文档库 最新最全的文档下载
当前位置:文档库 › 模式识别的几种方法

模式识别的几种方法

模式识别的几种方法
模式识别的几种方法

2模式识别四种方法

In science,new knowledge is phrased in terms of existing knowledge.The starting point of this process is set by generally accepted evident views, or observations and facts that cannot be explained further.These foundations,however,are not the same for all researchers.Different types of approaches may be distinguished originating from different starting positions.It is almost a type of taste from which perspective a particular researcher begins.As a consequence,different‘schools’may arise.The point of view,however,determines what we see.In other words,staying within a particular framework of thought we cannot achieve more than what is derived as a consequence of the corresponding assumptions and constraints.To create more complete and objective methods,we may try to integrate scientific results originating from different approaches into a single pattern recognition model.It is possible that confusion arises on how these results may be combined and where they essentially differ.But the combination of results of different approaches may also appear to be fruitful,not only for some applications, but also for the scientific understanding of the researcher that broadens the horizon of allowable starting points.This step towards a unified or integrated view is very important in science as only then a more complete understanding is gained or a whole theory is built.

对于科学,新的知识是从已有的知识发展出来的。这个过程的起始点是来源于一般可让人接受的、显而易见的观点,或无法被进一步解释的观察结果和因素。然而这些创建过程不同的研究者有不同的过程。从最初的观点可以区别出各种不同的方法类型,这几乎成了发现某个研究者的研究起点的方法。这样便导致了不同派别的产生。然而,不同的看问题的角度决定了我们对问题的理解,换句话说,在某个思想的框架下,我们只能从相应的假设和约束去推理。如果要建立更全面和客观的方法,我们可以尝试把来源于不同方法的科学成果集成到一个模式识别模型中,不过,在集成方法和区别方法上有可能会产生混淆。但是综合应用各种方法也有可能看上去是很有用的,不仅是对于一些应用,对于研究者的科学理解也是很有益处的,帮助他们从更宽的角度来研究问题,这个方法便是统一或集成的观点,这种观点在科学研究中非常重要,可以让你得到更全面的理解或建立一个完整的理论。

Below we will describe four approaches to pattern recognition which arise from two different dichotomies of the starting points.Next,we will

present some examples illustrating the difficulties of their possible interactions.This discussion is based on earlier publications[16,17].下面我们将描述从两种不同出发点而区分出来的四种模式识别方法。后面我们还将举些例子说明这四个方法要相互交互应用的困难。

2.1Platonic and Aristotelian Viewpoints

2.1柏拉图和亚里士多德观点

Two principally different approaches to almost any scientific field rely on the so-called Platonic and Aristotelian viewpoints.In a first attempt they may be understood as top-down and bottom-up ways of building knowledge.They are also related to deductive(or holistic)and inductive(or reductionistic)principles.These aspects will be discussed in Section4.

几乎所有的科学领域主要都是通过这两个途径来进行研究的:柏拉图和亚里士多德观点。首先可以分别把它们理解成从顶到下和从底到上的建立知识的方法。它们又分别一个跟演译推理(或从整体上研究)有关,另一个跟归纳推理(或从重现的角度)有关。这些问题将在第四小节会有介绍。

The Platonic approach starts from generally accepted concepts and global ideas of the world.They constitute a coherent picture in which many details are undefined.The primary task of the Platonic researcher is to recognize in his observations the underlying concepts and ideas that are already accepted by him.Many theories of the creation of the universe or the world rely on this scenario.An example is the drifts of the continents or the extinction of the mammoths.These theories do not result from a reasoning based on observations,but merely from a more or less convincing global theory(depending on the listener!)that seems to extrapolate far beyond the hard facts.For the Platonic researcher, however,it is not an extrapolation,but an adaptation of previous formulations of the theory to new facts.That is the way this approach works:existing ideas that have been used for a long time are gradually adapted to new incoming observations.The change does not rely on an essential paradigm shift in the concept,but on finding better,more appropriate relations with the observed world in definitions and explanations.The essence of the theory has been constant for a long time. So,in practise the Platonic researcher starts from a theory which can be stratified into to a number of hypotheses that can be tested.

Observations are collected to test these hypotheses and,finally,if the results are positive,the theory is confirmed.

