文档库 最新最全的文档下载
当前位置:文档库 › 玻璃与陶瓷的关系

玻璃与陶瓷的关系

玻璃与陶瓷的关系
玻璃与陶瓷的关系

玻璃和陶瓷的关系

玻璃和陶瓷关系玻璃是一种无定形、非晶态的无机材料, 其历史至少可追溯到4000 年以前. 最近几十年, 玻璃工业有了较大的发展, 目前, 世界范围内, 玻璃工业每年大约创造1000 亿美元的产值. 与玻璃材料相比, 陶瓷是一种产品种类更加丰富的无机材料,在结构上也是更加有序的. 玻璃和陶瓷是不可分割的两类材料, 被称为孪生姊妹, 它们有相似的生成原理, 原材料和生产工艺, 而且都是经过高温处理而制得的. 在一些工业中, 玻璃和陶瓷这两个材料名词被互换使用, 如陶瓷的玻璃相也称作陶瓷釉; 在生物陶瓷的结构中, 既有陶瓷的结构特点, 也有玻璃的结构特点.

在欧美大学中, 玻璃和陶瓷两个学科是完全联系在一起的, 其课程设置也是互相补充的, 而这正是充分认识到了玻璃和陶瓷材料的相似和区别之处的结果. 在工业生产中, 人们也有相同的认识, 例如: 在陶瓷领域所学的知识可以很好地, 甚至是必须地被使用来解决玻璃生产中所遇到的问题, 而且往往会收到意想不到的神奇效果. 玻璃行业的技术人员和玻璃产品的生产者必须充分认识玻璃在生成过程中向陶瓷转变的规律, 以便更好地制定和控制工艺参数, 例如, 在生产玻璃制品( 无论是玻璃纤维还是玻璃器皿) 的过程中, 都必须掌握把晶态的原料熔融、冷却从而最终转变为非晶态产品的过程, 否则将无法控制玻璃态产品的生成, 更不能生产出有特定性能的产品. 对传统的玻璃产品来说, 都或多或少地存在缺陷, 而所谓的缺陷, 其中主要是指玻璃态中所存在的陶瓷相, 而玻璃产品的物理和化学性能则是由其玻璃相和陶瓷相的含量以及它们之间结合面上的张力所决定.

同样, 在传统陶瓷产品的制造中, 例如: 容器和卫生陶瓷等制品, 都要使其成分、结构向玻璃态转变, 以制得所需的最终产品. 在陶瓷制品的热处理过程中, 玻璃相的控制是通过控制原材料, 晶化时间以及晶化温度来实现的产品, 最终性能的优劣不仅决定于玻璃相成分是否存在及其存在的数量, 也决定于玻璃相形成过程中的热历史, 以及较多的耐火材料混合组分在玻璃中溶解的程度如何.

既使是技术陶瓷, 如高纯铝制品, 哪怕其颗粒只有几个原子层厚, 在颗粒和颗粒的边界层上通常也存在着连续的玻璃相. 除个别晶体材料之外, 几乎所有商品陶瓷的组成中都含有玻璃相, 所以在原料的选择上、产品生产过程中的工艺参数的制定和控制上以及其它许多方面, 我们都应充分考虑玻璃和陶瓷的共性, 以更有利于对玻璃和陶瓷材料的理论分析.

总之, 玻璃材料的连续玻璃相中分布着无数极其微小的陶瓷相区域; 陶瓷材料的陶瓷相之间也分布着玻璃相, 而玻璃材料或陶瓷材料的性能是由玻璃相和陶瓷相的含量以及玻璃相和陶瓷相之间的结合状况所共同决定的, 这也是玻璃的结构学说中晶子学说所强调的结构特征, 而我们在研究及生产中过多地强调了无规则网络学说, 玻璃和陶瓷材料的技术人员必须认识到: 只有把两个学说结合起来, 才能对这两类材料有一个更加完善的理解, 才能对玻璃和陶瓷材料有更加深刻的认识.

生产中玻璃和陶瓷的关系, 玻璃和陶瓷材料生产的许多准备过程是相同的, 例如: 原材料的选择、配合料的制备过程、提高其热处理效率的方法、耐火材料的选择以及在高温下使配合料转变为最终产品的方法等方面都有很大的相同之处, 另外有关余热的回收利用和热处理过程中阻止侵蚀相的产生等问题也都是

相同的. 很多技术、方法可以在玻璃和陶瓷生产中被互换使用, 例如: 在某些用于微电子领域的特殊玻璃制品的熔制过程中, 所采用的技术经常与陶瓷粉的加工技术完全相同. 其实, 有许多类似的产品, 它们的生产加工技术都是基于玻璃和陶瓷的两种材料的形成机理, 分析其共性加工而成的, 因此对于有关玻璃和陶瓷之间共性的理解是致关重要的, 这对于有效提高玻璃和陶瓷产品质量是非常重要的.不管玻璃和陶瓷所用的最初原料是什么, 玻璃和陶瓷生产中所产生的副产品都可以被回收利用, 被作为一种新材料重新用在玻璃或陶瓷的生产中, 而这已经成为目前世界各国极其关注的领域. 例如: 电视玻璃生产中所回收的废料也可作为碎玻璃被重新加入到原料中来生产电视玻璃、电灯及其他玻璃产品; 又如: 玻璃研磨过程中所产生的废料玻璃和磨料的混合物, 也可作为添加料被加入到原料中用来制造瓦或混凝土等材料, 这些副产品可以提高产品的强度, 这些废料的使用价值要比他们所取代的原材料更大, 尤其是对一些有毒的或危险的物质, 它们可以被重新作为有用的填料, 从而获得新生, 否则, 它们将作为废弃物被丢掉, 污染环境.

