文档库 最新最全的文档下载
当前位置:文档库 › 飞机原理与构造 作业

飞机原理与构造 作业

飞机原理与构造  作业
飞机原理与构造  作业

作业一:分组大作业

从莱特兄弟的第一架飞机1903年12月升空至今已经过去了100多年。100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从原来的方形截面机身到今天的流线型机身,从亚音速飞机的升降舵到超音速飞机的全动平尾,……,飞机外形的变化五彩缤纷。

请说明一百多年来飞机外形的发展变化,并分析为什么飞机外形和会发生如此变化,或者说飞机外形发展变化的主要原因是什么。

4~6人组成一个小组,针对上述问题,通过查阅、收集和分析相关文献资料,小组讨论等,完成一份3000~5000字的技术报告,并择机进行交流。

需要注意的是:

1. 技术报告以叙述、说明主题为目标,并为自己的分析提供论据(文字、图表等进行合理的搭配)。要求结构合理、图表规范。关于格式可以参考任何一本正式出版的教材。

2. 拷贝过多的问题:拷贝要有选择性,不要出现不管是否有意义、随意拷贝来凑字数的现象。如果仅仅是简单的拷贝就失去了锻炼自己分析问题能力的意义了。希望大家能有所收获。

3. 错别字问题:网上许多资料存在大量的错别字,不要带到我们的技术报告中。我们不是人云亦云的传递机器,要有自己的主观判断。技术报告是一种科学思想的表达,需要认真对待,这也是为将来的工作积累一些理念和能力的机会。

作业二

1. 一般要求两架飞行中的飞机之间必须有一定的距离,为什么?

2. 零升阻力D 0随飞行速度的增加而增加,诱导阻力D i 随飞行速度的增加而减小,其原因是什么?(近似认为飞机重量不变,诱导阻

力因子K 不随飞行速度变化;200L D D i D D C K C C C C ?+=+=,

S v C L L ??=221ρ,S v C D D ??=22

1ρ,i D D D +=0。) 3. 一架飞机以M0.5作定直平飞,现欲水平直线加速至M0.8,飞行员应如何操纵,为什么?

4. 当变后掠机翼的后掠角由小变大时,飞机的纵向稳定性和纵向操纵性有何变化,为什么(近似认为飞行速度不变;机翼的压力中心和焦点相对于机翼本身的几何位置不变)?

作业三

1. 图1为一平面板杆结构,分析P 力的传递过程,画出各元件的受力平衡图,标出各力及剪流的大小。

2. 对于教材图6-14的集中力扩散结构,杆ef 一般要做成左端截面积大右端截面积小的变截面杆,为什么?

3. 对图2所示的封闭空间板杆(薄壁)结构,在扭矩M t 作用下,

分析力的传递过程,画出各元件的受力平衡图。

4. 对于教材图7-42的单块式后掠机翼,分析使左机翼抬头、右机翼低头的反对称扭矩是如何传递至中央翼,中央翼是如何平衡的?画出各部分的受力平衡图。

图1 图2

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

直升飞机构造及飞行原理

直升飞机构造及飞行原理构造简图

直升机的前飞 直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。 平飞时力的平衡 相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力X身及尾桨推力T尾。前飞时速度轴系选取的原则是:X铀指向飞行速度V方向;Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43) 。 平飞时力的平衡 X轴:T2=X身 Y轴:T1=G

Z轴:T3约等于T尾 其中Tl,T2,T3分别为旋翼拉力在X,Y,Z三个方向的分量。对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩平衡,直升机稍带坡度角r,故尾桨推力与水平面之间的夹角为y,T尾与T3方向不完全一致,因为y角很小,即cosr约等于1,故Z向力采用近似等号。 平飞需用功率及其随速度的变化 平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由三部分组成:型阻功率——P型;诱导功率——P 诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消耗的功率。 从上图可以看出,旋翼拉力的第二分力T2可平衡机身阻力X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身在机身相对水平面姿态变化不大的情况下,其值近似与V的平方成正比,这样废阻功 平飞需用功率随速度的变化 率P废就可以近似认为与平飞速度的三次方成正比,如上图中的点划线③所示。 平飞时,诱导功率为P诱=TV,其中T为旋翼拉力,vl为诱导速度。当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度V的增大而减小,因此平飞诱导功率P诱随平飞速度V的变化如上图中细实线②所示。 平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。 图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下降趋势,但这种下降趋势随V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度增加急剧增加。平飞需用功率随V的增加在达到平飞需用功率的最低点后增加;总的平飞需用功率随V的变化则呈上升趋势,而且变得愈来愈明显。 直升机的后飞