柏拉图方法以普遍可以被人接受的概念和公理为出发点,建立一个许多未被定义的具有逻辑连贯性的科学描述。柏拉图式科学研究者的主要工作是基于可以被接受的概念和方法来认识所观察到的事物。许多宇宙或世界的理论建立都是依赖于这个途径。这样的例子有大陆漂移说和孔龙灭绝说,这些理论不是通过观察来证明的,只是根据一个或多或少让人信服(依赖于不同人的理解)的理论,这个理论似乎是远超脱于那些不变的客观因素的推断。然而,对于柏拉图式研究者,这不是一个总结归纳过程,而是一个针对新因素做理论上公式形式的演译。这个方法的过程是这样的:依据已存在的理论,这些理论且并被应用很长时间了,在不断新的观察中这些理论逐渐被做适应性的修改,这种变化不是概念上的本质转换,而是在定义和解释的角度上,寻找与所观察到的世界更好更适合的关联。理论的基础已经在很长的时间内是稳定不变了,所以,在实践中柏拉图式研究者开始于这样的一个理论:这个理论可进行层次化,形成一些可以被检验的假设。收集观察到的事物,对假设进行检验,最后,如果得到的结果是正面的,则这个理论被确认了下来。

The observations are of primary interest in the Aristotelian approach. Scientific reasoning stays as closely as possible to them.It is avoided to speculate on large,global theories that go beyond the facts.The observations are always the foundation on which the researcher builds his knowledge.Based on them,patterns and regularities are detected or discovered,which are used to formulate some tentative hypotheses.These are further explored in order to arrive at general conclusions or theories.As such,the theories are not global,nor do they constitute high level descriptions.A famous guideline here is the socalled Occam’s razor principle that urges one to avoid theories that are more complex than strictly needed for explaining the observations.Arguments may arise,however,since the definition of complexity depends,e.g.on the mathematical formalism that is used.

观察在亚里士多德方法中起了主要作用。科学理论尽可能地与观察紧密相联系。这个方法躲避产生大的全局性的超脱于观察依据的理论。观察总是研究者建立他的理论的基础。根据观察,模式和规律被检测或发现出来,并且被用于证明一些试探性的假设。更进一步地,便可以达到一般性结论或理论。这样,得到的理论既不是全局性的,也不能用于建立高层次的表达。这里有一个著名的Occam剃刀原理:尽力避免产生超出解释观察所严格需要的更为复杂的理论。然而,对此可

能会产生争议,因为对于复杂理论的定义是需要的,例如需要依赖于应用精确的形式描述。

The choice for a particular approach may be a matter of preference or determined by non-scientific grounds,such as upbringing.Nobody can judge what the basic truth is for somebody else.Against the Aristotelians may be held that they do not see the overall picture.The Platonic researchers,on the other hand,may be blamed for building castles in the air.Discussions between followers of these two approaches can be painful as well as fruitful.They may not see that their ground truths are different, leading to pointless debates.What is more important is the fact that they may become inspired by each other’s views.One may finally see real world examples of his concepts,while the other may embrace a concept that summarizes,or constitutes an abstraction of his observations.

对于一个特定途径的选择可能是一个优先选择的问题,或取决于非科学因素,如教育背景。没有人能够判断对于其他人来说什么是基本真理。相反地,亚里士多德式研究出来的理论可能无法说明事物的全局性的问题,另一方面,柏拉图式研究者可能被埋怨在建立空中楼阁。在二者之间进行有效地评判是件痛苦的事。他们可能会不明白二者的基本出发点是不同的,这样会导致没有结果的争论。重要的是二者之间可以互相启发。其中一方可能最终发现他的理论的实证,而另一方可能包含了这个理论,这个理论是对他所观察事物的总结或抽象。

2.2Internal and the External Observations

2.2内在的和外在的观察

In the contemporary view science is‘the observation,identification, description,experimental investigation,and theoretical explanation of phenomena’or‘any system of knowledge that is concerned with the physical world and its phenomena and that entails unbiased observations and systematic experimentation.So,the aspect of observation that leads to a possible formation of a concept or theory is very important. Consequently,the research topic of the science of pattern recognition, which aims at the generalization from observations for knowledge building, is indeed scientific.Science is in the end a brief explanation summarizing the observations achieved through abstraction and their generalization.

根据现代的观点,科学就是“观察,鉴定,描述,试验性研究和对现象的理论上解释”,或者是“跟物理世界及物理世界的现象有关系的任何知识体系,且其必

须是源于无偏见的观察和系统性的试验。”所以,可能引导一个概念或理论形成的观察是非常重要的。因此,以从观察中得到一般性法则来构建科学知识为目标,这样的模式识别科学研究方法才具有真正的科学性。科学最终目标是为了概括性地简要地解释所观察到的现象,这是通过抽象和一般性推广来达到的。

Such an explanation may primarily be observed by the researcher in his own thinking.Pattern recognition research can thereby be performed by introspection.The researcher inspects himself how he generalizes from observations.The basis of this generalization is constituted by the primary observations.This may be an entire object(‘I just see that it is an apple’)or its attributes(‘it is an apple because of its color and shape’).We can also observe pattern recognition in action by observing other human beings(or animals)while they perform a pattern recognition task,e.g.when they recognize an apple.Now the researcher tries to find out by experiments and measurements how the subject decides for an apple on the basis of the stimuli presented to the senses.He thereby builds a model of the subject,from senses to decision making.

