文档库 最新最全的文档下载
当前位置:文档库 › 高三物理典型例题集锦三

高三物理典型例题集锦三

高三物理典型例题集锦三

电学部分

25、如图22-1所示,A 、B 为平行金属板,两板相距为d ,分别与电源两极相连,两板的中央各有小孔M 、N 。今有一带电质点,自A 板上方相距为d 的P 点由静止自由下落(P 、M 、N 三点在同一竖直线上),空气阻力不计,到达N 点时速度恰好为零,然后按原路径返回。若保持两板间的电压不变,则:

A.若把A 板向上平移一小段距离,质点自P 点下落仍能返回。

B.若把B 板向下平移一小段距离,质点自P 点下落仍能返回。

C.若把A 板向上平移一小段距离,质点自P 点下落后将穿过N 孔继续下落。

D.若把B 板向下平移一小段距离,质点自P 点下落后将穿过N 孔继续下落。

分析与解:当开关S 一直闭合时,A 、B 两板间的电压保持不变,当带电质点从M

向N 运动时,要克服电场力做功,W=qU AB ,由题设条件知:带电质点由P 到N 的运动过

程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB

若把A 板向上平移一小段距离,因U AB 保持不变,上述等式仍成立,故沿原路返回,

应选A 。

若把B 板下移一小段距离,因U AB 保持不变,质点克服电场力做功不变,而重力做

功增加,所以它将一直下落,应选D 。

由上述分析可知:选项A 和D 是正确的。

想一想:在上题中若断开开关S 后,再移动金属板,则问题又如何?(选A 、B)。

26、两平行金属板相距为d ,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T 。现有一离子束,其中每个离子的质量为m ,电量为q ,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。试求:离子击中荧光屏上的位置的范围。(也就是与O‘点的最大距离与最小距离)。重力忽略不计。 分析与解:

各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T ,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。

当离子在t=0,T ,2T……时刻进入电场时,两板间在T/2时间内有电压U 0,因而侧向做匀加速运动,其侧向位移为y 1,速度为V 。接着,在下一个T/2

时间内,两板间没有电

压,离子以V 速度作匀速直线运动,侧向位移

为y 2,如图23-2所示。这些离子在离开电场时,侧向位移有最大值,即(y 1+y 2)

。 当离子在T=t/2,3/2T,5/2T……时刻进入电场 时,两板间电压为零,离子在水平方向做匀速

直线运动,没有侧向位移,经过T/2时间后,

两板间有电压U 0,再经过T/2时间,有了侧向

位移y 1,如图23-3所示。这些离子离开电场时

有侧向位移的最小值,即y 1。

当离子在上述两种特殊时刻之外进入电场的,其侧向位移值一定在

(y 1+y 2)与y 1之间。根据上述分析就可以求出侧向位移的最大值和最小值。

图22-1 图23-1 图23-1(b) 图23-2

图23-3

所以,离子击中荧光屏上的位置范围为:

27、如图24-1所示,R 1=R 2=R 3=R 4=R ,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;电键S 断开时,小球向电容器一个极板运动并发生碰撞,碰撞后小球带上与极板同种性质的电荷。设碰撞过程中没有机械能损失,小球反弹后恰好能运动到电容器另一极板。若不计电源内阻,求:(1)电源的电动势,(2)小球与极板碰撞后的带电量。

分析与解:(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)

U C =U 4=(2/3)ε

对带电小球有:mg=qE=qU C /d=(2/3)qε/d 得:ε=(3/2)mgd/q

(2)电键S 断开后,R 1、R 4串联,则U C ’=ε/2=(3/4)mgd/q [1]

小球向下运动与下极板相碰后,小球带电量变为q’,向上运动到上极

板,全过程由动能定理得:mgd/2-qU C ’/2-mgd+q’U C ’=0 [2] 由[1][2]式解得:q’=7q/6。

28、如图25-1所示为矩形的水平光滑导电轨道abcd ,ab 边和cd 边的电阻均为5R 0,ad 边和bc 边长均为L ,ad 边电阻为4R 0,bc 边电阻为2R 0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B 。轨道上放有一根电阻为R 0的金属杆mn ,现让金属杆mn 在平行轨道平面的未知拉力F 作用下,从轨道右端以速率V 匀速向左端滑动,设滑动中金属杆mn 始终与ab 、cd 两边垂直,且与轨道接触良好。ab 和cd 边电阻分布均匀,求滑动中拉力F 的最小牵引功率。

分析与解:mn 金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn 相当于电源,其电路为内电路,电阻为内电阻。当外电阻最大时,即当mn 滑到距离ad=(2/5)ab 时,此时电阻R madn =R mbcn =8R 0时,外阻最大值R max =4R 0,这时电路中电流最小值:I min =ε/(R max +r)=BLV/(4R 0+R 0)=BLV/5R 0

所以,P min =F min V=BLI min V=BLVBLV/5R 0=B 2L 2V 2/5R 0

29、如图26-1所示,用密度为D 、电阻率为ρ的导线做成正方形线框,

从静止开始沿竖直平面自由下落。线框经过方向垂直纸面、磁感应强度为B

的匀强磁场,且磁场区域高度等于线框一边之长。为了使线框通过磁场区域

的速度恒定,求线框开始下落时的高度h 。(不计空气阻力)

分析与解:线框匀速通过磁场的条件是受到的竖直向上的安培力与重力平衡,即:F 安=mg [1]

设线框每边长为L ,根据线框进入磁场的速度为

,则安培力可表达为:

F 安=BIL= [2] 设导线横截面积为S ,其质量为:m=4LSD [3]

其电阻为:R=ρ4L/S [4]

联立解[1]、[2]、[3]、[4]式得:

h=128D 2ρ2g/B 4

想一想:若线框每边长为L ,全部通过匀强磁场的时间

为多少?(t=2L/V)

线框通过匀强磁场产生的焦耳热为多少?(Q=2mgL)

30、如图27-1所示,光滑导轨EF 、GH 等高平行放置,

EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖

直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab

从离水平轨道h 高处由静止下滑,设导轨足够长。试求:(1)ab 、cd 棒的最终速度,

(2)全过程中感应电流

产生的焦耳热。

分析与解:ab 下滑进入磁场后切割磁感线,在abcd 电

路中产生感应电流,ab 、cd 各受不同的磁场力作用而分别

作变减速、变加速运动,电路中感应电流逐渐减小,当感

应电流为零时,ab 、cd 不再受磁场力作用,各自以不同的图24-1

图25-1

图26-1 图27-1

速度匀速滑动。全过程中系统内机械能转化为电能再转化为内能,总能量守恒。

(1) ab 自由下滑,机械能守恒:mgh=(1/2)mV 2 [1]