在欧美, 部分玻璃和陶瓷生产所需的原料已由专门的厂商提供, 这些原料供应商已经认识到回收废料的重要意义, 他们的经验告诉我们, 这些废料被作为生产玻璃或陶瓷的原料具有更高的使用价值. 在世界范围内, 政府部门和有工业废渣或收尘副产品生成的公司, 都正在投入大量的人力、财力寻找废弃物处理的新方法, 从废渣回收中重新获得收益, 以降低其昂贵的处理费用, 不约而同地把研究重点放在如何重新利用这些副产品, 由此可见, 认识到玻璃和陶瓷在生产中的共性是极其重要.

两者相结合的产品玻璃陶瓷. 玻璃陶瓷( 又称微晶玻璃) 类材料即指同时具有晶态和非晶态物质特征的一类材料, 是通过热处理使基础玻璃中形成均匀分布的微小晶体而产生的, 这类材料具有玻璃或陶瓷都无法比拟的优异性能, 例如: 耐腐蚀性能, 耐磨性能和机械性能等. 微晶玻璃材料的物理化学性能主要决定于材料中玻璃相和陶瓷相的含量、晶体的颗粒大小、分布状态以及玻璃相和陶瓷相的连接程度等因素.虽然玻璃陶瓷类产品已经存在了几百年, 但被广泛认识和利用还是在近50 年内. 20 世纪50 年代, Storey 研制出了光敏微晶玻璃, 即在玻璃的表面使部分玻璃相转变为陶瓷相, 并使陶瓷相均匀地分布在玻璃相中而制得的, 从而产生了一种具有低膨胀性等许多优异性能、可以工业化生产的材料玻璃陶瓷. 今天, 我们制取玻璃陶瓷, 通常先将配合料熔制成玻璃, 然后再加入晶核剂, 经过热处理从而使可以控制的、区域微小的陶瓷相在玻璃相中均匀地分布, 这类材料可在工程中广泛使用, 例如在厨房设备中、在计算机的硬盘上, 尤其可以用做建筑装饰材料. 低融化温度和具有优越流动性的微晶玻璃料经常可以生成云母玻璃,并产生了材料界的奇迹, 即该类材料可以象塑料一样被注入模具中成型, 也可以象金属一样被机械加工.

这种复合材料表现出丰富多彩的, 甚至是稀奇古怪的物理特性, 完全超出了传统玻璃和陶瓷范畴, 它是对玻璃和陶瓷的生成原理和制造技术的充分认识并将两种材料共性完美结合的一个实例, 也充分证明了玻璃和陶瓷材料的不可分割性, 只要通过它们的共性把两者联系起来, 就可以生成性能优异的新材料.

学术领域应注意玻璃和陶瓷关系. 在北美的大学及研究机构中, 对玻璃和陶瓷技术人才的培养, 是从同时学习玻璃和陶瓷两种材料的生成原理开始的, 并将两种材料的特点有机地结合在一起. 在欧洲的本科教育中, 虽然人们更关注玻璃和陶瓷中的某个学科, 但这些课程也都强调学生应同时掌握两种理论, 并强调二

者的共性, 以更好地认识这两种材料, 也为未来现实就业或进一步的学术研究创造广阔的空间. 在过去的十几年中, 人们已经看到了一个全球性的趋势,即在材料科学领域中, 许多关于玻璃和陶瓷关系的研究又重新引起人们的重视, 这种趋势可能是受对未来学生在工程领域中有更广阔的选择性的推动, 也可能是受到提高大学毕业生的市场竞争力认识的影响.

在我国的学术研究中应充分注意到这些变化趋势, 使玻璃和陶瓷材料的基本理论更好地结合起来, 以扩展两类材料领域, 为解决玻璃或陶瓷材料生产中所遇到的技术问题提供更好的思路, 而不应孤立地强调玻璃材料或陶瓷材料中的某一个生成原理, 进而也能给无机材料提供更为深刻的、整体化的认识, 至少我们应充分认识到: 在培养高素质的材料科学人才中, 玻璃和陶瓷专业技术相结合是极其重要的.

5 结束语:璃和陶瓷在基本理论和生产过程上都具有很多相似或相同之处.对玻璃和陶瓷之间共性的研究是更好地生产玻璃或陶瓷产品的需要, 通常可以为在生产中所遇到的技术问题提供意想不到的解决办法.应充分认识到玻璃和陶瓷材料的密切关系.对于从事玻璃研究和生产的工程师来讲, 陶瓷不应当被认为是一个低技术或不相关的领域; 陶瓷专业的技术人员也不应当断言玻璃是一种被当代材料科学家认为是一种应用领域有限、难于有新发现的普通材料. 二者中任何一种观念, 至少会束缚材料科学者的思维和视野, 难于从容地迎接材料科学领域的挑战. 在学术研究领域中应强调这种观点, 它必将拓宽和深化研究者或材料工程技术人员对玻璃和陶瓷的认识, 也有益于对所有无机材料的理解.

