文档库 最新最全的文档下载
当前位置:文档库 › 植物细胞培养生物反应器研究进展

植物细胞培养生物反应器研究进展

植物细胞培养生物反应器研究进展
植物细胞培养生物反应器研究进展

植物细胞和动物细胞培养反应器

1、比较植物、动物、微生物细胞的结构和生理特点。 性质动物细胞植物细胞微生物细胞 大小10-100um 比微生物细胞大10um 代谢调节方式内部和激素内部和激素内部 营养要求很苛刻苛刻宽松可利用多种底物 生长速率倍增时间一般为 12-60h 倍增时间一般为0.5-2h 机械强度最差,缺乏保护性细 胞壁差 差,抗剪能力弱较好 环境适应性很差差好 粘附性贴壁生长细胞团形式悬浮分离 2、描述植物细胞、动物细胞生物反应器的共性。各有何优缺点。 都需要满足动植物细胞抗剪切力弱,营养要求苛刻,培养条件严格,要求较高传质效率的特性;悬浮培养生物反应器 反应器优点缺点 机械搅拌式反应器(悬浮式)能够获得较高的溶氧系数剪切力大 通气搅拌式反应器(悬浮式)避免向培养基直接通气时气 泡损伤细胞,没有移动部件, 密封好,氧转换率较高,便于 放大氧传递系数小,气路系统不能就地灭菌 气升式培养反应器(悬浮式)湍流温和均匀剪应力小,完全 密封,便于无菌操作,氧的转 换率高,便于放大生产 填充床生物反应器(固定化)单位体积固定细胞量大混合效果差,使溶氧、pH、 温度控制、气体的排出较难流化床生物反应器(固定化)小颗粒传质特性良好剪切力和颗粒碰撞会损坏固 定化细胞 膜式(中空纤维)反应器(固定化)良好的传质性能,满足细胞贴 壁生长的特性;培养器体积 小,细胞密度高;产物纯度高; 自动化程度高;可重复使用 成本高 微载体悬浮培养系统比表面积大;生长条件易控制 且易放大,兼贴壁与悬浮培养 的优势,取样方便;易于分离 微囊培养系统小颗粒传质特性良好;科技含 量较高 结构复杂 3、你认为最适合于植物细胞、动物细胞培养的生物反应器、培养方法及操作方式,并说明其理由。

植物生物反应器的研究进展及发展方向

植物生物反应器的研究进展及发展方向 姓名 (内蒙古科技大学生物技术系) 摘要利用转基因植物作为生物反应器生产外源蛋白,包括抗体、疫苗、药用蛋白等较之其他生产系统具有很多优越性。本文简介了植物生物反应器的研究发展历史和现状, 并对植物生物反应器领域的发展作了一定的展望和讨论。 关键词植物抗体; 口服疫苗; 药用蛋白;转基因; 生物反应器 植物生物反应器是生物反应器研究领域中的一大类, 是指通过基因工程途径, 以常见的农作物作为化学工厂,通过大规模种植生产具有高经济附加值的医用蛋白、工农业用酶、特殊碳水化合物、生物可降解塑料、脂类及其他一些次生代谢产物等生物制剂的方法[1]。 1 植物生物反应器研究内容 1.1植物抗体(plantibody) 抗体(antibody) 是动物体液中的一系列球蛋白,称为免疫球蛋白(Ig) 。它们可介导动物的体液免疫反应。在植物体内表达编码抗体或抗体片段(如Fab 片段和Fv 片段) ,获得的产物就称为植物抗体。植物抗体最大的优点是使生产抗体更加方便和廉价。尤其在生产单克隆抗体方面,利用植物生产要比杂交瘤细胞低廉的多。据估计,在250 m2 的温室中利用苜蓿生产IgG的成本约为500~600美元/ g ,而利用杂交瘤细胞生产抗体的成本约为5 000 美元/g 。因此,利用植物生产抗体具有广阔的市场前景。目前,利用转基因植物表达的抗体包括完整的抗体分子、分泌型抗体IgA、IgG、单链可变区片段(scFv) 、Fab 片段、双特异性scFv 片段以及嵌合型抗体等不同类型的抗体。 植物不仅作为生物反应器器生产抗体用于医药产业,而且植物抗体介导的免疫调节在植物抗病育种上也很值得研究。Fecker 等将抗甜菜坏色黄脉病毒(BNYVV) 的外壳蛋白基因的scFv 转化烟草,产生的scFv 定位于细胞质中或通过末端的连接信号肽而分泌到质外体,结果发现转scFv 的植株出现症状的时间明显迟于对照。Tavladoraki 等将抗菊芋斑驳病毒(AMCV) 的外壳蛋白基因的scFv 转入烟草后,发现感病率下降50~60 % ,出现症状的时间也明显迟于对照。LeGall 等将针对僵顶病植原体主要膜蛋白的scFv 转入烟草中,并通过细菌信号肽把scFv 定位到质外体,将转基因烟草接穗嫁接到被植原体侵染的砧木上,没有表现病症,而对照的非转基因接穗却出现严重的僵顶病症状甚至死亡。 另外,在植物细胞中表达具有催化或钝化酶和激素作用的抗体,从而对细胞代谢进行调节,这对于植物代谢机理的研究非常有用。Owen 等将植物光敏色素单链Fab 抗体转入烟草中,转基因烟草光敏色素下降40 % ,而且该转基因烟草种子表现出异常的依赖光敏色素萌发的能力。Shimada等在烟草内质网中高效表达了抗赤霉素前体分子A19/ 24 的scFv ,A19 和A24 分别是A1 和A4 的前体,转基因烟草中A1含量降低并表现矮化[2]。 1.2口服疫苗(edible vaccine)