由于ab 、cd 串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 L ab =3L cd ,故它们的磁场力为:F ab =3F cd [2]

在磁场力作用下,ab 、cd 各作变速运动,产生的感应电动势方向相反,当εab =εcd 时,电路中感应电流为零,(I=0),安培力为零,ab 、cd 运动趋于稳定,此时有:BL ab V ab =BL cd V cd 所以V ab =V cd /3 [3]

ab 、cd 受磁场力作用,动量均发生变化,由动量定理得:

F ab △t=m(V -V ab ) [4] F cd △t=mV cd [5]

联立以上各式解得:V ab =(1/10),V cd =(3/10)

(2)根据系统能量守恒可得:Q=△E 机=mgh-(1/2)m(V ab 2+V cd 2)=(9/10)mgh

说 明:本题以分析ab 、cd 棒的受力及运动情况为主要线索求解。

注意要点:①明确ab 、cd 运动速度稳定的条件。

②理解电磁感应及磁场力计算式中的“L”的物理意义。

③电路中的电流、磁场力和金属棒的运动之间相互影响制约变化复杂, 解题时抓住每一瞬间存在F ab =3F cd 及终了状态时V ab =(1/3)V cd 的关系,用动量定理求解十分方便。

④金属棒所受磁场力是系统的外力,且F ab ≠F cd 时,合力不为零,故系统动量不守恒,只有当L ab =L cd 时,F ab =F cd ,方向相反,其合力为零时,系统动

量才守恒。

31、如图28-1所示,X 轴上方有匀强磁场B ,下方

有匀强电场E 。电量为q 、质量为m 、重力不计的粒

子y 轴上。X 轴上有一点N(L.0),要使粒子在y 轴

上由静止释放而能到达N 点,问:(1)粒子应带何种

电荷? (2)释放点M 应满足什么条件? (3)粒子从M

点运动到N 点经历多长的时间?

分析与解:(1) 粒子由静止释放一定要先受电场力作用 (磁场对静止电荷没有作用力),所以 M 点要在-Y 轴上。要进入磁场必先向上运动,静上的电荷要向上运动必须受到向上的电场力作用,而场强 E 方向是向下的,所以粒子带负电。

(2)粒子在M 点受向上电场力,从静止出发做匀加速运动。在 O 点进入匀强磁场后,只受洛仑兹力(方向沿+X 轴)做匀速周围运动,经半个周期,回到X 轴上的P 点,进入匀强电场,在电场力作用下做匀减速直线运动直到速度为零。然后再向上做匀加速运动,在X 轴上P 点进入匀强磁场,做匀速圆运动,经半个周期回到X 轴上的Q 点,进入匀强电场,再在电场力作用下做匀减速运动直到速度为零。此后,粒子重复上述运动直到 X 轴上的N 点,运动轨迹如图28-2所示。

设释放点M 的坐标为(0.-y O ),在电场中由静

止加速,则:qEy O =mV 2 [1]

在匀强磁场中粒子以速率V 做匀速圆周运动,

有:qBV=mV 2/R [2]

设n 为粒子做匀速圆周运动的次数(正整数)

则:L=n2R ,所以R=L/2n [3]

解[1][2][3]式得:V=qBL/2mn ,所以

y O =qB 2L 2/8n 2mE (式中n 为正整数)

(3)粒子由M 运动到N 在电场中的加速运动和

减速运动的次数为(2n-1)次,

每次加速或减速的时间都相等,设为t 1,则:y O =at 12=qEt 12

/m 所以t 1=

图28-1

图28-2

粒子在磁场中做匀速圆周运动的半周期为t 2,共n 次,t 2=πm/qB

粒子从M 点运动到N 点共经历的时间为:

t=(2n-1)t 1+nt 2=(2n-1)BL/2nE+nπm/qB (n=1、2、3……)

32、平行金属,板长1.4米,两板相距30厘米,两板间匀强磁场的B

为1.3×10-3特斯拉,两板间所加电压随时间变化关系如29-1图所示。当

t=0时,有一个a 粒子从左侧两板中央以V=4×103米/秒的速度垂直于磁场

方向射入,如29-2图所示。不计a 粒子的重力,求:该粒子能否穿过金属

板间区域?若不能,打在何处?若能,则需多长时间? (已知a 粒子电量q=3.2×10

-19库,质量m=6.64×10-27千克)

分析与解:在t=0到t=1×10-4秒时间内,两板间加有电压,a 粒子受到电场力和

洛仑兹力分别为:F=qu/d=q×1.56/0.3=5.2q 方向竖直向下

f=qBv=q×1.3×10-3×4×103=5.2q 方向竖直向上

因F=f ,故做匀速直线运动,其位移为:△S=v△t=4×103×1×10-4=0.4米

在t=1×10-4秒到t=2×10-4秒时间内,两板间无电场,a 粒子在洛仑兹力作用下

做匀速圆周运动,其轨迹半径为:

r=mv/qB=(6.64×10-27×4×103)/(3.2×10-19×1.3×10-3)=6.37×10-2米<d/4 所以粒子不会与金属板相碰。面a 粒子做匀速圆周运动的周期为:

T=2πm/qB=(2×3.14×6.64×10-27)/(3.2×10-19×1.3×10-3)=1.0×10-4秒

则在不加电压的时间内,a 粒子恰好能在磁场中运动一周。当两板间又加上第2个周期和第3个周期的电压

时,a 粒子将重复上述的运动。故经13/4周期飞出板外(t=6.5×10-4秒)其运动轨迹如29-3图所示。

33、如图30-1所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下

有磁感强度相同的匀强磁场,方向垂直纸面向外。ab 是一根长L 的绝缘细杆,沿电场

线放置在虚线上方的场中,b 端在虚线上。将一套在杆上的举正电小球从a 端由静止释

放后,小球先是加速运动,后是匀速运动则达b 端。已知小球与绝缘杆间的动因摩擦

数μ=0.3,小球的重力可忽略不计。当小球脱离杆进入虚线下方后,运动轨迹是半圆,

圆半径为L/3。求:带电小球以 a 到b 运动过程中克服摩擦力做的功与电场力所做功

的比值。

分析与解:(1)带电小球在沿杆向下运动时,

其受力情况如30-2图示。

水平方向:F 洛=N=qBV [1]