陶瓷和玻璃

玻璃陶瓷选论 罗传峰 0943014034 玻璃 一、名词解释: 非桥氧;硼氧反常性;转变温度区;桥氧;混合碱效应;硼反常性 答:非桥氧:仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥氧。 硼氧反常性:在一定范围内,碱金属氧化物提供的氧,不像在熔融石英玻璃中作为非 桥氧出现于结构中,而是使硼氧三角体(B0 3 )转变成为完全由桥氧组成的硼氧四面体,导 致B 20 3 玻璃从原来两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络, 使玻璃的各种物理性质,与相同条件下的硅酸盐玻璃相比,相应地向着相反的方向变化,这就是所谓硼氧反常性。 转变温度区:玻璃熔体自高温逐渐变冷却时,要通过一个过渡温度区,在此区域内玻璃从典型的液体状态,逐渐转变为具有固体各项性质的物体。这一区域称之为转变温度区。 桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。 混合碱效应:在二元碱玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混合碱效应。 硼反常性:在钠硅酸盐玻璃中加入氧化硼时,往往在性质变化曲线中产生极大值和极小值,这现象也称为硼反常性。 二、问答题: 1、简述玻璃结构中阳离子的分类,及其在玻璃结构中的作用。 答:按元素与氧结合的单键能的大小和能否形成玻璃,分为三类:网络生成体氧化物:能单独生成玻璃,在玻璃结构中能形成各自特有的网络体系。网络外体氧化物:不能单独

生成玻璃,当阳离子M电场强度较小时,断网作用,电场强度较大时积聚作用。中间体氧化物:当配位数≥6时,阳离子处于网络之外,与网络外体作用相似;当配位数为4时能参加网络起网络生成体作用。 2、简述玻璃在Tg—Tf范围内及其附近的结构变化情况。 答:在Tg—Tf范围内及其附近结构变化中可以从三个温度范围说明:1.Tf以上,粘度小,质点流动层扩散速度快,结构变化快,瞬间可达平衡。2.Tg以下,玻璃基本上已经转化为具有弹性以及脆性等特点的固态物体,此温度范围内结构变化远远落后于温度变化。 3.Tg—Tf范围:粘度介于上述二者之间,质点可适当移动,构造状态趋向平衡所需时间较短。此时温度范围决定了玻璃结构状态以及结构灵敏性能。 3、逆性玻璃中,“逆性”的含义是什么? 答:1在结构上,一般玻璃的结构以玻璃形成物为主体,金属离子处于网络的空穴中,它仅起补网作用,逆性玻璃与通常玻璃是相逆的,即决定玻璃聚结程度的不是多面体之间的连接,而是金属离子多面体短链中氢离子的结合。2逆性玻璃在性质上也发生逆转性,一般玻璃的性质是随SiO2的减少而降低,在逆性玻璃中则相反,碱金属和碱土金属含量越多,结构越强固,而某些物理性质都向玻璃的相反方向变化。 第六章玻璃的化学稳定性 1、试述水、酸、碱、大气对玻璃的侵蚀过程。 答:1水,水对玻璃的侵蚀开始于水中的H+和玻璃中的Na+离子进行交换,通过反应间接破坏硅氧骨架,并且水分子也可以直接破坏硅氧骨架,从而造成对玻璃的侵蚀,但是产物硅酸凝胶会减低侵蚀的速度。2酸,酸对玻璃的侵蚀是通过水的作用侵蚀玻璃,产物金属氢氧化物要受到酸的中和。中和作用起着两种相反的效果,一是使玻璃和水溶液之间的离子交换反应加速进行,从而增加玻璃的失重,二是降低溶液的pH值,使硅酸凝胶Si(OH)4的溶解度减小,从而减少玻璃的失重。3碱,第一阶段:碱溶液中的阳离子吸附在玻璃表面上;第二阶段:由于阳离子有束缚其周围 OH-离子的作用,当阳离子吸附在玻璃表面的同时,玻璃表面附近的OH-离子浓度相应增高,起着“攻击”和“断裂”玻璃表面硅氧键的作用;第三阶段:-Si-O-Si-骨架破坏后,产生-Si-O-群,最后变成了硅酸离子。4大气,前

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

陶瓷与玻璃

陶瓷与玻璃 教材内容:四年级第一学期(上海科技教育出版社) 教学目标: 1、初步了解陶瓷和玻璃的特性、用途和加工方式。 2、通过制作“陶珠”,通过比较区分黏土加热前后的性质变化。 3、简单了解一些人类利用、发明陶瓷和玻璃的历程。 4、欣赏精美的陶瓷和玻璃器皿,知道陶瓷的发明体现了我国古代劳动人民的智慧,从而增加民族自豪感。 教学重点: 通过实验,初步了解陶瓷和玻璃的特性。 教学难点: 通过体验陶泥加工成陶珠的过程,区别加热前后的变化,感知陶瓷的发明历程。 教学准备:玻璃与陶瓷制品,玻璃片,陶瓷勺,铁钉,黏土,陶珠,课件等。 教学课时: 1课时 教学过程: 一.观看视频,激发兴趣,引入新课 [3分钟] 1、开场:同学们,在学习今天的内容之前,先请大家观看一段视频。 2、学生观看陶瓷制作的过程。(视频) 师:刚才的这段视频向我们介绍了什么?师:对,向我们展现了古老的陶瓷制作工艺。板书:陶瓷 3、师:(出示不同的杯子) 问:老师这里有一些杯子,你能说说它们是什么杯子吗?请学生上来区分一下 板书:玻璃 追问:你们是怎么区别陶瓷杯和玻璃杯的?(透明度) 4、师:今天我们就来了解一下“陶瓷与玻璃”的一些特点。(完整板书:加个“与”字。)板书:陶瓷与玻璃(读一下课题)