科学解释可能可以主要通过研究者自己的思维被观察到。由此模式识别可以通过自省的方式来进行研究。研究者反省自己怎样通过观察来得到理论的推广。建立推广的基础是源于对事物的观察。这可能是一个事物的整体(“我只明白它是一个苹果”)或是它的属性(“它是一个苹果,是因为它的颜色和形状象苹果”)。当其他人(或动物)在做诸如模式识别行为时,例如当他们在辨认一个苹果时,我也可以通过观察他们的行为来研究模式识别。这时研究者通过试验和数据试图发现是通过感观刺激怎样来决定它是一个苹果。于是他建立了跟这个目的有关的模型,即从感知到下决定的识别模型。

Both approaches result into a model.In the external approach,however,the senses may be included in the model.In the internal approach,this is either not possible or just very partially.We are usually not aware of what happens in our senses.Introspection thereby starts by what they offer to our thinking(and reasoning).As a consequence,models based on the internal approach have to be externally equipped with(artificial) senses,i.e.with sensors.

外在和内在的两种途径最后都是建立一个模型。在外在的途径中,无论如何感知是可能被包含在模型中。在内在的途径中,这不仅不可能而且也是十分局限性的。我们通常无法通过我们的感观来感知到事物的变化。从而通过内省发现哪些是有

助于我们作判断的。由此,基于内在的途径来建立的模型必须配上外在的(人工)感知,例如感知器。

2.3The Four Approaches

2.3四种模式识别方法

The following four approaches can be distinguished by combining the two dichotomies presented above:

下面四种方法可以通过上面所提到的柏拉图和亚里士多德观点把它们合并成两类来区别出来:

(1)Introspection by a Platonic viewpoint:object modeling.

(2)Introspection by an Aristotelian viewpoint:generalization.

(3)Extrospection by an Aristotelian viewpoint:system modeling.

(4)Extrospection by a Platonic viewpoint:concept modeling.

(1)柏拉图式内省:对象建模。

(2)亚里士多德式内省:推广。

(3)亚里士多德式外省:系统建模。

(4)柏拉图式外省:概念建模。

These four approaches will now be discussed separately.We will identify some

known procedures and techniques that may be related to these.See also Fig.2.

现在来分别讨论这四种方法。我们将列出跟这四个方法有关的大家所熟知的过程和技术。如图2所示。

Object modeling.This is based on introspection from a Platonic viewpoint.The researcher thereby starts from global ideas on how pattern recognition systems may work and tries to verify them in his own thinking and reasoning.He thereby may find,for instance,that particular color and shape descriptions of an object are sufficient for him to classify it as an apple.More generally,he may discover that he uses particular reasoning rules operating on a fixed set of possible observations.The so-called syntactic and structural approaches to pattern recognition[26] thereby belong to this area,as well as the case-based reasoning[3].There are two important problems in this domain:how to constitute the general concept of a class from individual object descriptions and how to connect particular human qualitative observations such as‘sharp edge’or‘egg shaped’with physical sensor measurements.

对象建模:这是基于柏拉图观点的内省形式。研究者从能使模式识别系统工作起来的全局思路出发,设法检验他自己的思路和理论哪些是有用的。比如,他可能会发现用颜色和形状判断苹果就已经足够了。更一般地,他可能发现他可以用特定的规则对鉴别一组固定的观察到的事物。所谓的句法规则和结构模式识别就是属于这样的类型,即基于用例推理。在这方面有两个重要的问题:一个是怎么从

个体对象描述中建立一个具有一般性意义的一个种类的概念,另一个是怎么把人对事物的感观认识(如“锐利边缘”或“蛋形状”)和物理感应器的度量联系起来。

Generalization.Let us leave the Platonic viewpoint and consider a researcher who starts from observations,but still relies on introspection.He wonders what he should do with just a set of observations without any framework.An important point is the nature of observations. Qualitative observations such as‘round’,‘egg-shaped’or‘gold colored’can be judged as recognitions in themselves based on low-level outcomes of senses.It is difficult to neglect them and to access the outcomes of senses directly.One possibility for him is to use artificial senses,i.e. of sensors,which will produce quantitative descriptions.The next problem,however,is how to generalize from such numerical outcomes.The physiological process is internally unaccessible.A researcher who wonders how he himself generalizes from low level observations given by numbers may rely on statistics.This approach thereby includes the area of statistical pattern recognition.If we consider low-level inputs that are not numerical,but expressed in attributed observations as‘red, egg-shaped’,then the generalization may be based on logical or grammatical inference.As soon,however,as the structure of objects or attributes is not generated from the observations,but derived (postulated)from a formal global description of the application knowledge,e.g.by using graph matching,the approach is effectively

top-down and thereby starts from object or concept modeling.