我国大规模细胞培养生物反应器综述

我国大规模细胞培养生物反应器综述 文章比较全面的介绍了我国目前生物反应器的现状,各种品种发酵的特点.提出了反应器的设计要以代 谢流分析为核心,要从系统生物学的角度出发. 1、发展大规模细胞培养及其生物反应器 借助于细胞培养进行各种产品生产已是我国生物技术产业化的重要组成部分,涉及医药、化工、轻工、食品、农业、海洋、环保等行业。培养的细胞不仅只是微生物,用于生物技术产品生产的动物细胞、植物细胞和藻类细胞大规模培养已引起了大家重视,显露出令人鼓舞的前景。而且随着生物技术的发展,在人类今后发现的一切具有生物活性的物质都可以借助于细胞培养方法得到。它们可以是细胞代谢产物、生物转化、酶或某基因表达产物。 此外,随着人类社会经济发展,如果没有基于科技进步的大力开发,能源和资源将难以支撑人类社会进一步发展的目标,人类社会的发展必须将基于碳氢化合物的经济转变为基于碳水化合物的经济。这种能源结构和资源结构的转变将直接关系到我国经济的可持续发展,社会的稳定、和国家安全。解决上述问题的最有效方法就是发展工业微生物,只有工业微生物才能将来源于太阳能的可再生资源碳水化合物转变为现代社会所需要的化工原料和能源。 显而易见,要进行这些产品的生产,无不涉及到细胞代谢与大规模培养研究。为了提高生产水平,除了获得高生产能力的细胞株外,生物反应器是重要的核心技术,必需提供有利于生物过程研究的装置技术和高效节能的生产装置。但是在生物技术产业化平台中,细胞大规模培养技术等中下游技术是我国最薄弱的技术环节之一,以我国生物医药等领域产业化来说,与先进国家的差距是全面的。滞后的一个重要原因之一就是缺乏相配套工艺的工业化放大技术研究和相应的装备技术支撑。例如以哺乳类细胞培养技术来看,西方国家基因工程抗体的开发已经进入大规模细胞反应阶段,细胞工程研究规模已经达到1000L以上,基因工程抗体的生产反应系统最大规模达到20000L以上。相形之下,我国多数药物开发单位的细胞反应规模仍停留在2-30L 规模,100L的培养技术还不稳定,长期以来都是照抄照搬国外的技术和进口国外设备。国内只能生产一些低档装置, 仅靠科研成果模仿和基础科学的跟随。 与其他各行业的装备制造业一样,生物反应器为生物技术产业再生产和扩大再生产提供共性技术和关键技术,它的发展水平也反映了国家在科学技术、工艺设计、材料、加工制造等方面的综合配套能力。装备制造业和商品化的迫切性可以归纳为如下几点: l 每年有大量的从摇瓶到不同大小的实验室生物反应器进行生物技术的实验室研究或中试放大的项目,这些项目有的已购买设备,但需要维修,有的则需新添有关装置。 l 每年有相当数量的生物技术工程项目投入,需要大量的用于生产的生物反应器,传统生物技术的生物反应器一般体积较大(几十M3到上百M3),而现代生物技术所需的反应器装置体积较小,但技术要求高。 l 随着不同产品过程优化与放大技术研究的进展,迫切需要新设计原理的生物反应器发挥作用。由此,必需有不断更新技术的生物反应装置推向市场,或者对现有生物反应器生产装置进行新技术改造,这也是包括制药、食品、轻工在内的传统产业现代生物技术改造的主要内容之一。 l 随着生物技术的发展,需要性能更高的生物反应器,例如哺乳类动物细胞大规模培养是当前高附加值的糖基化活性蛋白医药产品的发展趋势,如何开发适应动物细胞特殊需要的生物反应器并商品化就成为迫切需要

植物细胞培养

植物细胞培养 一、定义 ●在离体条件下,将愈伤组织或其他易分散的组织置于液体培养基中进行振 荡培养,得到分散成游离的悬浮细胞,通过继代培养使细胞增殖,从而获得大量细胞群体的一种技术。 ●植物中含有数量极为可观的次生代谢物质,是各种色素、药物、香精、酶等天然 产物的主要来源。 ●植物细胞培养具有以下优点: 1、提高产率 2、缩短周期 3、提高产品质量 4、易于管理,减轻劳动强度 因此主要用于生产色素、药物、食品、酶、精细化工产品等次生代谢物。 二、培养基 常用MS培养基,另外还有B5、N6、NT、AA、KM8p等培养基 三、单细胞培养 1、制备方法 (1)机械法(机械磨碎、切割) (2)酶解法(目前最有效的获得单细胞方法) (3)愈伤组织诱导法(高频振动愈伤组织) 2、培养方法 (1)平板法(似微生物平板培养) (2)看护培养与饲养层培养法 看护培养:将单个细胞接种到滤纸上再置于愈伤组织之上进行培养。 饲养层培养:用处理过(如X射线)的无活性的或分裂很慢、不具分裂能力的细胞来饲养细胞。 (3)液体浅层静置培养法:将一定密度的悬浮细胞在培养皿中形成浅薄层,封口静止培养。