二、观察与讨论,比较陶瓷和玻璃的特性 [12分钟] 1、过渡:刚才我们通过观看图片,从外观上就可以一眼判断出它们的不同点。 板书:不同点不透明透明 2、观察与讨论,完成学习任务单 师问:还可以从哪些方面比较陶瓷和玻璃的特性呢?(脆性、硬度、耐热性)、 3、师:同学们都作了一些猜测,但是我们还是要通过实验来证明一下。 4、观看视频:陶瓷、玻璃都摔碎了。 5、师:从刚才的视频中你们得出什么结论? 师:对,这是它们的一个共同点。 板书:共同点易碎 6、师:刚才我们是通过视频了解到陶瓷与玻璃都容易碎,下面我们自己亲自动手做做小试验,再进一步了解他们的特点。 活动一: 要求:用小铁钉分别划玻璃和陶瓷,说说你的感受? 学生动手实验,教师巡视。 交流感受,得出结论:板书:坚硬 小结:通过实验我们发现,陶瓷和玻璃都很坚硬。(手指板书,再次强化) 活动二: 师:当坚硬的陶瓷和玻璃遇到火时,会发生怎样的变化呢?再请同学们观看视频。师:当温度达到600-700度时,玻璃就软化了;而陶瓷要融化的话,温度要达到2000度以上。由此我们可以得出结论:陶瓷的耐高温性超过玻璃, 板书:陶瓷的耐高温性超过玻璃 7、完成学习任务单。(教师巡视) 8、小结:通过观察与实验,我们了解到:(指着板书让学生一起说他们的相同点和不同点。)

第三节 玻璃、陶瓷和水泥 教学设计 教案

教学准备 1. 教学目标 知识与技能: 1.知道玻璃、陶瓷和水泥的主要化学成分、生产原料及用途。 2.了解光导纤维和高温结构陶瓷等新型材料的性能与用途。 过程与方法 了解玻璃陶瓷和水泥对生产生活的重要意义 情感态度与价值观 感受化学在生活生产中的重要地位,培养学生关注社会的意识和责任感。 2. 教学重点/难点 教学重点 玻璃、陶瓷和水泥的制备原料,主要反应及成分。 教学难点 玻璃、陶瓷和水泥的制备原料及成分 3. 教学用具 教学课件 4. 标签 教学过程 教学过程设计 一、新课引入 展示各种玻璃制品的图片:

二、新课教学 自学任务: 1、制造普通玻璃的主要原料是什么?普通玻璃的主要成分是什么?生产普通玻璃的简单流程是怎样的? 2、了解不同性能的玻璃 3、制造陶瓷器的主要原料是什么?了解陶瓷器的制造过程极其性能 4、制造水泥的主要原料是什么?普通水泥的主要成分是什么?生产普通水泥的简单流程是怎样的? 5、了解“水泥的水硬性”、“水泥砂浆”、“混凝土”及“钢筋混凝土”

6、了解“光纤”与“光缆”及“光纤”的用途;了解“高温结构陶瓷”的性能与用途 [板书] 第三节玻璃、陶瓷和水泥 (一)玻璃 1、普通玻璃是Na2SiO3、 Ca2SiO3、SiO2熔化在一起得到的物质,主要成分是SiO2。这种物质称作玻璃态物质,没有一定的熔点,而是在某个范围内逐渐软化 2、玻璃窑中发生的主要反应: 3、在生产过程中加入不同的物质,调整玻璃的化学组成,可制成具有不同性能和用途的玻璃。如:提高SiO2的含量或加入B2O3能提高玻璃的化学稳定性和降低它的热膨胀系数,从而使其更耐高温和抗化学腐蚀,可用于制造高级的化学器皿;加入 PbO后制得的光学玻璃折光率;加入某些金属氧化物可制成彩色玻璃:加入Co 2O3玻璃呈蓝色,加入Cu2O玻璃呈红色,加入Fe2+ 玻璃呈绿色。 4、

小学政治:《玻璃和陶瓷》教学案例(参考文本)

( 政治教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 小学政治:《玻璃和陶瓷》教学 案例(参考文本) Studying politics can enable us to understand society earlier and establish a correct worldview, outlook on life, and values.

小学政治:《玻璃和陶瓷》教学案例(参考 文本) 教学过程设计: 一、交流收集的玻璃、陶瓷制品 1.师展示几种不同形式的酒瓶(其中有玻璃的,也有陶瓷的)。 2.学生展示收集的玻璃、陶瓷制品。(这种器皿是什么做的,干什么用的?注意:轻拿轻放) (评:既调动了学生的积极性,以深化了学生的认识。) 二、观察比较玻璃与陶瓷的不同与相同 1.提问:怎样研究这些带来的玻璃与陶瓷制品呢? (陶瓷与玻璃有什么相同点,有什么不同点呢?) 2.学生讨论研究方法 3.研究,作好研究记录

采用的方法我们的发现 4.交流研究成果。 5.指导发现:玻璃管在酒精灯上加热后可弯曲,而陶瓷就不可以。 (玻璃可再生,陶瓷不可再生) (评:探究式学习重在学习方法的指导,重在学习过程的体验,学生是学习的主体,在探究的过程中,学生会采用多种感官来认识玻璃与陶瓷,他们从没有像今天这样这么关注这些生活中常见的物品。) 三、观察比较陶片与瓷片的相同点与不同点 1.讲述:中国的英文各称怎么写,你们知道陶瓷的英文怎么写呢?你们知道陶瓷为什么这么写呢? (评:从陶瓷的英文入手,向学生进行爱国主义教育,自然贴切) 2.比较陶片和瓷片的相同以及不同。 它们哪个比较硬?