推广:让我们先不考虑柏拉图模式,来看一个以观察为研究出发点但仍以依靠内省形式的研究者。在没有任何框架下,他对所得到的一组观察无从下手。一个重要点是观察的角度。可度量观察,诸如“圆形”、“蛋形”或“金黄色”,这些都是可以在低层次上的感知直接判断到。对于他来说,一个可能的办法是通过使用人工感知设备,如感应器,它可以得到可度量的描述。生理上的处理过程是内在的,令人难以明白的。研究者不明白为什么自己可以从几个低层次的观察中就可得到推广,他可能要依赖统计的方法,这个方法包括统计模式识别领域。如果我们考虑低层次的非数据输入,只表达成如“红,蛋形”这样的观察结果,于是这种推广可能是要基于逻辑和语法推广。然而对象或属性的结构一旦不是从观察中得到,而(假定)是从应用知识的全局描述中继承出来,例如运用图像匹配方法,那么这种方法实际上是自顶向下的方法,属于对象或概念建模类型。

System modeling.We now leave the internal platform and concentrate on research that is based on the external study of the pattern recognition abilities of humans and animals or their brains and senses.If this is done in a bottom-up way,the Aristotelian approach,then we are in the area of low level modeling of senses,nerves and possibly brains.These models are based on the physical and physiological knowledge of cells and the proteins and minerals that constitute them.Senses themselves usually do not directly generalize from observations.They may be constructed, however,in such a way that this process is strongly favored on a higher level.For instance,the way the eye(and the retina,in particular)is constructed,is advantageous for the detection of edges and movements as well as for finding interesting details in a global,overall picture.The area of vision thereby profits from this approach.It is studied how nerves process the signals they receive from the senses on a level close to the brain.Somehow this is combined towards a generalization of what is observed by the senses.Models of systems of multiple nerves are called neural networks.They appeared to have a good generalization ability and are thereby also used in technical pattern recognition applications in which the physiological origin is not relevant[4,62].

系统建模:我们现在走出内在的体系方法,集中研究人和动物或他们头脑和感官产生模式识别能力的外在学习方法。如果采用自底向上的方法,即亚里士多德方法,我们便是在感官、神经和头脑这样低层次上建模的领域里。这些模型是基于细胞和蛋白质和组成它们的矿物质的物理和生理知识。感官本身通常不能直接从观察中得到结果,可能要进行构建,然而这种处理过程总是在高层次进行。例如,眼睛(确切地说是视网膜)辨认事物方法是通过边缘和运动检测,从全局(整个画面)来发现感兴趣的细节信息。视觉领域的研究便是得益于这种方法,通过研究神经如何处理从感应器官收到的信号,接近于对人脑的研究。多个神经的系统建模称为神经网络,他们有很好的推广能力,也被用在了与生理学无关的模式识别应用技术中[4,62]。

Concept modeling.In the external platform,the observations in the starting point are replaced by ideas and concepts.Here one still tries to externally model the given pattern recognition systems,but now in a top-down manner.

概念建模:属于外在的体系方法,以理论和概念为出发点,而不是所观察到的事物。这里仍然以外在建模方式来建立模式识别系统,但是这里是从顶向下的方法。

An example is the field of expert systems:by interviewing experts in a particular pattern recognition task,it is attempted to investigate what rules they use and in what way they are using observations.Also belief networks and probabilistic networks belong to this area as far as they are defined by experts and not learned from observations.This approach can be distinguished from the above system modeling by the fact that it is in no way attempted to model a physical or physiological system in a realistic way.The building blocks are the ideas,concepts and rules,as they live in the mind of the researcher.They are adapted to the application by external inspection of an expert,e.g.by interviewing him. If this is done by the researcher internally by introspection,we have closed the circle and are back to what we have called object modeling,as the individual observations are our internal starting point.We admit that the difference between the two Platonic approaches is minor here(in contrast to the physiological level)as we can also try to interview ourselves to create an objective(!)model of our own concept definitions.专家系统是这方面的例子:通过在特定的模式识别任务中研究专家的方法,研究他们所用的规则,研究他们怎么运用观察到的事物。信心网络和概率网络被专家设定,而不是从观察事物中得到,它们也属于概念建模方法。概念建模和系统建模的区别在于概念建模不会模仿现实事物而去建立物理或生理模型系统。概念建模建立在研究者头脑中的方法、概念和原则。通过外在地考察某个专家(如跟专家交谈)来建立应用系统。如果内在的自省式研究者用了这个方法,则我们接近形成了一个循环,回到前面所讲的对象建模,即以个体的观察事物为建模出发点。我们承认两个柏拉图方法的区别在这里区别是很小的(相对于生理学的层次),即我们也可以尝试通过内省来建立我们自己定义的概念的一个对象模型。