竖直方向:qE=f [2] (匀速运动时)

又因f=μN [3],联立解[1][2][3]式得:qE=f=μqBV b

小球在磁场中作匀速圆周运动:qBV b =mV b 2/R=3mV b 2/L ,所以V b =qBL/3m

小球从a 到b 运动过程中,由动能定理:W 电-W f =mV b 2

W 电=qEL=μqBV b L=0.3×qBL(qBL/3m)=q 2B 2L 2/10m

所以,W f =W 电-mV b 2=q 2B 2L 2/10m-(m/2)(q 2B 2L 2/9m 2)=2q 2B 2L 2/45m

所以,W f /W 电=(2q 2B 2L 2/45m)/(q 2B 2L 2/10m)=4/9。

34、如图31-1所示,从阴极K 射出的电子经U 0=5000V 的电势差加速后,沿平行于板面的方向从中央射入两块长L 1=10cm ,间距d=4cm 的平行金属板AB 之间。在离金属板边缘L 2=75cm 处放置一个直径D=20cm ,带有记录纸的圆筒。整个装置放在真空内,电子发射的初速度不计。

(1)若在金属板上加以U 1=1000V 的直流电压(A 板电势高)后,为使电子沿入射方向作匀速直线运动到达圆筒,应加怎样的磁场(大小和方向);

(2)若在两金属板上加以U 2=1000cos2πtV 的交流电压,并使圆筒绕中心轴按图示方向以n=2转/秒匀速转动。试确定电子在记录纸上的轨迹形状,并画出1秒钟内所记录到的图

形。

分析与解:偏转极板上加恒定电压 U 后,电子在电场中受到恒

定的电场力作用,故所加的磁场方向只要使运动电子所受到的洛仑兹

图29-1 图29-2 图29-3 图30-1 图30-2 图31-1

力与电场力等大反向即可。偏转极板上加上正弦交流电后,板间电场变为交变电场,电子在板间的运动是水平方向作匀速直线运动,竖直方向作简谐运动。偏出极板后作匀速直线运动,电子到达圆筒后,在筒上留下的痕迹是电子在竖直方向的“扫描”和圆筒匀速转动的合运动。

据动能定理:eU0=mV02

,得电子加速后的入射速度为: V0= =4.2×107

m/s (1)加直流电压时,A 、B 两板间场强:

E1=U1/d=1000/(4×10-2)=2.5×104v/m

为使电子作匀速直线运动,应使电子所受电场力与洛仑兹力平衡,即:qE1=qBV0,

得:B=E1/V0=(2.5×104)/(4.2×107)=6×10-4T

方向为垂直于纸面向里。

(2)加上交流电压时,A 、B 两板间场强为:

E2=U2/d=1000cos2πt/(4×10-2)=2.5×104cos2πt v/m

电子飞离金属板时的偏距为:y 1=at12=(eE2/m)(L1/V0)2

电子飞离金属板时的竖直速度为:V y =at 1=(eE2/m)(L1/V0)

从飞离板到到达筒的偏距:

y 2=V y t 2=(eE2/m)(L1/V0)(L2/V0)=(eE2L1L2)/(mV02)

所以在纸筒上的落点对入射方向的总偏距为:(如图31-2所示)

y=y 1+y 2=(L1/2+L2)(eE2L1/mV02)=(L1/2+L2)(L1U2/2U0d)

=(10/2+75)×10-2×(10×1000cos2πt)/(2×5000×4)=0.20cos2πt m

可见,在记录纸上的点以振幅0.20m ,周期T=2π/ω=1秒而作简谐运动。因圆筒每秒转2周(半秒转1周),故在1秒内,纸上的图形如图31-3所示。

35、如图32-1所示,两根互相平行、间距d=0.4米

的金属导轨,水平放置于匀强磁场中,磁感应强度B=0.2T ,

磁场垂直于导轨平面,金属滑杆ab 、cd 所受摩擦力均为

f=0.2N 。两根杆电阻均为r=0.1Ω,导轨电阻不计,当ab 杆受力F=0.4N 的恒力作用时,ab 杆以V 1做匀速直线运动,

cd 杆以V 2做匀速直线运动,求速度差(V 1- V 2)等于多少?

分析与解:在电磁感应现象中,若回中的感应电动势是由导体做切割磁感线

运动而产生的,则通常用ε=BlVsinθ来求ε较方便,但有时回路中的电动势

是由几根棒同时做切割磁感线运动产生的,如果先求出每根导体棒各自的电动

势,再求回路的总电动势,有时就会涉及“反电动势”而超纲。如果取整个回路为研究对象,直接将法拉第电磁感应定律ε=用于整个回路上,即可“一次性”求得回路的总电动势,避开超纲总而化纲外为纲内。 cd 棒匀速向右运动时,所受摩擦力f 方向水平向左,则安培力F cd 方向水平向右,由左手定则可得电流方向从c 到d ,且有:

F cd = IdB = f

I = f /Bd ①

取整个回路abcd 为研究对象,设回路的总电势为ε,由法拉第电磁感应定律ε=

,根据B 不变,则

△φ=B△S,在△t 时间内,

△φ=B(V 1-V 2)△td

所以:ε=B(V 1-V 2)△td/△t=B(V 1-V 2)d ②

又根据闭合电路欧母定律有:I=ε/2r ③

由式①②③得:V 1-V 2 = 2fr / B 2d 2

代入数据解得:V 1-V 2 =6.25(m/s ) 图31-2 图31-3 图32-1

36.如图33-1所示,线圈abcd每边长l=0.20m,线圈质量m1=0.10kg、电阻R=0.10Ω,砝码质量m2=0.14kg.线圈上方的匀强磁场磁感强度B=0.5T,方向垂直线圈平面向里,磁场区域的宽度为h=l=0.20m.砝码从某一位置下降,使ab边进入磁场开始做匀速运动.求线圈做匀速运动的速度.

解析:该题的研究对象为线圈,线圈在匀速上升时受到的安培力F安、绳子的拉力F和重力m1g相互平衡,即

F=F安+m1g. ①

砝码受力也平衡:

F=m2g. ②

线圈匀速上升,在线圈中产生的感应电流

I=Blv/R, ③

因此线圈受到向下的安培力

F安=BIl. ④

联解①②③④式得v=(m2-m1)gR/B2l2.