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

玻璃陶瓷的特性与用途

玻璃陶瓷的特性与用途 一般,玻璃为非结晶质,认为是一种过冷却的液体。因而,若将玻璃在适当的温度下长时间保持,则会析出结晶。这称为失透。若玻璃失透,就会成为玻璃质量下降的原因,在实用玻璃中,应尽可能减少这种失透倾向。通常,由于玻璃的失透而析出的结晶,其颗粒是粗大(5—50um)的,也像乳浊玻璃那样,其结晶量总是非常少的。 对此,利用这种失透现象,人为地控制结晶的种类与成长,使玻璃的一部分或全部变成微结晶的(1ym以下)集合体,这就成为玻璃陶瓷。 玻璃陶瓷兼有玻璃与瓷的优点,具有玻璃的良好成形性与铰的优异电气特区,因系微结晶的集合体,其机械特性也是优异的.义出于控制了玻璃的成分和析出的微结晶的种类和数量竿,改变了热膨胀特性、耐急热急冷持性等性质。然而,与玻璃一样,因大型制品和壁厚制品难于制造,只限于用其制造配电用线路间隔绝缘于、小形套管等比较小型的制品。 玻璃陶瓷的制造方法除析出微结晶的热处理工序以外,与普通玻璃的制造方法几乎是一样的。即热处理时含有作为生成结晶核作用的晶核形成剂,将所规定的原料配合物在高温下完全熔融,制成均质的玻璃以后,采用与通常的玻璃成形法一样的方法按所要物体形状成形并钝化。即将此玻璃成形体在电炉等的热处理炉中,在比玻璃软化变形温度稍低的温度下保持一定时间,使之产生晶核,再提高温度,并保持恒温,以晶核为中心使之析出—次结晶,根据需要还可再升高温度并保持恒温,以制成进行二次结晶析出及使残余玻璃结晶化的制品。 在玻璃陶瓷的制造工序,必须注意的是在热处理工序中作为目的的微结晶颗粒要尽可能的小均匀地析出来,为此,对热处理工序中的温度控制和炉内温度分布必须非常精确。 这样的工序是复杂的,原料成本也是向的,因而制而的成个也就高。 支配玻璃陶瓷特性的各种基本因素及其支配关系如表4.1 所示。在表4.1所示的因素中,结晶的种类支配力最,而其他因素也有很大影响。

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

玻璃、塑料及陶瓷材料的宝石仿制品

一、玻璃 从1500年埃及人发明玻璃至今,玻璃一直是最常用的仿制宝石材料。尤其现在,玻璃的品种千变万化,几乎可用来仿任何天然宝石,特别是在模仿大多数无机宝石时,具有相当的迷惑性。玻璃的制作工艺已经十分成熟。 一般透明宝石的玻璃仿制品是将传统的玻璃熔融并加入适当的材料而制得的。它具有与被仿制宝石相似的颜色、透明度、折射率、密度和某些特殊的光学效应等。玻璃的熔化通常是在燃气炉窑的陶瓷坩埚中进行的。当加入适当材料的玻璃熔化后,可将其熔融液倒入模子,通过对模子施压以获得所需的形状。在铸模过程中,由于不均匀收缩会在表面留下收缩凹坑。膜子的结合部位也会留下铸模痕。 玻璃品种的类型的性质与加入的特殊材料有关。加入不同的着色剂,玻璃仿制品可呈现不同的颜色,甚至显示变色效应。如加入氧化铜,玻璃呈红色;加入氧化钴,玻璃呈蓝色。如果在玻璃中添加稀土成分,则可提高其折射率,甚至可制得折射率大于1.80的稀土玻璃,从而增强了玻璃仿制品的光泽。若同时加入铅或铊,可提高仿制品的色散及相对密度。 1.玻璃的宝石学性质 化学组成:按其成分可划分两大类型。 无铅玻璃(冕牌玻璃):由二氧化硅及少量钠、钙的氧化物组成。主要用作窗、瓶及光学透镜等。 铅玻璃(燧石玻璃):由二氧化硅及少量钾、铅的氧化物组成。由于铅的加入,玻璃的折射率、色散增高了,但硬度也因此降低。主要用于仿宝石。 为了产生特征的颜色,还可加入一些致色元素。如为了获得红、绿、蓝色等,常加入Se、Cr、稀土或钴等元素。 物理性质 光泽:玻璃光泽; 透明度:透明至不透明; 导热性:较差,触感较晶体温,但比塑料凉; 断口:贝壳状断口; 硬度:5±; 相对密度:2.0-4.2; 颜色:无色及任何色;