2.4Examples of Interaction

2.4四种方法交叉运用的例子

The four presented approaches are four ways to study the science of pattern recognition.Resulting knowledge is valid for those who share the same starting point.If the results are used for building artificial pattern recognition devices,then there is,of course,no reason to restrict oneself to a particular approach.Any model that works well may be considered.There are,however,certain difficulties in combining different approaches.These may be caused by differences in culture,

assumptions or targets.We will present two examples,one for each of the two dichotomies.

上面介绍的四种方法是研究模式识别科学的四种途径。根据不同的出发点区别出了这四种方法。如果要建立一个人工模式识别设备,是不一定限制一定要用某一种方法的,任何方法模型都可能可以被用上。然而,困难的是怎么去综合运用这些方法,可能是因为不同的情况、假设或目标需要这样地去做。对这四种方法的两个大类我们将举两个例子来说明。

Artificial neural networks constitute an alternative technique to be used for generalization within the area of statistical pattern recognition. It has taken,however,almost ten years since their introduction around 1985before neural networks were fully acknowledged in this field.In that period,the neural network community suffered from lack of knowledge on the competing classification procedures.One of the basic misunderstandings in the pattern recognition field was caused by its dominating paradigm stating that learning systems should never be larger than strictly necessary,following the Occam’s razor principle.It could have not been understood how largely oversized systems such as neural networks would have ever been able to generalize without adapting to peculiarities in the data(the so-called overtraining).At the same time, it was evident in the neural network community that the larger neural network the larger its flexibility,following the analogy that a brain with many neurons would perform better in learning than a brain with a few ones.When this contradiction was finally solved(an example of Kuhn’s paradigm shifts[48]),the area of statistical pattern recognition was enriched with a new set of tools.Moreover,some principles were formulated towards understanding of pattern recognition that otherwise would have only been found with great difficulties.

人工神经网络技术在统计模式识别领域中的推广能力上成为了一个替代技术。然而这个技术从1985年被介绍出来到被完全接受已花了十年时间。在这十年里,研究神经网络的人因缺少竞争分类方法知识而受挫折。在模式识别领域中有一个让引起误解的主流观点:学习系统不要比限定的需求更复杂,需遵从奥克母剃刀原则。这个原则让人无法明白系统要做到多大才能不用去适配数据的特殊点(所谓过学习)就能具有推广能力,如神经网络系统的大小。与此同时,在神经网络中可以被证明的是神经网络越大则适应性越强,这是依据这样的推理:具有较多神经的脑子比具有较少神经的脑子学习能力要更好。当这个矛盾最后被解决后

(这是一个库恩范式转移的例子),统计模式识别领域才被广泛应用了起来。此外,已有一些原理可以被用来形式化地理解模式识别,其它的原理则很难被理解。In general,it may be expected that the internal approach profits from the results in the external world.It is possible that thinking,the way we generalize from observations,changes after it is established how this works in nature.For instance,once we have learned how a specific expert solves his problems,this may be used more generally and thereby becomes a rule in structural pattern recognition.The external platform may thereby be used to enrich the internal one.

通常情况下,可能会被认为内在的方法是得益于对外部世界的推理结论。可能会这样认为:我们从观察中推广得到的方法在实际运用时会发生改变。例如,一旦我们知道一个专家怎么去解决他的问题,于是可以把他的方法更一般化,结果形成结构模式识别中的一条规则。外在的方法可以被用于完善内在方法。

A direct formal fertilization between the Platonic and Aristotelian approaches is more difficult to achieve.Individual researchers may build some understanding from studying each other’s insights,and thereby become mutually inspired.The Platonist may become aware of realizations of his ideas and concepts.The Aristotelian may see some possible generalizations of the observations he collected.It is,however,still one of the major challenges in science to formalize this process.