(4)细胞同步化:同一悬浮培养体系的所有细胞都同时通过细胞周期的某一特定时期。植物细胞在悬浮培养中的游离性较差,容易团聚进入不同程度的分化状态,因此要达到完全同步化相当困难。 ①低温法:冷处理可提高培养体系中细胞同步化程度。 ②分选法:通过细胞体积大小分级,直接将处于相同周期的细胞进行分选,然后将同一状态的细胞继代培养于同一培养体系中。 ③饥饿法:在一个培养体系中,如果细胞生长的基本成分丧失,则导致细胞因饥饿而分裂受阻,从而停留在某一分裂时期。 ④抑制剂法:通过一些DNA合成抑制剂处理细胞,如尿苷等,使细胞滞留在DNA 合成前期,当解除抑制后,即可获得处于同一细胞周期—G1期的同步化细胞。 3、保存 (1)继代培养(高等植物、海藻等) (2)低温( 5℃~10℃) (3)冷冻( -20℃或液氮) 植物细胞冷冻保存方法: 在冰浴条件下加入预冷的冰冻保护剂,密封,继续冰浴15min,在-40℃停留2h后投入-196℃液氮罐中保存。 植物细胞冷冻保护剂组成: 7.5%二甲基亚砜(DMSO)+0.5mol/L山梨醇+5%甘油+5%蔗糖 四、植物细胞培养的应用 1、生产药用植物代谢产物(紫杉醇、苷类等) 2、生产天然食品、食品添加剂(可可碱等) 3、生产杀虫剂、杀菌剂(鱼藤酮、除虫菊脂) 4、生产饲料、精细化工产品(桑叶、橡胶等) 五、植物细胞的生物反应器大规模培养 1、培养特性 (1)细胞本身特性(生长慢、易结团、易损伤、易污染) (2)培养液流变特性(黏度增高) (3)气体传递与影响(O2与CO2需平衡)

微藻生物反应器的研究进展

万方数据

2007年第27卷第5期水利渔业(总第153期)-7? 水池培养微藻也是一种生物反应器技术,但其效率比较低。研究较多的是利用封闭的光生物反应器来培养微藻,但这项技术目前还未达到大规模实用化的阶段。有些海洋异养微藻可以通过发酵进行培养,这也是一种生物反应器技术。美国有公司利用发酵法培养异养微藻,生产EPA和DHA,已经达到工业化生产的阶段”o。随着研究的继续深入,EPA和DHA新的生理功效及作用机理将不断被发现和揭示;然而,短缺的PUFA生物资源却始终制约着EPA和DHA的广泛应用,积极寻找廉价的DHA和EPA生物资源已成为一种迫切要求。国外较早开展了PuFA生物资源开发和利用的研究工作,发现海洋徽藻具有大规模生产PuFA的潜力,并取得了不少成就”J。 利用海洋微藻生产多不饱和脂肪酸的研究始于20世纪舳年代初期,并且多以自养微藻生产DHA和EPA为主,其中的三角褐紫藻、紫球藻、盐生微小绿藻、球等鞭金藻、硅藻等当时被认为最有可能实现微藻产业化,但其结果并不尽人意”1。开放大池培养微藻存在极低的产量和难以对一些高纯度、高价值的产品进行纯种培养的缺陷,使其在推广微藻大规模培养上受到诸多因素的限制。培养过程受光照、温度等自然环境影响较大,并且易被真菌、原生动物和其它杂藻污染,同时水分蒸发严重,二氧化碳供给不足o“。这峰因素最终都将导致细胞培养密度偏低,PuFA含量不高,使得采收成本过高。因此,人们又设计出密闭光生物反应器,基本上可以解决上述问题,并通过控制培养液浓度实现了连续培养。现在的光生物反应器已经发展为柱式光照发酵罐、管式及板式恒化反应器以及可实现培养条件计算机在线控制的光纤式光生物反应器等多种类型。 利用密闭式光生物反应器培养微藻,能减少污染发生,可提高产量60%一300%,同时还可以降低收获成本。然而,密闭式利用光生物反应器依然存在着许多不足”o,例如培养后期由于细胞浓度的升高,限制光的穿透,降低了光照效率;在培养过程中由于水压增加,使细胞受到损伤;利用海洋微藻生产多不饱和脂肪酸反应器内容易累积氧气,降低脂肪酸的去饱和程度;反应器和生物传感器上易发生附着,这种培养技术成本也较高。因此制约微藻工业化生产的发展。 为了解决高效廉价这个困扰微藻产业多年的封闭式光生物反应器的设备难题,一种新型结构的封闭式光生物反应器——“膜式气袋内光源太阳能光生物反应器”应运而生,它具有结构简单、造价低廉、运行可靠、适应性强、单位体积培养液受光面积大、微藻产量高且质量好等优点;并且可以调整光质,从而达到微藻产品成份的定向培养。所以非常适合于微藻生物资源的大规模开发应用,有极大的开发潜力”’。 利用膜式气袋内光源太阳能光生物反应器设备及配套技术,处理有机废水及工厂排人的二氧化碳废气,可以在治理环境污染的同时,生产出具有很高经济价值的微藻及深加工附加值高的新型生物医学产品、功能性食品、动物免疫抗病饲料添加剂、高生物效价的人类及动物食品蛋白源等。同时,还可以利用工厂排放的二氧化碳废气为原料,廉价地通过光合作用对二氧化碳进行再生,开发燃料油、燃料气等微藻绿色再生能源产品.获取新能源。同时,膜式气袋内光源太阳能光生物反应器相配套的微藻养殖技术及微藻干燥技术也正在研究中。这项新型的干燥技术可解决因微藻产品干燥成本过高而制约微藻产品普及应用的瓶颈。可以大幅度降低微藻的生产成本,并且由于采用了低能耗的低温干燥技术,还可以最大限度地保护微藻所含的生命活性物质,提高产品质量和产品价值。 气升式光生物反应器是另一种封闭式高效光生物反应器。与高等植物一样,藻类靠太阳光能进行光合作用,利用水和二氧化碳合成有机物,同时放出氧气。它的代谢类型与微生物发酵有重要区别。作为一类光生物反应器(ph010bioreactor)的藻类生物反应器,光能利用和无机碳源供应是设计中应重点考虑的问题。在发酵罐设计中,要充分保证氧气的供应和有效传递,以满足微生物代谢和生长的需要。相反,藻类生物反应器要防止溶解氧过饱和,因为氧气过多会抑制Rubis∞的活性,使光合作用的效率降低。气升式生物反应器是根据藻类的生物学特性,以实用化和无人值守下长期运转为目标进行选型和设计的“…。这是一种新型的外照光、内循环、正向导流、通气管下行式的光生物反应器。由反应器主体、光照系统、三参数(温度、pH、溶解氧)或单参数检测系统组成,也可根据需要灵活组合。二氧化碳配气装置可配制不同浓度的二氧化碳,以便为反应器中的藻类提供无机碳,以满足其光合作用的需要。该类型藻类生物反应器已用于螺旋藻生产厂藻种、水产育苗的饵料微藻的大量培养、藻类高值化产品生产和大型海藻细胞工程育苗等方面,均已获预期的良好效果”“。 根据实际应用结果,并与其它各类光生物反应器比较,这种气升式反应器的优点是:①造价低、易操作、实用性强,可在无人值守条件下长期运转;②占地面积小,光能利用效率和产量高;③结构简洁,可防止藻类附壁、缠绕和形成死角,有利于长期培养;④搅拌装置湍动温和均匀,剪切力小,不损伤藻类,循环速度高并形成湍流,提高光能利用效率,可实现高密度培养;⑤培养液无氧饱和。温度不会异常升高,不需要附加脱氧装置,不需要采用附加的降温装置和措施。 中国科学院工程研究所集多年研究反应器的丰富经验,研制了系列新型气体提升式光生物反应器。该反应器气液中混合充分、剪切力低、传质性能好;同时,该反应器结构简单、性能稳定、易于放大,面板式设计使操作更简便,可广泛应用于藻类及其它光台生物细胞的悬浮培养““。目前已经完成2L和20L光照反应器,2L光生物反应器广泛应用于实验室的微藻、大藻和植物细胞的培养研究,便于摸索培养工艺、条件实验、考察多因子的影响规律。考虑研究工作的需要,该光生物反应器设计了光照定时控制和光强调节系统,可满足不同培养体系对光照条件的要求。培养过程中的温度、pH、溶氧可以实现在线控制,设置了多路供气系统。 20L光生物反应器主要用于微藻、大藻和植物细胞  万方数据