代入数据解得:v=4(m/s)

37.如图34-1所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为θ.在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B.在导轨的A、C端连接一个阻值为R的电阻.一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑.求ab棒的最大速度.(已知ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)

解析:本题的研究对象为ab棒,画出ab棒的平面受力图,如图34-2.ab棒所受安

培力F沿斜面向上,大小为F=BIl=B2l2v/R,则ab棒下滑的加速度

a=[mgsinθ-(μmgcosθ+F)]/m.

ab棒由静止开始下滑,速度v不断增大,安培力F也增大,加速度a减小.当a=0时达

到稳定状态,此后ab棒做匀速运动,速度达最大. mgsinθ-(μmgcosθ+B2l2v/R)=0.

解得ab棒的最大速度

vm=mgR(sinθ-μcosθ)/B2l2.

38. 电阻为R的矩形导线框abcd,边长ab=l、ad=h、

质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂

直纸面向里,磁场区域的宽度为h,如图35-1所示.若线框恰好

以恒定速度通过磁场,线框内产生的焦耳热是 .(不考虑

空气阻力)

解析:线框以恒定速度通过磁场,动能不变,重力势能减少,减少的重力势能转化为线框内产生的焦耳热.根据能的转化与守恒定律得:Q=mg·2h=2mgh.

39. 如图36-1所示,A是一边长为l的正方形线框,电阻为R.现维持线框以恒定的速度v沿x轴运动,并穿过图中所示的匀强磁场B区域.取逆时针方向为电流正方向,线框从图示位置开始

运动,则线框中产生的感应电流i随时间t变化的图线是图36-2中的: [ ]

解析:由于线框进入和穿出磁场时,线框内磁通量均匀变化,因此在线框

中产生的感应电流大小不变.根据楞次定律可知,线框进入磁场时感应电流的

方向与规定的正方向相同,穿出磁场时感应电流的方向与规定的正方向相反,

因此应选B.

想一想:若将题39改为:以x轴正方向作为力的正

方向,则磁场对线框的作用力F随时间t的变化图线为

图36-3中的: [ ]

同理可分析得正确答案应选C.

40.如图37-1所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的

边缘飞出,已知板长为L,板间的电压为U,带电粒子的带电量为q,粒子通过平行金属板的时间为T,不计粒子的重力,则[ ]

A.粒子在前T/2时间内,电场力对粒子做功为(1/4)qU

33-1 图

34-1 图

34-2 图35-1 图

36-1 图36-2

图36-3

B.粒子在后T/2时间内,电场力对粒子做功为(3/8)qU

图37-1C.粒子在下落前d/4和后d/4内,电场力做功之比

为1∶2

D.粒子在下落前d/4和后d/4内,通过的时间之比为1∶3

答案:B

41.如图38-1

所示,三平行金属板a、b、c接到电动势分别为

1、2的电源上,已知1<2,在A孔右侧有一带负电的质点,

由静止释放后向右运动穿过B 到达P 点后再返回A孔,则[ ] A.只将b板右移一小段距离后再释放该质点,质点仍运动到P

点后返回

B.只将b板右移一小段距离后再释放该质点,质点将达不到P点

C.只将b板右移稍长距离后再释放该质点,质点能穿过C 孔

D.若将质点放在C 孔左侧由静止释放,质点将能穿过A孔

答案:D

42.如图39-1所示,U型线框abcd处于匀强磁场中,磁场的磁感强度为B,

方向垂直于纸面向内.长度为L的直导线MN中间串有一个电压表跨接在ab与c

d上且与ab垂直,它们之间的接触是完全光滑的.R为电阻,C 为电容器,现令M

N以速度v0向右匀速运动,用U 表示电压表的读数,q表示电容器所带电量,C表

示电容器电容.F表示对MN的拉力.设电压表体积很小,其中线圈切割磁感线对MN间的电压的影响可以忽略不计.则[ ]

A.U=BLv0 F=v0B2L2/R B.U=BL

v0 F=0

C.U=0 F=0 D.U=q/C

F=v0B2L2/R

答案:C

43.密立根油滴实验如图40-1所示:在电介质为空气的电容器中,观测以某速度送入的一个油滴,这油滴经过一会儿达到一个恒定的速度v1,这时加上电场强度为E的匀强电场,再过一会儿达到另一恒定速度v2.在这样短的时间内速度变为恒定,说明油滴受到 的作用,这个力的大小与速度成正比,可表示为kv(式中k为常量)而方向与 .设油滴质量为m,电量为q,写出这两种情况下的方程式① ;② .

下面的表是通过这样的实验所测得的不同油滴所带电量q值的一个实

例:q的测定值(单位:10-19C)

分析这些数据可知:

(答案.空气阻力 速度方向相反 ①mg-kv1=0 ②mg-kv2-qE=0 小球的电量是1.6×10-19C的整数倍,故电荷的最小电量为1.6×10-19C)

44.用长度相同,横截面积之比为2∶1的均匀铜导线制成的两个正方形线框M和N,使它们从同一高度自由下落,途中经过一个有边界的匀强磁场区域,磁场方向垂直纸面向

里,如图41-1所示.若下落过程中线框平面始终与磁场方向保持垂

直,不计空气阻力,则M、N底边进入磁场瞬间的速度vM∶vN

= ,加速度aM∶aN= ,在穿过磁场的过程

中,线框M、N内产生的热量QM∶QN= .

(答案:1:1,1:1,2:1)

图37-1

图38-1 图39-1 图41-1

45.现有一电阻箱,一个开关,若干根导线和一个电流表,该电流表表面上有刻度但无刻度值,要求设计一个能测定某电源内阻的实验方案(已知电流表内阻可忽略,电流表量程符合要求,电源内阻约为几欧).

要求:①画出实验电路图;

②简要写出完成接线后的实验步骤;

③写出用测得的量计算电源内阻的表达式r= .

答案:(1)图略 (2)①使电阻箱阻值最大,合上开关S ,调节电阻箱阻值为R1,记下电流表对应的刻度N1;②调节电阻箱阻值为R2,记下电流表对应的刻度N2;③计算出r的值;④多侧几次;取r的平均值;⑤断开S,拆除电阻,整理器材.(3)(N1R1-N2R2)/(N2-N1)

46.如图42-1所示为一固定在水平面上长L的绝缘板,整个空间有一水平的匀强电场,板在右半部有一个垂直于纸面向外的匀强磁场.一质量为m、带电量为q的物体,从板的P端由静止开始在电场力的作用下向右运动.小物体与水平面间摩擦系数为μ,进入磁场区域后恰能作匀速运动.当物体碰到挡板Q 后被弹回.若在碰撞瞬间撤去电场,物体返回时在磁中仍能作匀速运动,离开磁场后作匀减速运动,并停在C 点.设PC=1/4L.求:

(1)物体与挡板碰撞前后的速率v1和v2;

(2)磁感应强度B 的大小;

(3)电场强度E 的大小和方向.