把柏拉图和亚里士多德方法从形式上直接联系起来是很难达到的,但是研究者个人可以从互相交流中得到一些理解,并互相得到启发。柏拉图派的人可能知道他的理论和概念的实现方法。亚里士多德派的人可能从他收集到的观察中得到推广理论,然而,在科学上形式化这个过程还是一个主要的挑战性工作。

How should existing knowledge be formulated such that it can be enriched by new observations?Everybody who tries to do this directly encounters the problem that observations may be used to reduce uncertainty(e.g.by the parameter estimation in a model),but that it is very difficult to formalize uncertainty in existing knowledge.Here we encounter a fundamental‘paradox’for a researcher summarizing his findings after years of observations and studies:he has found some answers,but almost always he has also generated more new questions.Growing knowledge comes with more questions.In any formal system,however,in which we manage to incorporate uncertainty(which is already very difficult),this uncertainty will be reduced after having incorporating some

observations.We need an automatic hypothesis generation in order to generate new questions.How should the most likely ones be determined? We need to look from different perspectives in order to stimulate the creative process and bring sufficient inspiration and novelty to hypothesis generation.This is necessary in order to make a step towards building a complete theory.This,however,results in the computational complexity mentioned in the literature[60]when the Platonic structural approach to pattern recognition has to be integrated with the Aristotelian statistical approach.

怎么把现有的知识形式化,这样可以通过新观察的到数据来加以完善?每位想直接这样做的人都碰到这样的问题:通过观察数据可能可以减少不可靠性(例如在建模中的参数估计方法),但是在现有的知识体系中进行形式化非确定性问题是非常困难的。这里我们碰到一个研究者在总结他多年观察和研究得到的一个基本“缪论”:他找到了一些答案,但是几乎同时他又总是碰到新问题,得到的知识越多,产生的疑问也越多。然而,在任何正式系统中,我们可以设法引入不可靠性(但这是非常困难的),这个不可靠性在加入一些观察数据后会得到减少。我们需要一个自动化的假设产生方法来发现新问题。怎么去决定哪个最好呢?我需要从不同的角度看问题,以此来模拟这样的创造性处理过程并产生富有灵感和新奇的假设。这对于逐步建立一个完整的理论是需要的。然而,在附录[60]所引文章中提到:当柏拉图式的结构模式识别方法要集成亚里士多德统计模式识别方法时要考虑到计算复杂度问题。

The same problem may also be phrased differently:how can we express the uncertainty in higher level knowledge in such a way that it may be changed (upgraded)by low level observations?Knowledge is very often structural and has thereby a qualitative nature.On the lowest level,however, observations are often treated as quantities,certainly in automatic systems equipped with physical sensors.And here the Platonic–Aristotelian polarity meets the internal–external polarity:by crossing the border between concepts and observations we also encounter the border between qualitative symbolic descriptions and quantitative measurements.

同样的问题也可以以这样的不同方式来表示:怎样用更高层次的知识来表示不确定性并且可以通过低层次的观察来改变(或升级)?知识通常是具有结构的形式和对自然界定性的描述。然而,在最低层次配备了物理感应器的自动化系统中,观察数据通常是被量化了的数据。这里柏拉图---亚里士多德方法两个极端对应内

在---外在两个极端:从概念方法到观察数据方法之间进行转变也相应会碰到从定性符号描述到定量测定的转变

更多0

?上一篇模式识别科学发展与现状(1.介绍)

?下一篇模式识别科学发展与现状(3.成就)

主题推荐

模式识别神经网络application自动化framework

猜你在找

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract:The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology, linguistics, computer science, biology, cybernetics and so have a relationship. It has a cross-correlation with artificial intelligence and image processing. The potential of pattern recognition is huge. Key words:pattern recognition; digital recognition; face recognition; 1引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 和模式分类。 2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。 3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。 (1)(2) (3) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有(1)(2)(4)。 (1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A) (3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S) (4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A) 9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的 类别数目))。 10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。 (1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性 11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的 正(负)半空间中;绝对值正比于样本点到判别界面的距离。)。 12、感知器算法1。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