飞行器原理与构造复习要点

1.连续性定理和伯努利定律仅适用于低速情况。 2.飞机的主要组成部分:机翼、机身、尾翼、起落架、操纵系统、动力装置、 机载设备。 3.航空发动机分类:活塞式航空发动机、燃气涡轮发动机、冲压发动机。 4.航空器的大气飞行环境是对流层和平流层。 5.对流层中温度随高度增加而降低,集中了几乎全部水汽,有水平风和垂直风 (对飞行不利),集中了大气3/4的质量。 6.平流层起初随高度增加气温变化不大,后气温升高较快,只有水平风,无垂 直风。 7.低速,定常流动的气体,流过的截面积大的地方,速度小,压强大;而面积 小的地方,流速大,压强小。 8.确定翼型的主要几何参数:弦长、相对厚度、最大厚度位置、相对弯度。 9.总的空气动力与翼弦的交点叫做压力中心。 10.外形相似时,迎风面积越大,压差阻力也越大。 11.机翼可分为四类:矩形机翼、梯形机翼、后掠机翼、三角机翼。 12.机翼平面形状的主要参数有:机翼面积、翼展、展弦比、梯形比、和后掠角。 13.在同样的迎角下,实际机翼的升力系数就比翼型的升力系数小。 14.展弦比越小,升力曲线的斜率越小,诱导阻力越大。 15.椭圆形机翼诱导阻力最小。 16.机翼的摩擦阻力和压差阻力统称为翼型阻力(型阻)。 17.最大升阻比状态的机翼的气动效率最高。 18.诱导阻力是低速飞行的主要阻力。

19.介质越难压缩,音速越高。 20.马赫数是空气密度变化程度或压缩性大小的衡量标志。 21.马赫数越大,空气密度的变化以及压缩性的影响也越大。 22.低速中,只要迎角相同,机翼压力分布和飞机气动特性(升力系数、阻力系 数)都是一样的。 23.激波中的空气压强突然增高,密度温度随之升高,但气流的速度却大为降低。 24.激波阻力实质是一种压差阻力。 25.气流通过正激波,压力、密度、温度都突然上升,流速由超音速降为亚音速, 气流方向不变。(通过斜激波时,只是流速可能是亚音速也可能仍是超音速)。 26.斜激波波阻小于正激波,正激波斜激波统称为平面激波。 27.圆锥激波的强度比平面激波若,其波阻比比平面激波小。 28.翼型处于亚音速状态是指整个翼型上每点的流速都小于对应的音速。飞行速 度超过临界马赫数后,会出现局部激波,此时飞机阻力开始急剧增加。 29.超音速飞机外形特点:采用尖前缘的机翼和尖机头;采用相对厚度小的机翼 和小展弦比;采用后掠机翼;采用细长机身。 30.评定发动机的主要指标有:推力、耗油率、推重比。 31.决定飞机的飞行性能最重要的气动特性有:最大升阻比、升力系数岁迎角的 变化关系、最大升力系数。 32.常用过载来评定飞机的机动性。 33.飞机重心和飞机焦点之间的相互位置,决定了飞机是否具有纵向静稳定性, 飞机重心位于焦点之前,则飞机是静稳定的。 34.水平尾翼重要作用之一是保证飞机具有纵向静稳定性。

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 2.发动机转子卸荷措施的目的是(B)。 A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 C.减少发动机转子负荷,提高发动机推力 D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 3.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系 是(D)。 A.M涡轮>-M压气机B.M涡轮<-M压气机 C.M涡轮=M压气机D.M涡轮=-M压气机 4.压气机转子结构中,加强盘式转子是为了(B)。 A.加强转子强度,提高转子可靠性 B.加强转子刚度,提高转子运行稳定性 C.加强转子冷却效果,降低温度应力 D.加强转子流通能力,提高压气机效率 5.压气机转子结构中(B)。 A.鼓式转子的强度>盘式转子的强度 B.鼓式转子的强度<盘式转子的强度 C.鼓式转子的强度=盘式转子的强度 D.鼓式转子与盘式转子强度比较关系不确定 6.压气机转子结构中的刚度(A) A.盘鼓混合式转子>盘式转子 B.盘鼓混合式转子<盘式转子 C.盘鼓混合式转子=盘式转子 D.盘鼓混合式与盘式转子刚度大小关系不确定 7.压气机静子机匣上放气机构的放气窗口通常位于(A) A.静子叶片处B.转子叶片处 C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间 8.压气机转子工作叶片的榫头结构承载能力(D) A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形