玻璃与陶瓷的关系

玻璃的热历史对性能的影响 玻璃的热历史:是指玻璃从高温液态冷却,通过转变温度区域和退火温度区域的经历。玻璃的物理、化学性能在很大程度上决定于它的热历史。对某一玻璃成分来说,一定的热历史必然有其相应的结构状态,而一定的结构状态必然反映在它外部的性质。例如急冷(淬火)玻璃较慢冷(退火)玻璃具有较大的体积和较小的粘度。在加热过程中,淬火玻璃加热到300~400℃时,在热膨胀曲线上出现体积收缩,伴随着体积收缩还有放热效应。这种现象在良好的退火玻璃的膨胀曲线上并不存在。 为了正确理解玻璃的结构、性质随热历史的递变规律,首先必须认识玻璃在转变温度区间的结构及其性质的变化情况玻璃在转变区的结构、性能的变化规律玻璃熔体自高温逐渐冷却时,要通过一个过度温度区,在此区域内玻璃从典型的液体状态,逐渐转变为具有固体各项性质(即弹性、脆性等)的物体。这一区域称之为之转变温度区域。一般以通用符号Tf 和Tg分别表示玻璃转变温度区的上下限:Tf—通称膨胀软化温度Tg—通称转变温度上述两个温度均与试验条件有关,因此一般以粘度作为标志,即Tf相当于η=108~10Pa·S时的温度,Tg相当于η=1012.4Pa·S时的温度。 玻璃在转变温度范围的性质变化在Tt和Tg转变温度范围内,由于温度较低,粘度较大,质点之间将按照化学键和结晶化学等一系列的要求进行重排,是一个结构重排的微观过程。因此玻璃的某些属于结构灵敏的性能都出现明显的连续反常变化,而与晶体熔融时的性质突变有本质的不同,所示,其中G表示热焓,比容等性质;表示其对温度的导数如热容,线膨胀系数等;表示与温度二阶导数有关的各项性质如导电系数、机械性质等。曲线均有三个线段:低温线段和高温线段,其性质几乎与温度变化无关;中间线段,其性质随着温度而急速改变。Tg~Tf温度区间的大小决定于玻璃的化学组成。对一般玻璃来说,这一温度区间的变动范围由几十度到几百度。在Tg~Tf范围内及其附近的结构变化情况,可以从三个温度范围来说明:在Tf以上由于此时温度较高,玻璃粘度相应较小,质点的流动和扩散较快,结构的改变能立即适应温度的变化,因而结构变化几乎是瞬时的,经常保持其平衡状态。因而在这温度范围内,温度的变化快慢对玻璃的结构及其相应的性能影响不大。在Tg以下:玻璃基本上已转变为具有弹性和脆性特点的固态物体,温度变化的快慢,对结构、性能影响也相当小。当然,在这温度范围(特别是靠近Tg时)玻璃内部的结构组团间仍具有一定的永

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

陶瓷和玻璃

玻璃陶瓷选论 罗传峰 玻璃 一、名词解释: 非桥氧;硼氧反常性;转变温度区;桥氧;混合碱效应;硼反常性 答:非桥氧:仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥氧。 硼氧反常性:在一定范围内,碱金属氧化物提供的氧,不像在熔融石英玻璃中作为非桥氧出现于结构中,而是使硼氧三角体(B0)转变成为完全由桥氧组成 的硼氧四面体,导致B03玻璃从原来两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络,使玻璃的各种物理性质,与相同条件下的硅酸盐玻璃相比,相应地向着相反的方向变化,这就是所谓硼氧反常性。 转变温度区:玻璃熔体自高温逐渐变冷却时,要通过一个过渡温度区,在此区域内玻璃从典型的液体状态,逐渐转变为具有固体各项性质的物体。这一区域称之为转变温度区。 桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。 混合碱效应:在二元碱玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混合碱效应。 硼反常性:在钠硅酸盐玻璃中加入氧化硼时,往往在性质变化曲线中产生极大值和极小值, 这现象也称为硼反常性。 二、问答题:1、简述玻璃结构中阳离子的分类,及其在玻璃结构中的作用 答:按元素与氧结合的单键能的大小和能否形成玻璃,分为三类:网络生成

体氧化物:能单独生成玻璃,在玻璃结构中能形成各自特有的网络体系。网络外体氧化物:不能单独生成玻璃,当阳离子M电场强度较小时,断网作用,电场强 度较大时积聚作用。中间体氧化物:当配位数》6时,阳离子处于网络之外,与网 络外体作用相似;当配位数为4时能参加网络起网络生成体作用。 2、简述玻璃在Tg—Tf范围内及其附近的结构变化情况。 答:在Tg—Tf范围内及其附近结构变化中可以从三个温度范围说明: 1.Tf以上,粘度小,质点流动层扩散速度快,结构变化快,瞬间可达平衡。 2.Tg以下, 玻璃基本上已经转化为具有弹性以及脆性等特点的固态物体,此温度范围内结构变化远远落后于温度变化。3.Tg —Tf范围:粘度介于上述二者之间,质点可适当移动,构造状态趋向平衡所需时间较短。此时温度范围决定了玻璃结构状态以及结构灵敏性能。 3、逆性玻璃中,“逆性”的含义是什么? 答:1在结构上,一般玻璃的结构以玻璃形成物为主体,金属离子处于网络的空穴中,它仅起补 网作用,逆性玻璃与通常玻璃是相逆的,即决定玻璃聚结程度的不是多面体之间的连接,而是金属离 子多面体短链中氢离子的结合。2逆性玻璃在性质上也发生逆转性,一般玻璃的性质是随SiO2的减 少而降低,在逆性玻璃中则相反,碱金属和碱土金属含量越多,结构越强固,而某些物理性质都向玻璃的相反方向变化。 第六章玻璃的化学稳定性 1、试述水、酸、碱、大气对玻璃的侵蚀过程。 答:1水,水对玻璃的侵蚀幵始于水中的H+和玻璃中的Na+离子进行交换,通 过反应间接破坏硅氧骨架,并且水分子也可以直接破坏硅氧骨架,从而造成对玻璃的侵蚀,但是产物硅酸凝胶会减低侵蚀的速度。2酸,酸对玻璃的侵蚀是通过水的作用侵蚀玻璃,产物金属氢氧化物要受到酸的中和。中和作用起着两种相反的效果,一是使玻璃和水溶液之间的离子交换反应加速进行,从而增加玻璃的失重,二是降低溶液的pH 值,