解 物体从P 静止开始运动进入磁场速度v1,由动能定理得

qE(L/2)-μmg(L/2)=(1/2)mv12,

进入磁场匀速,由反弹后仍匀速可知,电荷带正电.电场强度方

向水平向右;进入磁场匀速

qE=μ(mg+qv1B),

反弹后匀速

mg=qv2B

出磁场后到C 点停止

-μmg(L/4)=-(1/2)mv22;

,方向水平向右.

47、在磁场中某处磁感应强度B ,可由B=F /IL求出,由此可知磁感应强度B( )

A. 随通电直导线所受磁场力增大而增大;

B.随通电直导线中电流强度增大而减小;

C 随通电直导线长度增大而减小;

D.不随导线长度通过电流强度和通电直导线所受磁场力的变化而变化。

解析:磁感应强度B 是描述磁场强弱的物理量,磁场强弱是由磁场本身决定的,与是否放入通电直导线,通电导线中电流强弱,以及通电直导线受磁场力等外界条件无关。B=F /IL,只表示几个物理量在一定条件的数量关系,而无决定关系。选项D 是正确的。

48、如图43-1所示,矩形线框abcd ,与条形磁铁的中轴线位于同一平面内,线框

内通有电流I ,则线框受磁场力的情况( )。

A. ab 和cd 受力,其它二边不受力;

B. ab 和cd 受到力大小相等方向相反;

C.ad 和bc 受到的力大小相等,方向相反;

D.以上说法都不对。

解析:如图43-2所示为条形磁铁的磁场分布情况,ab 、bc 、cd 、da 各边均处于磁

场中,磁感线与ab 、cd 垂直,用左手定则可判断ab 边受力垂直纸面向外,cd 边受力垂直纸面向里,ab 处于位置磁感强度B 大,cd 所处位置磁感强度B 小,ab 、cd 边力大小不等。bc 、ad 与所在位置磁感强度的分量垂直,要受磁场力,且磁场方向垂直纸面向里。方向相同。大小也不一定相等,

因为ad 、bc 所在位置磁感强度不一定相等,可知

A 、

B 、

C 选项均不正确,选项

D 正确。

图42-1 图43-1 图43-2

49、如图44-1所示,矩形线框abcd ,处于磁感应强度为B=0.2T 的匀强磁场中,线框

面积为S=0.3m 2,线框从图示位置转过60°,线框中磁通量变化量为 ,

线框在后来位置时磁通密度为 。

解析:线框在图示位置时、磁感强度B

与线框平面垂直,磁通量

,当线框转过60°时,线框在与磁感线垂直平面的投影面积,此时磁量

,

线框处于匀强磁场中,各处的磁感强度的大小,方向均相同,所以B=0.3T 。

从本题解答中可知,知识虽然很简单,题目也不复杂,但概念必须清楚,否则这两个答案都容易出错误,经常出现的错误是线框转,B 也随之而变。

50、等腰三角形线框abc 与长直导线MN 绝缘,且线框被导线分成面积相等的两部分,如图45-1所示,M 接通电源瞬间电流由N 流向M ,则在线框中( )。

A. 线框中无感应电流;

B.线框中有沿abca 方向感应电流;

C 线框中有沿acba 方向感应电流; D.条件不是无法判断。

解析:产生感应电流的条件是①电路要闭合;②穿过回路的磁通量要发生变化。线框为等腰三角形,是闭合电路,MN 中通入N 向M 方向电流时,闭合回路中从无磁通变为有磁通,MN 右侧磁场方向垂直纸面向里,左侧磁场方向垂直纸面向外,因右侧面积磁通量大于左侧面积的磁通量,故线框中的磁通量应为垂直纸向里。线框中应有感应电流,选项A 、D 是错误的,磁通量是增加的感应电流磁场阻碍磁通量增加,感应电流磁场应是垂直纸面向外,所以感应电流方向应是acba ,选项C 正确。

51、如图46-1所示,多匝线圈的电阻和电池内阻可忽略,两个电阻器的阻值都是R ,K 打开时,电流,今关闭K ,关于自感电动势正确表达的是( )。

A.有阻碍电流作用,最后电流减小到零;

B.有阻碍电流作用,最后电流小于I ;

C.有阻碍电流增大的作用,因而电流保持不变;

D.有阻碍电流增大的作用,但最后电流增大到2I 。

解析:因为多匝线圈电阻可以忽略,所以线圈对电流的阻碍作用可以忽略,选项A 、B

均是错误的,电路中关闭电键,把一个电阻器短路,电路总电阻减小,电路中电流增大,线圈中电流变化,线圈中产生自感电动势阻碍线圈中电流增大,但线圈中电流还是要增大,直到线圈中电流为2I ,电流不再增大,自感电动势自然消失,电路中有恒定电流,大小为2I 。选项D 正确。