2014模式识别练习题

2013模式识别练习题 一. 填空题 1、模式识别系统的基本构成单元包括:模式采集、特征的选择和提取和模式分类。 2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、 网。 3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。 4、线性判别函数的正负和数值大小的几何意义是正负表示样本点位于判别界面法向量指向的正负半空间中, 绝对值正比于样本点与判别界面的距离。 5、感知器算法1 ,H-K算法 2 。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。 6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判别错误较另一种判别错误更为重要的情 况;最小最大判别准则主要用于先验概率未知的情况。 7、 。一般在可 8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大; 当ωi类模式与ωj类模式的分布相同时,J ij= 0。 二、选择题 1、影响聚类算法结果的主要因素有(B、C、D )。 A.已知类别的样本质量; B.分类准则; C.特征选取; D.模式相似性测度 2、模式识别中,马式距离较之于欧式距离的优点是(C、D)。 A.平移不变性; B.旋转不变性;C尺度不变性;D.考虑了模式的分布 3、影响基本K-均值算法的主要因素有(ABD)。 A.样本输入顺序; B.模式相似性测度; C.聚类准则; D.初始类中心的选取 4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(B D)。 A. 先验概率; B. 后验概率; C. 类概率密度; D. 类概率密度与先验概率的乘积 5、在统计模式分类问题中,当先验概率未知时,可以使用(BD)。 A. 最小损失准则; B. 最小最大损失准则; C. 最小误判概率准则; D. N-P判决 6、散度J D是根据(C )构造的可分性判据。 A. 先验概率; B. 后验概率; C. 类概率密度; D. 信息熵; E. 几何距离 7、似然函数的概型已知且为单峰,则可用(ABCDE)估计该似然函数。 A. 矩估计; B. 最大似然估计; C. Bayes估计; D. Bayes学习; E. Parzen窗法 8、KN近邻元法较之Parzen窗法的优点是(B)。 A. 所需样本数较少; B. 稳定性较好; C. 分辨率较高; D. 连续性较好 9、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(A C )。 A.变换产生的新分量正交或不相关; B.以部分新的分量表示原矢量均方误差最小; C.使变换后的矢量能量 更集中 10、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(BC)。 A. 已知类别样本质量; B. 分类准则; C. 特征选取; D. 量纲 11、欧式距离具有(A B );马式距离具有(A B C D )。 A. 平移不变性; B. 旋转不变性; C. 尺度缩放不变性; D. 不受量纲影响的特性 12、聚类分析算法属于(A );判别域代数界面方程法属于(C )。 A.无监督分类; B.有监督分类; C.统计模式识别方法; D.句法模式识别方法 13、若描述模式的特征量为0-1二值特征量,则一般采用(D)进行相似性度量。 A. 距离测度; B. 模糊测度; C. 相似测度; D. 匹配测度 14、下列函数可以作为聚类分析中的准则函数的有(ACD)。

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

中科院-模式识别考题总结(详细答案)

1.简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。(6’) 答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。 模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。 模式的直观特性:可观察性;可区分性;相似性。 答(2):模式识别的分类: 假说的两种获得方法(模式识别进行学习的两种方法): ●监督学习、概念驱动或归纳假说; ●非监督学习、数据驱动或演绎假说。 模式分类的主要方法: ●数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据 集。是一种非监督学习的方法,解决方案是数据驱动的。 ●统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。 特征向量分布的获得是基于一个类别已知的训练样本集。是一种监督分类的方法, 分类器是概念驱动的。 ●结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目 的。(句法模式识别) ●神经网络:由一系列互相联系的、相同的单元(神经元)组成。相互间的联系可以 在不同的神经元之间传递增强或抑制信号。增强或抑制是通过调整神经元相互间联 系的权重系数来(weight)实现。神经网络可以实现监督和非监督学习条件下的分 类。 2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素? (8’) 答(1):所谓人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处 理系统(计算机)。由于我们建立的信息处理系统实际上是模仿生理神经网络,因此称它为人工神经网络。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络的两种操作过程:训练学习、正常操作(回忆操作)。 答(2):人工神经网络的特点: ●固有的并行结构和并行处理; ●知识的分布存储; ●有较强的容错性; ●有一定的自适应性; 人工神经网络的局限性: ●人工神经网络不适于高精度的计算; ●人工神经网络不适于做类似顺序计数的工作; ●人工神经网络的学习和训练往往是一个艰难的过程; ●人工神经网络必须克服时间域顺序处理方面的困难; ●硬件限制; ●正确的训练数据的收集。 答(3):选取人工神经网络模型,要基于应用的要求和人工神经网络模型的能力间的 匹配,主要考虑因素包括:

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

哈尔滨工业大学 - 乐学网(哈工大交互式网络教学平台)

《计算机图形学》课程教学大纲 课程编号:S4030190 课程中文名称:计算机图形学 课程英文名称:Computer Graphics 总学时:30 讲课学时:20 实验学时:10 总学分:2 授课对象:计算机科学与技术专业、信息安全专业、生物信息技术专业 先修课程:高级语言程序设计,数据结构与算法 课程分类:专业课 开课单位:计算机科学与技术学院 一、课程教学目的 《计算机图形学》是计算机科学与技术专业本科教学中的一门重要的专业课。在计算机科学与技术专业的教学计划中占有重要地位和作用,其主要特点是理论与实践结合性强,是许多后续课程(如图像处理,模式识别,多媒体技术,虚拟现实,计算机视觉等)的基础课程,在CAD/CAM、(汽车、船舶、飞机的)外形设计、计算机动画、计算机艺术、过程控制、系统环境模拟、地理信息系统、科学计算的可视化等领域都有重要的应用。学习本课程旨在使学生掌握基本图形生成算法、图形变换与裁剪、真实感图形生成算法、计算机动画技术的基本原理,在此基础上,通过编写算法实现程序加深对图形学基本内容的理解,提高用理论指导实践的能力,为学生今后学习其他相关课程和从事计算机图形学及其应用方面的研究打下坚实基础。 二、教学内容及学时安排 1. 绪论(2学时) 计算机图形学的研究内容及其与相关学科的关系,计算机图形学的发展与应用 2. 图形输入输出设备(2学时) 交互式计算机图形处理系统的组成,图形输入设备,图形输出设备,图形显示原理,图形软件标准