植物细胞悬浮培养技术

植物细胞悬浮培养技术 一、基本原理 利用固体琼脂培养基对植物的离体组织进行培养的方法在某些方面还存在一些缺点,比如在培养过程中,植物的愈伤组织在生长过程中的营养成分、植物组织产生的代谢物质呈现一个梯度分布,而且琼脂本身也有一些不明的物质成分可能对培养物产生影响,从而导致植物组织生长发育过程中代谢的改变而利用液体培养基则可以克服这一缺点,当植物的组织在液体培养基中生长时,我们可以通过薄层震荡培养或向培养基中通气用以改善培养基中氧气的供应。植物细胞的悬浮培养是指将植物细胞或较小的细胞团悬浮在液体培养基中进行培养,在培养过程中能够保持良好的分散状态。这些小的细胞聚合体通常来自植物的愈伤组织。 一般的操作过程是把未分化的愈伤组织转移到液体培养基中进行培养。在培养过程中不断进行旋转震荡,一般可用100~12Or/min 的速度进行。由于液体培养基的旋转和震荡,使得愈伤组织上分裂的细胞不断游离下来。在液体培养基中的培养物是混杂的,既有游离的单个细胞,也有较大的细胞团块,还有接种物的死细胞残渣。 在液体悬浮培养过程中应注意及时进行细胞继代培养,因为当培养物生长到一定时期将进入分裂的静止期。对于多数悬浮培养物来说,细胞在培养到第18~25d 时达到最大的密度,此时应进行第一次继代培养。在继代培养时,应将较大的细胞团块和接种物残渣除去。若从植物器官或组织开始建立细胞悬浮培养体系,就包括愈伤组织的诱导、继代培养、单细胞分离和悬浮培养。目前这项技术已经广泛应用于细胞的形态、生理、遗传、凋亡等研究工作,特别是为基因工程在植物细胞水平上的操作提供了理想的材料和途径。经过转化的植物细胞再经过诱导分化形成植株,即可获得携带有目标基因的个体。 二、器材 超净工作台、高压蒸汽灭菌器、恒温培养箱、磁力搅拌器、恒温空气摇床、镊子、锥形瓶、水稻种子 三、操作步骤 1.配制培养基 按照培养基配方取各种药品,最后用蒸馏水定容到所需体积。所配制的培养基经高压蒸汽灭菌后备用,固体琼脂培养基分装在250mL 的锥形瓶内,每瓶约分装30mL。 2.水稻种子的消毒 (1)将种子置于无菌的培养皿内,以体积分数95%的酒精消毒1~2min。 (2)取出后用无菌水冲洗2~3 遍。 (3)将种子放入25.0g/L 的次氯酸钠溶液中轻轻摇动后,浸泡60min 。 (4)取出后用无菌水冲洗,将次氯酸钠溶液充分洗净。 3. 接种 在超净工作台内,将灭菌后的水稻种子接到诱导愈伤组织的固体培养基上,每个培养瓶接5~10 粒种子。接种完毕后用封口膜将培养瓶封好,放在26℃的恒温培养箱中进行黑暗培养。 4.悬浮培养的开始: 当得到愈伤组织后,将其转人到AA 液体培养基中。注意愈伤组织块应小于3mm . 若组织块较大可用无菌解剖刀将其分割成小块。液体培养基分装在250mL 的锥形瓶内.接种完毕后将瓶口用封口膜封好,把培养瓶放到恒温摇床上进行震荡培养。调整摇床的旋转速度,使之为120r/min。培养温度为26℃,在黑暗中培养。 5.悬浮培养物的保持 进行悬浮培养后要不断进行观察,由于培养物的继代培养与培养瓶内培养物的密度及细胞