52、如图47-1所示,相距0.9m 的平行轨道ab 、cd ,分别接有“4V,2W”的灯L 1和

“6V,4.5W”的灯L 2,导轨电阻不计,金属棒AM 电阻为0.5Ω,在导轨上可自由滑动,

磁感强度B=0.5T 的匀强磁场垂直轨道平面,当棒AM 以某一速度向右移动时,L 1恰好能

正常发光,求:(1)通过L 1的电流强度;(2)棒AM 的速度;(3)L 1、L 2两灯消耗的电功率。

解析:由题意知灯L 1正常发光,灯L 1两端电压为4V ,消耗电功率为2W ,则通过灯

L 1的电流强度,灯L 2的两端电压也为4V ,灯L 2

的电阻

,则灯L 2中电流强度,电路总电流,电路电动势,, 图44-1

图45-1 图46-1 图47-1

,灯L2消耗电功率为:。

答:(1)通过L1的电流强度为0.5A;(2)棒AM的速度为10m/s;(3)灯L1消耗电功率P1=2W,灯L2消耗电功率P2=2W。

应注意:棒AM切割磁感线产生感应电动势,应为电源电动势,棒AM电阻为内电阻。

高中物理力学经典题型

F A B C 一.例题 1.如右图所示,小木块放在倾角为α的斜面上,它受到一个水平向右的力F(F≠0) 的作用下 处于静止状态,以竖直向上为y 轴的正方向,则小木块受到斜面的支持力 摩擦力的合力的方向可能是( ) A.沿y 轴正方向 B.向右上方,与y 轴夹角小于α C.向左上方,与y 轴夹角小于α D.向左上方,与y 轴夹角大于α 2.如图示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上下表面均与斜面平行,它们以共同的速度沿倾角为θ的固定斜面C 匀速下滑。则:( ) A 、A 、 B 间没有摩擦力 B 、A 受到B 的静摩擦力方向沿斜面向下 C 、A 受到斜面的滑动摩擦力大小为mgsin θ D 、A 与斜面间的动摩擦因数μ=tan θ 3.如图所示,光滑固定斜面C 倾角为θ,质量均为m 的A 、B 一起以某一初速靠惯性 沿斜面向上做匀减速运动,已知A 上表面是水平的。则( ) A .A 受到B 的摩擦力水平向右,B.A 受到B 的摩擦力水平向左, C .A 、B 之间的摩擦力为零 D.A 、B 之间的摩擦力为mgsin θcos θ 4年重庆市第一轮复习第三次月考卷 6.物体A 、B 叠放在斜面体C 上,物体B 上表面水平,如图所示,在水平力F 的作用下一起随斜面向左匀加速运动的过程中,物体A 、B 相对静止,设物体A 受摩擦力为f 1,水平地面给斜面体C 的摩擦为f 2(f 2≠0),则:( ) A .f 1=0 B .f 2水平向左 C .f 1水平向左 D .f 2水平向右 22、如图是举重运动员小宇自制的训练器械,轻杆AB 长1.5m ,可绕固定点O 在竖直平面内自由转动,A 端用细绳通过滑轮悬挂着体积为0.015m3的沙袋,其中OA=1m ,在B 端施加竖直向上600N 的作用力时,轻杆AB 在水平位置平衡,试求沙子的密度.(g 取10N /kg ,装沙的袋子体积和质量、绳重及摩擦不计) B θ C A

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高一物理摩擦力典型习题

摩擦力大全 1 .如图所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑 轮到P 和到Q 的两段绳都是水平的.已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮轴上的摩擦都不计.若用一水平向右的力F 拉Q 使它做匀速运动,则F 的大小为 ( ) A .mg μ B .mg μ2 C .mg μ3 D .mg μ4 2 .如图所示,质量为m 的木块的在质量为M 的长木板上 滑行,长木板与地面间动摩擦因数为1μ,木块与长木板间动摩擦因数为2μ,若长木板仍处于静止状态,则长木板受地面摩擦力大小一定为: ( ) A .mg 2μ B .g m m )(211+μ C .mg 1μ D .mg mg 12μμ+ 3 .如图1-B-8所示,质量为m 的工件置于水平放置的钢板C 上,二者间动摩擦因 数为μ,由于光滑导槽 ( ) A . B 的控制,工件只能沿水平导槽运动,现在使钢板以速度ν1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度ν2沿导槽运动,则F 的大小为 A 等于μmg B .大于μmg C 小于μmg D .不能确定 P Q F 图1-B-8

4 .用一个水平推力F=Kt (K为恒量,t为时间)把一重为G的物体压在竖直的足够 高的平整墙上,如图1-B-5所示,从t=0开始物体所受的摩擦力f随时间t变化关系是中的哪一个? 图 1-B- 6 5 .一皮带传动装置,轮A.B均沿同方向转动,设皮带不打滑,A.B为两边缘上的点, 某时刻a、b、o、o’位于同一水平面上,如图 1-B-3所示.设该时刻a、b所受摩擦力分别为f a、 f b,则下列说确的是

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题) 1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离. 取g=10/m·s2,不考虑空气阻力. 7.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

力学经典例题(3道难题)

力学经典难题 1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 2.如图24所示,质量为60kg 的工人在水平地面上,用滑轮组把货物运到高处。第一次运送货物时,货物质量为130kg,工人用力F 1匀速拉绳,地面对工人的支持力为N 1,滑轮组的机械效率为η1;第二次运送货物时,货物质量为90 kg,工人用力F 2匀速拉绳的功率为P 2,货箱以0.1m/s 的速度匀速上升,地面对人的支持力为N 2, N 1与 N 2之比为2:3。(不计绳重及滑轮摩擦, g 取10N/kg) 求:(1)动滑轮重和力F 1的大小; (2)机械效率η1; (3) 功率P 2。 图 22 B A O 甲 图24

3、图 26是一个上肢力量健身器示意图。配重A 受到的重力为1600N ,配重A 上方连有一根弹簧测力计D ,可以显示所受的拉力大小,但当它所受拉力在0~2500N 范围内时,其形变可以忽略不计。B 是动滑轮,C 是定滑轮;杠杆EH 可绕O 点在竖直平面内转动,OE:OH=1:6.小阳受到的重力为700N ,他通过细绳在H 点施加竖直向下的拉力为T 1时,杠杆在水平位置平衡,小阳对地面的压力为F 1,配重A 受到绳子的拉力为1A F ,配重A 上方的弹簧测力计D 显示受到的拉力1D F 为2.1×103N ;小阳通过细绳在H 点施加竖直向下的拉力为T 2时,杠杆仍在水平位置平衡,小阳对地面的压力为F 2,配重A 受到绳子的拉力为2A F ,配重A 上方的弹簧测力计D 显示受到的拉力2D F 为2.4×103N.已知9:11:21 F F 。(杠杆EH 、弹簧D 和细绳的质量均忽略不计,不计绳和轴之间摩擦)。求: (1)配重A 受到绳子的拉力为1A F ; (2动滑轮B 受到的重力G B ; (3)拉力为T 2. 图