3. 基本图形生成算法(4学时) 直线、圆弧的DDA生成算法、Bresenham生成算法,扫描线填充算法的基本原理,有序边表算法,边填充算法,种子填充算法的基本原理,简单的种子填充算法,扫描线种子填充算法 4. 图形变换与裁剪(6学时) 窗口视图变换,齐次坐标技术,二、三维图形几何变换,平行投影、透视投影变换,线段的Cohen-Sutherland裁剪、Liang-Basky裁剪算法,多边形的逐边裁剪、双边裁剪算法 5. 计算机动画(2学时) 传统动画与计算机动画,计算机动画中的常用技术,用flash制作简单的二维动画的方法 6. 高级计算机图形学快速浏览(4学时) 包括:自由曲线设计专题,几何造型与分形艺术专题,颜色科学及其应用专题,真实感图形显示专题 三、教学基本要求 1.课程基本要求 要求学生在学习完本课程以后,能对计算机图形学的研究内容及其应用方向有一个全面的认识和了解,了解计算机图形学的研究内容及其与相关学科的关系,了解计算机图形学在汽车、船舶、飞机的外形设计,以及计算机动画、计算机艺术、过程控制、系统环境模拟、虚拟现实等领域中的应用,掌握一些基本的图形生成算法(包括直线和圆弧的生成算法、区域填充算法、图形几何变换、投影变换,线段裁剪、多边形裁剪算法等)和图形显示原理,三维实体的基本表示方法、以及三维真实感图形显示的方法、常用的计算机动画技术等内容,为以后深入研究和从事相关领域的科研奠定基础。 2.实验基本要求 为了加深掌握常用的图形生成算法的基本原理,配合教学内容安排相应的实验,共10学时,以验证课堂的理论;进一步培养学生的动手能力、设计能力和解决问题的能力。 (1)编程实现一个基本图形生成算法(直线、圆弧生成算法,实区域填充算

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

大学模式识别考试题及答案详解

大学模式识别考试题及 答案详解 Document number:PBGCG-0857-BTDO-0089-PTT1998

一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 和模式分类。 2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。 3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。 (1)(2) (3) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有(1)(2)(4)。 (1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A) (3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S) (4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A) 二、(15分)简答及证明题 (1)影响聚类结果的主要因素有那些? (2)证明马氏距离是平移不变的、非奇异线性变换不变的。 答:(1)分类准则,模式相似性测度,特征量的选择,量纲。 (2)证明:

模式识别方法简述

XXX大学 课程设计报告书 课题名称模式识别 姓名 学号 院、系、部 专业 指导教师 xxxx年 xx 月 xx日

模式识别方法简述 摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。 关键词:模式识别; 模式识别方法; 统计模式识别; 模板匹配; 神经网络模式识别 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。 模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别是一种借助计算机对信息进行处理、判别的分类过程。判决分类在

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

模式识别及其在图像处理中的应用

武汉理工大学 模式识别及其在图像处理中的应用 学院(系):自动化学院 课程名称:模式识别原理 专业班级:控制科学与工程1603班 任课教师:张素文 学生姓名:王红刚 2017年1月3日

模式识别及其在图像处理中的应用 摘要:随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛。综述了模式识别在图像处理中特征提取、主要的识别方法(统计决策法、句法识别、模糊识别、神经网络)及其存在的问题, 并且对近年来模式识别的新进展———支持向量机与仿生模式识别做了分析和总结, 最后讨论了模式识别亟待解决的问题并对其发展进行了展望。 关键词:模式识别;图像处理;特征提取;识别方法 Pattern Recognition and Its Application in Image Processing Abstract:With the development of computer and artificial intelli-gence , pattern recognition is w idely used in the image processing in-creasingly .T he feature extraction and the main methods of pattern recognition in the image processing , w hich include statistical deci-sion, structural method , fuzzy method , artificial neural netw ork aresummarized.T he support vector and bionic pattern recognition w hich are the new developments of the pattern recognition are also analyzed .At last, the problems to be solved and development trends are discussed. Key words:pattern recognition ;image processing ;feature extrac-tion;recognition methods

相关文档
相关文档 最新文档