不同林分林下植被的多样性特征及生物量研究

不同林分林下植被的多样性特征及生物量研究 摘要:对承德市山区土壤含水率与不同林分林下草本层植物生物量和物种多样性的相互关系进行了研究,结果表明,在5种森林群落类型中,土壤含水率的高低顺序为油松-落叶松混交林>落叶松中龄林>落叶松幼龄林>油松成熟林>油松幼龄林,其林下草本层的地上生物量表现为油松-落叶松混交林大于油松纯林、落叶松纯林,在纯林中也随着土壤含水率的增加生物量增大。对土壤含水率与林下草本植物物种多样性进行相关分析,结果表明,林下草本植被在林分处于幼龄林时期,土壤含水率对林下草本植物物种多样性的增加起到了促进作用;随着林分的成熟,土壤含水率虽然增加,但对林下草本植物物种多样性的促进作用逐渐丧失。在油松-落叶松混交林中土壤含水率虽然较高,但对林下草本植物物种多样性却产生了抑制作用。 关键词:林下植被;土壤含水率;生物量;多样性 abstract:therelationshipofsoilmoisturewithbiomassandspeciesdiversityofundergrowthvegetationinmountainousareaofchengdecitywasstudied.theresultsshowedthatthesoilmoistureinthe5forestst

andsrankedfromhightolowaslarixgmelinii(rupr.)rupr.-pinustabulaeformiscarr.mixedforest,middle-agedforestofl.gmelinii,youngforestofl.gmelinii,matureforestofp.tabulaeformis,youngforestofp.tabulaeformis.theabovegroundbiomassofunderstoryherbaceouslayerinl.gmellini-p.tabulaeformismixedforestwas greaterthanthatinpurep.tabulaeformisforestorl.gmelliniforest.thebiomassincreasedwiththeincreaseofsoilmoistureinpureforests.correlationanalysisonsoilmoistureandunderstoryherbaceousspeciesdiversityshowedthatsoilmoisturepromotetheincreaseofonunderstoryherbaceousspecie

生物乳腺反应器的原理及进展

动物乳腺生物反应器的原理及进展 摘要: 动物乳腺生物反应器技术是转基因技术的应用,于上世纪80年代提出,其目的是利用动物乳腺产生目的蛋白。利用该技术生产的蛋白具有低成本,高活性,易提取纯化的优点。虽然该技术尚处于发展时期,但具有广阔的应用前景和巨大地商业潜力,是许多公司大力发展的对象。 关键词:动物乳腺生物反应器、原理、进展、优点

动物乳腺生物反应器(mammary gland reactor)是指利用动物 乳腺特异性启动子调控元件指导外源基因在乳腺中特异性表达,并能从转基因动物乳汁中获取重组蛋白的一种生物反应器。1生物反应器(bioreactor) 经历了3 个发展阶段:细菌基因工程、细胞基因工程、转基因动物生物反应器。细菌基因工程产物往往不具备生物活性,必 须经过糖基化、羟基化等一系列修饰加工后, 才能成为有效的药物, 而细胞基因工程又因为哺乳动物细胞的培养条件要求相当苛刻,成本 太高,限制了规模生产。动物生物反应器具有产品质量高,容易提纯的特点,弥补了其它各类基因表达系统的缺陷。它是在转基因技术体系基础上发展起来的。7自从上世纪80年代出现以来,已经取得了许多 突破,现己成为生物技术研究的热点。并向商业化阶段转变,显示 了广阔的应用前景。并且利用转基因动物乳腺生物反应器生产饮用奶,以期望获得既能满足蛋白质需要,又能增加抵抗力的品质全面的奶,为人类服务。2 1、动物乳腺生物反应器的原理 乳腺生物反应器的原理是应用重组DNA 技术和转基因技术,将目的基因转移到尚处于原核阶段的动物胚胎中,经胚胎移植得到转基因乳腺表达的个体。1 外源基因在乳腺特异性表达需要乳蛋白基因的一 个启动子和调控区,即需要一个引导泌乳期乳蛋白基因表达的序列,这样才能将外源基因置于乳腺特异性调节序列控制之下,使其在乳腺中表达再通过回收奶获得具有生物活性的目的蛋白。它是一个专门化的分泌腺体,可以生产出具完全生物活性的药用重组蛋白质,其纯化

植物细胞组织培养技术

植物细胞组织培养技术实验指导书 生物实验教学中心 主编:杨卫民 2009-06-01

目录 实验一、植物组织培养培养基母液的配制 (1) 实验二、植物组织培养的培养基配制 (5) 实验三、康乃馨的离体快繁 (9) 实验四、胡萝卜愈伤组织的建立 (14) 实验五、组织培养物的继代培养 (18)