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

高中物理经典力学练习题

F 高中物理经典力学练习题 1.一架梯子靠在光滑的竖直墙壁上,下端放在水平的粗糙地面上,有关梯子的受力情况,下 列描述正确的是 ( ) A .受两个竖直的力,一个水平的力 B .受一个竖直的力,两个水平的力 C .受两个竖直的力,两个水平的力 D .受三个竖直的力,三个水平的力 2.如图所示, 用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度 增加一些,则球对绳的拉力F 1和球对墙的压力F 2的变化情况是( ) A .F 1增大,F 2减小 B .F 1减小,F 2增大 C .F 1和F 2都减小 D .F 1和F 2都增大 3.如图所示,物体A 和B 一起沿斜面匀速下滑,则物体A 受到的力是( ) A .重力, B 对A 的支持力 B .重力,B 对A 的支持力、下滑力 C .重力,B 对A 的支持力、摩擦力 D .重力,B 对A 的支持力、摩擦力、下滑力 4.如图所示,在水平力F 的作用下,重为G 的物体保持沿竖直墙壁匀速下滑, 物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为:( ) A .μF B .μ(F+G) C .μ(F -G) D .G 5.如图,质量为m 的物体放在水平地面上,受到斜向上的拉力F 的作用而没动, 则 ( ) A 、物体对地面的压力等于mg B 、地面对物体的支持力等于F sin θ C 、物体对地面的压力小于mg D 、物体所受摩擦力与拉力F 的合力方向竖直向上 6.如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,则球对挡板的压力为( ) A.mgco s θ B. mgtan θ C. mg/cos θ D. mg 7.如图所示,质量为50kg 的某同学站在升降机中的磅秤上,某一时刻该同学发现磅秤的示数为40kg ,则在该时刻升降机可能是以下列哪种方式运动?( ) A.匀速上升 B.加速上升 C.减速上升 D.减 速下降 8. 如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速 靠岸的过程中( ) A. 绳子的拉力不断增大 B. 绳子的拉力不变 C. 船所受浮力增大 D. 船所受浮力变小 9.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1 和k 2,上面木块压在上面的弹簧上(但不拴接) ,整个系统处于平衡状态.现缓

高中物理典型例题集锦

高中物理典型例题集锦(一) 山东贾玉兵 编者按:笔者结合多年的高三教学经验,记录整理了部分高中物理典型例题,以2003年《考试说明》为依据,以力学和电学为重点,编辑如下,供各校教师、高三同学参考。实践证明,考前浏览例题,熟悉做过的题型,回顾解题方法,可以提高复习效率,收到事半功倍的效果。 力学部分 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中 张力T=____

分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示 设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛 将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示, 其中力的三角形△OEG与△ADC相似,则:得: 牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的

两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F 做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,

(完整)初中物理力学经典例题

1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 39.解: (1)对杠杆进行受力分析如图1甲、乙所示: 根据杠杆平衡条件: G 甲×OA =T 1×OB (G 甲+G 乙)×OA =T 2×OB 又知OA ∶AB = 1∶2 所以OA ∶OB = 1∶3 N 300010N/kg kg 300=?==g m G 甲甲 N 600N/kg 10kg 60=?==g m G 乙乙 N 0001N 0300311=?==甲G OB OA T (1分) N 2001N 03603 1)(2=?=+=乙甲G G OB OA T (1分) (2)以动滑轮为研究对象,受力分析如图2甲、乙所示 因动滑轮处于静止状态,所以: T 动1=G +2F 1,T 动2=G +2F 2 又T 动1=T 1,T 动2=T 2 所以: G G G T F 21 N 5002N 1000211-=-=-= (1分) G G G T F 21N 6002N 1200222-=-=-= (1分) 图22 B A O 甲 甲 乙 图1 O B A G 甲+ G 乙 T 2O B A G T 1T 2 T 1 G 人 F 人1 F 人2 G 人 图3 甲 乙

高一物理必修二经典例题带答案

高一物理必修2复习 第一章曲线运动 1、 曲线运动中速度的方向不断变化,所以曲线运动必定是一个变速运动。 2、物体做曲线运动的条件: 当力F 与速度V 的方向不共线时,速度的方向必定发生变化,物体将做曲线运动。 注意两点:第一,曲线运动中的某段时间内的位移方向与某时刻的速度方向不同。位移方向是由起始位置指向末位置的有向线段。速度方向则是沿轨迹上该点的切线方向。第二,曲线运动中的路程和位移的大小一般不同。 3、 平抛运动:将物体以某一初速度沿水平方向抛出,不考虑空气阻力,物体所做的运动。 平抛运动的规律:(1)水平方向上是个匀速运动(2)竖直方向上是自由落体运动 位移公式:t x 0ν= ;2 2 1gt y = 速度公式:0v v x = ; gt v y = 合速度的大小为:22 y x v v v += ; 方向,与水平方向的夹角θ为:0 tan v v y = θ 1. 关于质点的曲线运动,下列说法中不正确的是 ( ) A .曲线运动肯定是一种变速运动 B .变速运动必定是曲线运动 C .曲线运动可以是速率不变的运动 D .曲线运动可以是加速度不变的运动 2、某人骑自行车以4m/s 的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4m/s ,则骑车人感觉的风速方向和大小( ) A.西北风,风速4m/s B. 西北风,风速24 m/s C.东北风,风速4m/s D. 东北风,风速24 m/s 3、有一小船正在渡河,离对岸50m 时,已知在下游120m 处有一危险区。假设河水流速为5s m ,为了使小船不通过危险区而到达对岸,则小船自此时起相对静水速度至少为( ) A 、2.08s m B 、1.92s m C 、1.58s m D 、1.42s m 4. 在竖直上抛运动中, 当物体到达最高点时 ( ) A. 速度为零, 加速度也为零 B . 速度为零, 加速度不为零 C. 加速度为零, 有向下的速度 D. 有向下的速度和加速度 5.如图所示,一架飞机水平地匀速飞行,飞机上每隔1s 释放一个铁球,先后共释放4个,若不计空气阻力,则落地前四个铁球在空中的排列情况是( ) 6、做平抛运动的物体,每秒的速度增量总是:( ) A .大小相等,方向相同 B .大小不等,方向不同 C .大小相等,方向不同 D .大小不等,方向相同 7.一小球从某高处以初速度为v 0被水平抛出,落地时与水平地面夹角为45?,抛出点距地面的 高度为 ( ) A .g v 20 B .g v 202 C .g v 220 D .条件不足无法确定