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

玻璃和陶瓷的区别在哪里如何分辨

玻璃和陶瓷的区别在哪里如何分辨 玻璃是一种无定形、非晶态的无机材料, 陶瓷是一种产品种类更加丰富的无机材料,在结构上也是更加有序的.。玻璃和陶瓷也是有一定的区别的。以下是为大家整理的玻璃和陶瓷的区别,希望你们喜欢。 一、烧成温度不同 陶器烧成温度一般都低于瓷器,最低甚至达到800℃以下,最高可达1100℃左右。瓷器的烧成温度则比较高,大都在1200℃以上,甚至有的达到1400℃左右。 二、坚硬程度不同 陶器烧成温度低,坯体并未完全烧结,敲击时声音发问,胎体硬度较差,有的甚至可以用钢刀划出沟痕。瓷器的烧成温度高,胎体基本烧结,敲击时声音清脆,胎体表面用一般钢刀很难划出沟痕。 三、使用原料不同 陶器使用一般黏土即可制坯烧成,瓷器则需要选择特定的材料,以高岭上作坯。烧成温度在陶器所需要的温度阶段,则可成为陶器,例如古代的白陶就是如此烧成的。高岭土在烧制瓷器所需要的温度下,所制的坯体则成为瓷器。但是一般制作陶器的黏土制成的坯体,在烧到1200℃时,则不可能成为瓷器,会被烧熔为玻璃质。 四、透明度不同

陶器的坯体即使比较薄也不具备半透明的特点。例如龙山文化的黑陶,薄如蛋壳,却并不透明。瓷器的胎体无论薄厚,都具有半透明的特点。 五、釉料不同 陶器有不挂釉和挂釉的两种,挂釉的陶器釉料在较低的烧成温度时即可熔融。瓷器的釉料有两种,既可在高温下与胎体一次烧成,也可在高温素烧胎上再挂低温釉,第二次低温烧成。 玻璃和陶瓷的关系玻璃是一种无定形、非晶态的无机材料, 其历史至少可追溯到4000 年以前. 最近几十年, 玻璃工业有了较大的发展, 目前, 世界范围内, 玻璃工业每年大约创造1000 亿美元的产值. 与玻璃材料相比, 陶瓷是一种产品种类更加丰富的无机材料,在结构上也是更加有序的. 玻璃和陶瓷是不可分割的两类材料, 被称为孪生姊妹, 它们有相似的生成原理, 原材料和生产工艺, 而且都是经过高温处理而制得的. 在一些工业中, 玻璃和陶瓷这两个材料名词被互换使用, 如陶瓷的玻璃相也称作陶瓷釉; 在生物陶瓷的结构中, 既有陶瓷的结构特点, 也有玻璃的结构特点 . 在欧美大学中, 玻璃和陶瓷两个学科是完全联系在一起的, 其课程设置也是互相补充的, 而这正是充分认识到了玻璃和陶瓷材料的相似和区别之处的结果. 在工业生产中, 人们也有相同的认识, 例如: 在陶瓷领域所学的知识可以很好地, 甚至是必须地被使用来解决玻璃生产中所遇到的问题, 而且往往会收到意想不到的神奇效果. 玻璃行业的技术人员和玻璃产品的生产者必须充分认识玻璃在生成过程

[课外阅读]什么是玻璃陶瓷和它的发展前景

[课外阅读]什么是玻璃陶瓷和它的发展前景 定义简介 又称微晶玻璃,是经过高温融化、成型、热处理而制成的一类晶相与玻璃相结合的复合材料。具有机械强度高、热膨胀性能可调、耐热冲击、耐化学腐蚀、低介电损耗等优越性能,被广泛用于机械制造、光学、电子与微电子、航天航空、化学、工业、生物医药及建筑等领域。由于玻璃陶瓷面板的制造工艺复杂,技术要求高,高质量玻璃陶瓷生产工艺及控制技术基本上被国外所垄断,国内玻璃陶瓷生产工艺存在质量品质差、成品率低等问题。 玻璃在催化剂或晶核形成剂作用下结晶而成的多晶的新型硅酸盐材料,为晶相和残余玻璃相组成的质地致密、无孔、均匀的混合体。通常晶体的大小可自纳米至微米级,晶体数量可达50%~90%。具有高机械强度,低电导率,高介电常数,良好的机械加工性能,耐化学腐蚀性、热稳定性等。这些性能取决于晶体种类、数量,以及剩余玻璃相的组成和性能,并和晶化条件等密切相关。按成核或晶化处理不同分为光敏和热敏微晶玻璃等。可用于制作电路板,电荷存储管,光电倍增管的屏,导弹弹头,雷达天线罩,轴承,泵、反应堆中子吸收材料,绝缘支柱等。 发展前景 耐高温玻璃陶瓷耐高温玻璃陶瓷是随着烧结法、溶胶-凝胶法等新工艺在玻璃陶瓷制备中的应用而发展起来的新材料。当玻璃陶瓷中