实验一组织培养基母液的配制 一、仪器及药品 冰箱、天平(0.0001g) 容量瓶:1000ml,500ml、250ml、100ml、25ml 广口储液瓶:500ml、250ml、50ml、25ml 烧杯:1000ml、500ml、250ml、100ml、50ml 数十根玻璃搅棒、大药勺、小药勺或挖耳勺 标签纸、胶水、50%酒精、95%酒精、1mol/L盐酸、1mol/L NaOH 几种常用的培养基所需的大量元素、微量元素、有机物、激素、铁盐等药品 蒸馏水 二、方法和步骤: 按照培养基配方,把大量元素、微量元素、铁盐、有机物、植物激素分类,每一类 中各种药品分别称量,如N6培养基各种母液的配制步骤如下: 大量元素母液:包括用量较大的几种化合物〈见N6培养基配方〉,按表中排列顺序,将每种药品的用量扩大10倍,分别称取,分别溶解,然后按照顺序混合在一起。如钙盐等易发生沉淀的药品不能混合,应单位定容,最后加上蒸馏水,定容至1升或500毫升。在定容时注意用蒸馏水洗净烧杯和玻璃搅棒以减少误差。定容后的溶液为大量元素母液,配制培养基时,每配1L培养基需吸取该母液l00ml或50ml。 微量元素母液:因用量少,为了称量精确和方便,常配成100倍或1000倍的母液,即每种药品扩大l00倍或者l000倍。逐个溶解,混合在一起成为微量元素母液,每配1L N6培养基需吸取该母液10ml或者1ml。 铁盐:在N6培养基中需要单独配制,它是由硫酸亚铁(FeSO4?7H2O)2.78g和乙二氨四乙酸二钠(Na2-EDTA)3.73g,分别溶解,混合后,用酒精灯加热半小时以上,冷却后定容至1L。冰箱过夜贮藏无结晶析出,否则重新配制。每配l升N6培养基需加该铁盐母液5 ml。 有机物质:主要指氨基酸,维生素类物质。它们大都是扩大1000倍,分别称量,分别定容和储存,配制培养基时按需要的量加入。 植物激素:常用的有生长素类如:2,4-D、萘乙酸(NAA)、吲哚乙酸(IAA)、吲

细胞培养用生物反应器

细胞培养用生物反应器 细胞培养用生物反应器 2010年12月22日 1、发展大规模细胞培养及其生物反应器 借助于细胞培养进行各种产品生产已是我国生物技术产业化的重要组成部分,涉及医药、化工、轻工、食品、农业、海洋、环保等行业。培养的细胞不仅只是微生物,用于生物技术产品生产的动物细胞、植物细胞和藻类细胞大规模培养已引起了大家重视,显露出令人鼓舞的前景。而且随着生物技术的发展,在人类今后发现的一切具有生物活性的物质都可以借助于细胞培养方法得到。它们可以是细胞代谢产物、生物转化、酶或某基因表达产物。 此外,随着人类社会经济发展,如果没有基于科技进步的大力开发,能源和资源将难以支撑人类社会进一步发展的目标,人类社会的发展必须将基于碳氢化合物的经济转变为基于碳水化合物的经济。这种能源结构和资源结构的转变将直接关系到我国经济的可持续发展,社会的稳定、和国家安全。解决上述问题的最有效方法就是发展工业微生物,只有工业微生物才能将来源于太阳能的可再生资源碳水化合物转变为现代社会所需要的化工原料和能源。 显而易见,要进行这些产品的生产,无不涉及到细胞代谢与大规模培养研究。为了提高生产水平,除了获得高生产能力的细胞株外,生物反应器是重要的核心技术,必需提供有利于生物过程研究的装置技术和高效节能的生产装置。但是在生物技术产业化平台中,细胞大规模培养技术等中下游技术是我国最薄弱的技术环节之一,以我国生物医药等领域产业化来说,与先进国家的差距是全面的。滞后的一个重要原因之一就是缺乏相配套工艺的工业化放大技术研究和相应的装备技术支撑。例如以哺乳类细胞培养技术来看,西方国家基因工程抗体的开发已经进入大规模细胞反应阶段,细胞工程研究规模已经达到1000L以上,基因工程抗体的生产反应系统最大规模达到20000L以上。相形之下,我国多数药物开发单位的细胞反应规模仍停留在2-30L规模,100L 的培养技术还不稳定,长期以来都是照抄照搬国外的技术和进口国外设备。国内只能生产一些低档装置, 仅靠科研成果模仿和基础科学的跟随。 与其他各行业的装备制造业一样,生物反应器为生物技术产业再生产和扩大再生产提供共性技术和关键技术,它的发展水平也反映了国家在科学

植物生物反应器的研究进展及应用

植物生物反应器的研究进展及应用 王勇 (广西工学院生化系20110401022) 摘要:随着植物转基因技术的发展,将植物体作为生物反应器生产有用的生化产物是当今生命科学技术研究中最热门的领域。植物生物反应器是近年来生物技术领域新的研究方向,利用农作物进行疫苗、药用蛋白的生产,具有广阔的市场前景和商业价值。植物系统具有低成本、安全和易规模化优势,其表达生物活性药用蛋白能力已被许多研究所证实;同时,植物药用蛋白产品还表现出潜在的市场和广阔应用前景。利用植物生物反应器生产药品是生物制药的一个分支,该技术通过基因工程植物生产药用蛋白质分子、肽和二级代谢物,具有成本低、规模化生产等优点。 关键词:植物生物反应器;转基因植物;重组蛋白;制药 随着人类经济社会的发展,对传统农业产品的要求也越来越高。现代生物技术,尤其是农业生物技术的迅速发展,对全球现有的农作物种植和生产结构能够产生重要影响。植物生物反应器是生物反应器研究领域中的一大类,是指通过基因工程途径,以常见的农作物作为化学工厂,通过大规模种植生产具有高经济附加值的医用蛋白、工农业用酶、特殊碳水化合物、生物可降解塑料、脂类及其他一些次生代谢产物等生物制剂的方法。植物生物反应器就是利用植物这个系统,包括植物细胞、组织器官以及整株植物为工厂,来生产具有商业价值的生物制品,包括疫苗、抗体、药用蛋白等,许多研究证实植物系统