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高中物理经典力学选择题.doc

如图所示,斜面体P 放在水平面上,物体Q 放在斜面上.Q 受一水平作用力F,Q 和P 都静止.这时P 对Q 的静摩擦力和水平面对P 的静摩擦力分别为f、f2 .现使力 F 变大, 1 系统仍静止,则() A. f1 、f2 都变大 B. f1变大,f2 不一定变大 C. f2 变大,f1 不一定变大 D. f1 、f2 都不一定变大 答案:C 如图所示,质量为m 的物体在力 F 的作用下,贴着天花板沿水平方向向右做加速运动, 若力 F 与水平面夹角为,物体与天花板间的动摩擦因数为,则物体的 加速度为() A. F (cos sin ) m B. F cos m F (cos sin ) C. g m F (cos sin ) D. g m 答案:D 如图所示,物体 B 叠放在物体 A 上,A、B 的质量均为m,且上、下表面均与斜面平行, 它们以共同速度沿倾角为的固定斜面 C 匀速下滑,则() A. A、B 间没有静摩擦力 B. A 受到B 的静摩擦力方向沿斜面向上 C. A 受到斜面的滑动摩擦力大小为mg sin D. A 与斜面间的动摩擦因数, =tan 答案:D 一质量为m 的物体在水平恒力 F 的作用下沿水平面运动,在t0 时 刻撤去力F,其v-t 图象如图所示.已知物体与水平面间的动摩擦因 数为,则下列关于力 F 的大小和力 F 做功W 的大小关系式正确的 是() A. F= mg B. F= 2 mg C. W mgv0t 0 3 W mgv t D. 0 0 2 7

41.一列以速度v 匀速行驶的列车内有一水平桌面,桌面上的 A 处有一小球.若车厢中 的旅客突然发现小球沿如图(俯视图)中的虚线从 A 点运动到 B 点.则 由此可以判断列车的运行情况是() A.减速行驶,向北转弯 B.减速行驶,向南转弯 C.加速行驶,向南转弯 D.加速行驶,向北转弯 答案:B 如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点 A 滑到最 低点 B 的过程中,小环线速度大小的平方 2 v 随下落高度h 的变化图象可能是图中的() 答案:AB 如图所示,以一根质量可以忽略不计的刚性轻杆的一端O 为固定转轴,杆可以在竖直平面内无摩擦地转动,杆的中心点及另一端各固定一个小球 A 和B,已知两球质量相同,现 用外力使杆静止在水平方向,然后撤去外力,杆将摆下,从开始运动到杆 处于竖直方向的过程中,以下说法中正确的是() A .重力对 A 球的冲量小于重力对 B 球的冲量 B.重力对 A 球的冲量等于重力对 B 球的冲量 C.杆的弹力对 A 球做负功,对 B 球做正功 D.杆的弹力对 A 球和B 球均不做功 答案:BC 如图所示,在光滑的水平面上有质量相等的木块A、B,木块 A 以速度v 前进,木块 B 静止.当木块 A 碰到木块 B 左侧所固定的弹簧时(不计弹簧质量),则() A. 当弹簧压缩最大时,木块 A 减少的动能最多,木块 A 的速度要 减少v/2 B.当弹簧压缩最大时,整个系统减少的动能最多,木块 A 的速度 减少v/2 C.当弹簧由压缩恢复至原长时,木块 A 减少的动能最多,木块 A 的速度要减少v D.当弹簧由压缩恢复至原长时,整个系统不减少动能,木块 A 的速度也不减 答案:BC 将小球竖直上抛,若该球所受的空气阻力大小不变,对其上升过程和下降过程时间及损 失的机械能进行比较,下列说法正确的是() A .上升时间大于下降时间,上升损失的机械能大于下降损失的机械能 B.上升时间小于下降时间,上升损失的机械能等于下降损失的机械能 C.上升时间小于下降时间,上升损失的机械能小于下降损失的机械能 D.上升时间等于下降时间,上升损失的机械能等于下降损失的机械能 8

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

人教版高中物理《动量》精选典型习题集(含答案)

人教版高中物理《动量》精选练习题 1. 一个运动的物体,受到恒定摩擦力而减速至静止,若其位移为s,速度为v,加速度为a,动量为p,则在下列图象中能正确描述这一运动过程的图象是( ) 2.从同一高度由静止落下的玻璃杯,掉在水泥地上易碎,掉在棉花上不易碎,这是因为玻璃杯掉在棉花上时( ) A.受到冲量小 B.受到作用力小 C.动量改变量小 D.动量变化率小 3. 关于动量、冲量,下列说法正确的是( ) A.物体动量越大,表明它受到的冲量越大 B.物体受到合外力的冲量等于它的动量的变化量 C.物体的速度大小没有变化,则它受到的冲量大小等于零 D.物体动量的方向就是它受到的冲量的方向 4.物体在恒力F作用下做直线运动,在时间△t 1内速度由0增至v,在时间△t 2 内速度由2v 增至3v,设F在时间△t 1内冲量为I 1 ,在时间△t 2 内冲量为I 2 ,则有( ) A.I 1=I 2 B.I 1

高中物理力学分析及经典题目

力学知识回顾以及易错点分析: 一:竖直上抛运动的对称性 如图1-2-2,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,则: (1)时间对称性 物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA. (2)速度对称性 物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.[关键一点] 在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也 可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解. 易错现象 1、忽略自由落体运动必须同时具备仅受重力和初速度为零 2、忽略竖直上抛运动中的多解 3、小球或杆过某一位置或圆筒的问题 二、运动的图象运动的相遇和追及问题 1、图象: 图像在中学物理中占有举足轻重的地位,其优点是可以形象直观地反映物理量间的函数 关系。位移和速度都是时间的函数,在描述运动规律时,常用x—t图象和v—t图象.

(1) x—t图象 ①物理意义:反映了做直线运动的物体的位移随时间变化的规律。②表示物体处于静止状态 ②图线斜率的意义 ①图线上某点切线的斜率的大小表示物体速度的大小. ②图线上某点切线的斜率的正负表示物体方向. ③两种特殊的x-t图象 (1)匀速直线运动的x-t图象是一条过原点的直线. (2)若x-t图象是一条平行于时间轴的直线,则表示物体处 于静止状态 (2)v—t图象 ①物理意义:反映了做直线运动的物体的速度随时间变化 的规律. ②图线斜率的意义 a图线上某点切线的斜率的大小表示物体运动的加速度的大小. b图线上某点切线的斜率的正负表示加速度的方向. ③图象与坐标轴围成的“面积”的意义 a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。 b若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时 间轴的下方,表示这段时间内的位移方向为负方向. ③常见的两种图象形式 (1)匀速直线运动的v-t图象是与横轴平行的直线.

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m2s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出

水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离.

相关文档
相关文档 最新文档