析出如莫来石、尖晶石、铯榴石等耐高温的晶体且含量较高时,材料可以耐很高的温度。如铯榴石玻璃陶瓷中,不仅析出了这种耐高温微晶,还析出了一些莫来石晶体,而且其残余玻璃相为晶体所包裹,这种材料可在1400℃左右的高温下使用。 高力学性能的材料玻璃陶瓷的微观结构对其力学性能有很大影响,可用控制结构来改善性能,如交织结构可以提高强度和韧性;采用温度梯度、热挤压等方法使晶体定向生长、也能大幅度提高力学性能,如以CaO-P2O5为基的玻璃陶瓷中析出定向微晶,其抗折强度可达700MPa,而且断裂韧性也显著提高;复合材料是提高玻璃陶瓷力学性能的又一有效途径,可将具有不同于玻璃陶瓷基体力学性能的纤维、晶须或微粒与之复合,也可用金属等其它材料与之复合,还可以将玻璃陶瓷的纤维或小球体复合到其它基体中,如用SiC晶须增强MgO-Al2O3-SiO2基的玻璃陶瓷,其抗折强度与断裂韧性分别为500MPa及4.0MPa.m1/2,比未增强者提高两倍以上。复合材料的力学性能可与Si3N,等结构陶瓷媲美,是一类有前景的新型结构材料。 生物玻璃陶瓷生物玻璃陶瓷的主要优点是在玻璃中可引入CaO、P2O5,通过热处理可以析出羟基磷灰石晶体,具有优良的生物相容性与生物活化性,组成中的其它组分可析出其它类型的晶体,保证材料的化学稳定性、可切削性等,比金属、氧化铝等材料更有前途。迄今已进行许多临床试验,有的长达六年之久,而且都取得了可喜的成果。

纳米相玻璃陶瓷

J. Am. Ceram. Soc. 82[1]5-16,1999 纳米相玻璃陶瓷 George H.beall and Linda R. Pinckney Corning Incorporated, Corning, New York 在将来,玻璃陶瓷主要利用它的内部性能,特别是对信息的传输,显示,存储等专业性能来进行应用的。玻璃陶瓷的显微结构是由许多均匀分布的尺寸小于100纳米的晶体所组成,它可以进行许多可行的新型的应用,也可使许多现有的产品具有特殊的性能。这篇文章主要讨论两种类型的纳米晶玻璃陶瓷:透明的微晶玻璃和可用于精密工程表面的硬的高模量的微晶玻璃。透明的微晶玻璃是从铝酸盐玻璃中形成的,这种玻璃能够有效的进行结晶形核,并缓慢长大。其中主要的晶体相包括具有低热膨胀行为的?相石英固溶体,高硬度及弹性模量的尖晶石和具有独特的荧旋光性的莫来石。 I.绪论 玻璃陶瓷技术是以玻璃的可控形核与结晶为基础的。虽然玻璃陶瓷物体可以通过玻璃整体的内部形核或者经由玻璃原料烧结和结晶来制取,但是由内部形核而可能所具有的显微结构的类型范围要宽广的多。一些玻璃成分可以自发形核,但是通常来说,原料中都需要加入某种特定的形核剂来促使分离和内部形核。这些形核剂均匀的溶入玻璃当中,在二次加热中以精确的比例来使得相分离。这种分散相在结构上的特征就是与母体玻璃不相容,因而在高于玻璃退火点30—100℃的温度下加热时,细小的晶核就可以沉淀出来。这些晶粒可以作为初始晶体相再次形核时的形核点。此外,晶化过程可以在分离相自身内部进行,也可以从分离体的表面开始。 形核之后,可进行多次的高温热处理来促使初始相的晶化并形成所需要的微观结构.此时晶核将继续长大,直到碰触到相邻晶粒为止,从而形成一个大的结晶体,并有少量的剩余玻璃,这些剩余玻璃也可能作为结晶成分而被消耗掉。某些玻璃陶瓷的微观结构可专门设计成这样,即在有连续剩余相玻璃存在的基体中均匀分布着不相互接触的小晶体。 玻璃陶瓷相对于传统的粉末制备陶瓷来说具有许多优点。除了在玻璃态便于成型外,玻璃陶瓷还具有均匀的显微结构,而且对于同质的初始玻璃,其性能可再现。此外,玻璃陶瓷的物理性能可在一个很大的范围内变化。例如热膨胀系数(CETs),可从-75×10(-7)/℃到+200×10(-7)/℃。而玻璃或陶瓷都很难有这么大的变化范围。许多玻璃陶瓷主要都因其热膨胀几乎为零而具有商业价值。而若将其高的机械强度与零孔隙度结合起来,则从建筑材料到餐具到骨头移植等,均可使玻璃陶瓷得到广泛应用。在玻璃陶瓷可形成的众多微观结构中,那些晶体尺寸小于100nm且均匀分布的微晶结构可使现有的产品具有某些特殊的性能,同时还可开发许多可行的新的应用。这种显微结构在学术上即被称为“纳米晶”。 这篇文章主要着重于两种类型的纳米晶玻璃:透明微晶玻璃和具有可精密加工表面的硬的高模量的微晶玻璃。前者拥有大量的消费者及技术方面的应用。而后者则主要用于磁存储盘底层和要求具有光洁表面,耐化学腐蚀的高温环境下。 II.透明微晶玻璃 透明微晶玻璃通常具有两种特性:;一是具有纳米晶,二是比透明玻璃的热稳定性要好,一般都高于常用温度800℃。多数商用透明微晶玻璃都是利用其比较好的热学性能,特别是极低的热膨胀和高的热稳定性,热震抗性。以填充锂?相石英晶体为基础的零或近零膨胀材料可用于高精密光学仪器,比如望远镜镜片,炉顶盖,烹饪用具,煤气炉口,炉门和其他技术设备。 另一种透明微晶玻璃的热膨胀特性与硅非常相近。这种材料通常都是以分布着尖晶石和

相关文档
相关文档 最新文档