具有表达活性哺乳动物蛋白的能力,在产品质量、成本和安全方面已显现出优势,并很快得到科学家和生物制药业的认可.据预测,未来5~1O年植物将成为临床治疗或诊断药品的主要生产系统。 1 植物生物反应器特点及优越性 许多研究证实植物系统具有表达活性哺乳动物蛋白的能力,在产品质量、成本和安全方面已显现出优势,并很快得到科学家和生物制药业的认可。科学家预测,不久的未来,植物生物反应器很可能成为生物化学药物及多种有用蛋白的重要生产系统。植物作为生产药用蛋白的生物反应器,为人类提供了一个更加安全和廉价的生产体系,与微生物发酵、动物细胞和转基因动物等生产系统相比,它具有许多潜在的优势。以生物学生产要求很高的疫苗为例,它的优点有:(1)技术较成熟,成本低廉,使用方便,易于推广;(2)植物具有完整的真核细胞表达系统,能准确地进行翻译后加工;(3)无须提取纯化过程,可直接食用免疫;(4)比传统的免疫途径更有效,植物细胞中的疫苗抗原通过胃内的酸性环境时可受到细胞壁的保护,直接到达肠内黏膜诱导部位,刺激黏膜和全身免疫反应;(5)安全性好,不需要注射器和针头之类的设备,避免了某些血液传播疾病。如果不以整株植物作为生产单位,而是用带有生产目的产物特性的植物细胞或组织作为生产单位,结合植物细胞培养和发酵工程方法,则可以像微生物发酵生产一样大规模工厂化生产目的产物。与人工栽培相比较,这种生产方式具有独特的优点:(1)节约自然资源,减少对土地资源的占用,同时不受地区、季节、气候等自然条件的影响;(2)细胞培养个体差异

动物细胞培养生物反应器的操作模式讲课讲稿

动物细胞培养生物反应器的操作模式

动物细胞培养生物反应器的操作模式 米力 第四军医大学细胞工程中心,国家863西安细胞工程基地 陕西西安,710032 动物细胞培养工艺的选择首先考虑的重要一点是该产品所涉及的生物反应器系统。选择反应器系统也就是选择产品的操作模式,操作模式选择将决定该产品工艺的产物浓度、杂质量和形式、底物转换度、添加形式、产量和成本,工艺可靠性等。与许多传统的化学工艺不同,动物细胞反应器设备占整个工艺资金总投入的主要部分(>50%),也就是说动物细胞培养工艺的选择主要部分是生物反应器系统的选择。选择反应器系统及培养工艺时,必须对工艺的整体性进行全面考虑,主要包括以下几个方面:细胞株及生长形式、产物表达量和稳定性,培养基质及代谢物,产物分离和纯化难度等。 动物细胞大规模培养的生物反应器操作模式,一般分为分批式操作(batch)、流加式操作(Fed-batch)、半连续式操作(semi-continuous)、连续式操作(continuous)和灌流式操作(perfusion)五种操作模式。 1. 批式操作(batch culture) 批式操作是动物细胞规模培养发展进程中较早期采用的方式,也是其它操作方式的基础。该方式采用机械搅拌式生物反应器,将细胞扩大培养后,一次性转入生物反应器内进行培养,在培养过程中其体积不变,不添加其它成分,待细胞增长和产物形成积累到适当的时间,一次性收获细胞、产物、培养基的操作方式。

该方式的特点:(1) 操作简单。培养周期短,染菌和细胞突变的风险小。反应器系统属于封闭式,培养过程中与外部环境没有物料交换,除了控制温度、pH值和通气外,不进行其他任何控制,因此操作简单,容易掌握;(2)直观的反应细胞生长代谢的过程。由于培养期间细胞的生长代谢是在一个相对固定的营养环境,不添加任何营养成分,因此可直观的反应细胞生长代谢的过程,是动物细胞工艺基础条件或"小试"研究常用的手段;(3)可直接放大。由于培养过程工艺简单,对设备和控制的要求较低,设备的通用性强,反应器参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,在工业化生产中分批式操作是传统的、常用的方法,其工业反应器(Genetech)规模可达12000L。 分批培养过程中,细胞的生长分为五个阶段:延滞期、对数生长期、减速期、平稳期和衰退期,见图1。分批培养的周期时间多在3~5天,细胞生长动力学表现为细胞先经历对数生长期(48~72h)细胞密度达到最高值后,由于营养物质耗劫或代谢毒副产物的累积细胞生长进入衰退期进而死亡,表现出典型的生长周期。收获产物通常是在细胞快要死亡前或已经死亡后进行。 图1 分批式培养动物细胞生长曲线

