV FdV dV

-

-

∑Ω

Ω

∑??????Ω

++=-++=-=-=-?=-++???????????????

7.3 若仅有条件②不满足,则可通过增加简单定向曲面1∑ 的方法,使得在1∑+∑ 上满足Gauss 公式的条件。添加的曲面1∑越简单越容易计算

1

Pdydz Qdzdx Rdxdy ∑++??越好。此时,有

1

1

Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy ∑

∑+∑∑++=++-++??????

7.4 若P 、Q 、R 在∑上有一阶连续偏导数,但在∑内部只有m 个点不满足条件③,即有奇点。此时,可以用小曲面挖掉奇点,再用Gauss 公式。注意小曲面的选取,要以在其上曲面积分易于计算为佳。

八、Stokes 公式

(

)(

)(

)C

Q Q R

P R P y

z

z

x

x

y

Pdx Qdy Rdz rotF ndS F ndS

dydz dzdx dxdy

????????????∑

++==??=-

+-

+-

???????

使用Stokes 公式计算时,注意曲线C 的定向和曲面的定向应该满足右手法则。

九、统一化的积分定理

Green 公式及其三维空间的一般化形式 ① 法向形式(通量—散度形式): Green 公式:C

D

F nds Fd σ=????;

Gauss 公式:F ndS FdV ∑

Ω

=??????

解释:Gauss 公式将平面上一个二维区域的Green 公式的法向(流量、通量)形式一般化到空间中一个三维区域的相应形式。在每一种情况下,F 的散度F ?在区域内部的积分都等于场F 穿过边界面的总流量(通量)。

② 切向形式(环量—旋度形式): Green 公式:C

D

F dr F kd σ=?????

Stokes 公式:C

D

F dr F nd σ=?????

解释:Stokes 公式将平面中一块区域上的Green 公式的切向(旋度)形式一般化成三维空间中一曲面的相应形式。每一种情况下,在曲面内部上F 的旋度的法向分量都等于F 绕边界的环流量。

这里还可以进一步地讲,所有这些结果都可以考虑为一个单一的基本定理的不同形式。回顾微积分学基本定理。它讲:若()f x 在[,]a b 上可微,则

()()b

df

dx

a dx f

b f a =-?

若我们令在整个[,]a b 上()F f x i = ,则df dx F

=?。 若在定义[,]a b 边界的单位外法向量场n 为在点b 是i ,在点a 是i -,则

()()()()()()()f b f a f b i i f a i i F b n F a n -=+-=+

=F 穿出区间[,]a b 边界的向外总流量

基本定理就可以写为:

[,]

()()a b F b n F a n Fdx +=

??

于是,

① 微积分学基本定理、Green 公式的流量(通量)形式和Gauss 公式都是讲微分算子? 与场F 在一区域上的点乘运算的积分等于在该区域的边界上场的法向分量的和。

② Stokes 公式和Green 公式的环量形式是讲当适当定向后,在一个场上旋度运算结果在法向分量的积分等于在曲面边界上场的切向分量的和。

以上这些解释可以引出下属这个了不起的原理:

微分算子对场的作用后在一区域上的积分等于该区域边界上场的适当分量的和。

十、曲线积分与路径无关

设D 为简单连通域,F Pi Qj Rk =++,P 、Q 、R 具有一阶连续偏导数。

上保守场

连续二阶偏导数或

0f ???=

简单连通+Stokes 公式

① 判别规则:0F ??=; ② 应 用:1)

:()()C A B

F dr f B f A →=-?

2)df Pdx Qdy Rdz =++;

3)求 f 的方法有:曲线积分法和原函数法。

高数积分总结doc

第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设)(x f 是定义在某区间的已知函数, 若存在函数)(x F ,使得) ()(x f x F ='或 dx x f x dF )()(=,则称)(x F 为)(x f 的一个原函数 定义2.函数 )(x f 的全体原函数C x F +)(叫做)(x f 的不定积分,,记为: ?+=C x F x x f )(d )( 其中 )(x f 叫做被积函数 x x f d )(叫做被积表达式 C 叫做积分常数 “ ?”叫做积分号 二、不定积分的性质和基本积分公式 性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即 ()?==' ? x x f x x f x f x x f d )(d )(d )(d )(;. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即 ?+=+=?'C x f x f C x f x x f )()(d ,)(d )(或 性质3. 非零的常数因子可以由积分号内提出来,即 ?≠=?)0(d )(d )(k x x f k x x kf . 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即 []??±=?±x x g x x f x x g x f d )(d )(d )()( 基本积分公式 (1)?+=C kx x k d (k 为常数) (2)C x x x ++= ?+1 1 1d μμμ(1-≠μ) (3)C x x x +=?ln d 1 (4)? +=C e dx e x x (5)? +=C a a x a x x ln d (6)?+=C x x x sin d cos (7)? +-=C x x x cos d sin (8)?+=C x x x tan d sec 2 (9)?+-=C x x x cot d csc 2 (10)?+=C x x x x sec d tan sec (11)?+-=C x x x x csc d cot csc (12)?++=C x x x x tan sec ln d sec (13)+-=C x x x x cot ln d csc (14)C x x +=arctan d 1

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

考研数学:高数重要公式总结(基本积分表)

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研数学:高数重要公式总结(基本积 分表) 考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。 其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全 Last revision on 21 December 2020

第4章 不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解:53 2 2 23x dx x C - -==-+?

★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个 整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134 (-+-) 2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(-+-)2

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

高数积分总结

高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。 定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作 ?dx x f )(。 性质1:设函数f(x)及g(x)的原函数存在,则 ???+=+dx x g dx x f dx x g x f )()()]()([。 性质2:设函数f(x)的原函数存在,k 为非零常数,则 ??=dx x f k dx x kf )()(。 2、换元积分法 (1)第一类换元法: 定理1:设f(u)具有原函数,)(x ?μ=可导,则有换元公式 ) (])([)(')]([x d f dx x x f ? μμμ??=??=。

例:求?xdx 2cos 2 解 ????=?=?=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得 ?+=C x xdx 2sin 2cos 2 (2)第二类换元法: 定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设 )(')]([t t f ψψ具有原函数,则有换元公式 ,] )(')]([[)() (1 x t dt t t f dx x f -=??=ψ ψψ 其中)(1 x -ψ是)(t x ψ=的反函数。 例:求? >+)0(2 2 a a x dx 解 ∵t t 2 2sec tan 1=+, 设 ??? ??<<-=22 tan ππ αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+, 于是 ? ??==+tdt dt t a t a a x dx sec sec sec 222 ∴C t t a x dx ++=+?tan sec ln 2 2 ∵a a x t 2 2sec += ,且0tan sec >+t t ∴1222222)ln(ln C a x x C a a x a x a x dx +++=+??? ? ? ?++ =+? ,

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

高等数学微积分公式精髓

总论 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 2 2131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

3 24arctan 3 x x x C = +-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +?

相关文档
相关文档 最新文档