搅拌气升式生物反应器的研究进展

搅拌气升式生物反应器的研究进展 席仁荣,吴振强 (华南理工大学生物科学与工程学院,广东广州510640)摘要:搅拌气升式反应器作为一种新型高效的生物反应器,因为其独特的优势而越来越受到重视,具有良好的研究和应用前景。概述了搅拌气升式反应器的国内外研究进展,着重评述了搅拌气升式反应器相比于传统机械搅拌式反应器和气升式反应器的所体现出的优点,详细介绍和分析了该新型反应器的基本结构、流体力学性质及相关的重要表征参数,并对其在生物发酵和化工行业中的应用和发展进行了回顾和展望。 关键词:搅拌气升式反应器;传质性能;结构 中图分类号:TQ 050.1 文献标识码:A文章编号:1000–6613(2008)02–0218–05 Research progress of mechanically stirred airlift bioreactors XI Renrong,WU Zhenqiang (Collegy of Bioscience and Bioengineering,South China University of Technology,Guangzhou 510640,Guangdong, China) ABstract:The mechanically stirred air lift bioreactors are a kind of novel and high-performance bioreactors,which are paid more attention due to their excellent merits in recent years and may have a good prospest. The corrent research progress of mechanically agitated airlift bioreactors at home and abroad is summarized. The paper also compares the mechanically stirred air lift bioreactors with mechanically stirred bioreactors and air lift bioreactors and points out its strengths. Besides,the basic structure ,hydromechanics characteristics and relevant parameters of the novel bioreactors are introduced and analyzed in detail as well as their applications in fermentation and chemical industry in the future. Key words:mechanically stirred airlift bioreator;mass transfer performance;structure 气升式反应器和机械搅拌式反应器在生物发酵、化工等领域中得到了广泛应用[1]。气升式反应器在流体黏度相对不高、需要温和的搅拌[2]和氧传质要求较低[3-4]时非常有效,但操作弹性小、轴向梯度高径比(H/D)大、高黏度时相间传质差等不利因素制约了其发展。与其相比,传统的机械搅拌式反应器则有更广泛的操作应用范围,混合程度较高,但它们没有确定的混合模式、不能高速的通气、快速机械搅拌的剪切力对于丝状菌和动植物细胞的培养不利。为了扩展反应器的应用范围,许多研究者通过多种途径来改善它们的性能,包括改进反应器型式、结构、增加内构件等,其中,将搅拌式反应器与气升式反应器结合形成的新型机械搅拌气升式反应器因其能够同时解决传统搅拌和气升式反应器的一些限制而引起了国内外学者的广泛注意。在气升式反应器中合理设置搅拌,可有效地破碎细胞,扩大传质面积并增加循环速度及扰动,强化传递性能,获得足够高的氧传质效率和热传递性能,并且能耗可以缩减至传统搅拌系统的30%。Moo-Young等[5]较早地指出在气升式反应器的导流筒中加上一个低剪切力轴流搅拌桨,这可能是搅拌气升式反应器的最初模型,其性能优于单纯的气升式反应器。同样,这种搅拌气升式反应器已经被证明比传统的单层六平叶圆盘涡轮桨需氧发酵罐具有更高效率[4-6]。LüXiaoping 等[7]认为在高黏度介质的气升式反应器中,机械搅拌比静态混合器对传质的改善更有效。目前国内对这种新型混合反应器甚少有系统的

几种常见植被指数

植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基本的认识: 1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的; 2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息 3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感; 四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI 3、SAVI4等改进模型。 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。 1、通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。

生物反应器的现状及发展趋势

生物反应器的现状及发展趋势 【摘要】:生物反应器的研制不仅对现有生物产业的发展起着关键作用,而且可以用于进行高附加值化合物、药物等的生产。生物反应器在生物产品研究工作中是一个必不可少的重要工具和手段。人类正面临人口膨胀、陆地资源减少和环境恶化等全球性问题。传统的生产模式已经很难适应经济快速发展的需要,生物反应器的研究工作正在世界范围内蓬勃兴起。本文对生物反应器的现状及发展趋势进行了综述。 【关键词】:生物反应器;结构;功能;优缺点; 1 生物反应器的定义 生物反应器:生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。 2 生物反应器的分类 2.1 发酵罐 2.1.1 发酵罐的主要构造 其主体一般为不锈钢制成的主式圆筒,其容积在一平方米至数百平方米。内部及顶部、底部有附件。 2.1.2 发酵罐的主要分类 (1)通气机械搅拌罐 通气机械搅拌罐(后面简称发酵罐)是许多发酵过程的首选设备,具有高传质和传热能力,理想的气液混合效果,较长的液体停留时间和较宽的操作气速。但缺点也明显,郾剪切力较大,损害许多剪切敏感型微生物能耗大,混合不均。因此,发扬通风搅拌罐的优势,克服其缺点是当前发酵罐研究的重点之一。通风搅拌罐改进工作主要在搅拌系统,包括搅拌器和多层搅拌系统的优化,搅拌器主要是采用新型搅拌器或改进标准搅拌器,目的是减少桨叶尾流的漩涡以便节能,或者改变反应器的流态,使得剪切力可以均匀的分布,保护反应器中的微生物。多层搅拌系统很早就开始使用,但由于对其工作机理研究不够深人,多年来一直采用简单的经验设计方法,没有发挥其应有的优势。 目前对于通风搅拌发酵罐的认识已经到了一个新的高度,主要表现在研究的内容和手段两面面,从内容看,对多层搅拌系统的研究不只是以单搅拌研究为基础的延伸,而是以多层搅拌为研究目标研究的深度和广度都在扩展,同时,研究溶液性质对传质和混合的影响,使得得出的成果更接近实际,为进一步的精确设计提供了相当的基础,尽管目前这些进步还不能实现完全通过计算就可实现发酵罐的放大设计。当然,这些成果的取得是伴随研究手段取得的进步,一些先进的仪器和技术为深入了解现象的内在规律提供了可能,如用于观察流体流动状态的多普勒流体分析仪、多普勒速度仪,分析工具计算流体力学及软件,准确测量体积氧传递系数Kla动压法等等。对于气液系统,用最小的功率消耗获得最大的气含率是最重要的设计目标,组合搅拌系统的底搅拌必须采用纯径向流搅拌器(如圆盘直叶涡轮搅拌桨),顶部采用混合流搅拌桨(如折叶开启式涡轮搅拌桨)向下输送液流,且液流应在湍流状态。得到最大的气含率就相当于得到最大的气液传质系数,这个结论有助于在设计时找出获得最大传质系数Kla同时功耗最低的设计参数。同样在搅拌系统设计中,引进新型高教的搅拌器可以进一步提高发酵罐的效率和表现。另外,搅拌系统设计的另一个重要原则就是对发酵液的理化性质的关注,由于发酵液成分复杂。对K-a的影响也是比较显著的,因此,根据发酵液的特性设计搅拌系统也是非常必要的,由于目前还无法量化描述发酵液成分对发酵过程传质传热的影响,大型发酵罐的设计应以小型试验为基础,选择适合的关联式作为放大依据。可能是最佳的设计方法。尽管,对发酵罐搅拌系统的研究已经取得了许多可喜的进展,但仍有许多同题需要深入研究。总体上,

相关文档