飞机原理与构造 作业

作业一:分组大作业 从莱特兄弟的第一架飞机1903年12月升空至今已经过去了100多年。100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从原来的方形截面机身到今天的流线型机身,从亚音速飞机的升降舵到超音速飞机的全动平尾,……,飞机外形的变化五彩缤纷。 请说明一百多年来飞机外形的发展变化,并分析为什么飞机外形和会发生如此变化,或者说飞机外形发展变化的主要原因是什么。 4~6人组成一个小组,针对上述问题,通过查阅、收集和分析相关文献资料,小组讨论等,完成一份3000~5000字的技术报告,并择机进行交流。 需要注意的是: 1. 技术报告以叙述、说明主题为目标,并为自己的分析提供论据(文字、图表等进行合理的搭配)。要求结构合理、图表规范。关于格式可以参考任何一本正式出版的教材。 2. 拷贝过多的问题:拷贝要有选择性,不要出现不管是否有意义、随意拷贝来凑字数的现象。如果仅仅是简单的拷贝就失去了锻炼自己分析问题能力的意义了。希望大家能有所收获。 3. 错别字问题:网上许多资料存在大量的错别字,不要带到我们的技术报告中。我们不是人云亦云的传递机器,要有自己的主观判断。技术报告是一种科学思想的表达,需要认真对待,这也是为将来的工作积累一些理念和能力的机会。

作业二 1. 一般要求两架飞行中的飞机之间必须有一定的距离,为什么? 2. 零升阻力D 0随飞行速度的增加而增加,诱导阻力D i 随飞行速度的增加而减小,其原因是什么?(近似认为飞机重量不变,诱导阻 力因子K 不随飞行速度变化;200L D D i D D C K C C C C ?+=+=, S v C L L ??=221ρ,S v C D D ??=22 1ρ,i D D D +=0。) 3. 一架飞机以M0.5作定直平飞,现欲水平直线加速至M0.8,飞行员应如何操纵,为什么? 4. 当变后掠机翼的后掠角由小变大时,飞机的纵向稳定性和纵向操纵性有何变化,为什么(近似认为飞行速度不变;机翼的压力中心和焦点相对于机翼本身的几何位置不变)? 作业三 1. 图1为一平面板杆结构,分析P 力的传递过程,画出各元件的受力平衡图,标出各力及剪流的大小。 2. 对于教材图6-14的集中力扩散结构,杆ef 一般要做成左端截面积大右端截面积小的变截面杆,为什么? 3. 对图2所示的封闭空间板杆(薄壁)结构,在扭矩M t 作用下,

飞行必备知识:详解飞机机翼原理与功能图文

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 前缘:翼型最前面的一点。后缘:翼型最后面的一点。翼弦:前缘与后缘的连线。弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢?首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。 空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t 以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在 1.5t 以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图2.5.1所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以?表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。 气流V 与翼弦之间的夹角即为该剖面的迎角α。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 图2.5.1 直升机的旋翼 (a) (b)

[分享]飞机原理与构造

[分享]飞机原理与构造 名词解释 1. 定常飞行:飞处平衡的飞行状态,V大小和方向不变 2. .载荷系数:飞机上其他外载荷沿飞机机体坐标轴方向的分量与G飞机之比 3. 机动过载:升力发生变化的过载。 4. 最大平飞飞机在水平直线飞行条件下,把发动机推力加到最大所能达到的最大速度 5. 巡航速度:每千米耗油量最小飞行速度, 6. 航程:无风不加油条件下,飞机耗尽可用燃油的飞行水平距离 7. 航时:飞机耗尽其可用燃料所能持续飞行的时间 8. 爬升率:在一定飞行重量和一定的发动机工作状态下,飞机在单位时间内上升的高度 9. 气温低,气体收缩,密度增加,气压增大 10. 7座舱高度:指座舱内空气的绝对压力值所对应的标准气压高度 11. 完全气体:气体分子设想只有质量而没有体积,分子间完全没有作用力的气体 12. 粘性:气体的粘性系数随温度的升高而增大。 填空题 1. 1飞行员左压驾驶杆,飞机右副翼向下偏转,左副翼向上偏转,飞机左滚反之; 飞行员 前推驾驶杆,飞机升降舵向下偏转,飞机向下俯冲反之; 蹬左脚,方向左偏。机头左 反之 2. 1操纵系统的功用:驾驶元通过操纵飞机的各舵面和调整片实现飞机绕纵轴横轴和立轴

旋转,以完成对飞机的飞行状态控制 3. 操纵系统组成:燃油箱通气系统、加放油系统、供输油系统、油箱通气增压系统、燃油 测量系统、信号指示系统和热负载系统 4. 1.主操纵系统包括;副翼系统。升降舵系统。方向舵系统。主操纵系统舵面有哪些,副 翼(横操)升降舵(俯操)方向(偏航) 5. 9主操机构有:中央操纵机构,传动机构,驱动机构。 6. 9辅助操纵系统的操纵机构有襟翼缝翼(曾升装置操纵)扰流板(扰操)安定面(配平操纵), 7. 9飞机传动机构的种类:软式、硬式、混合式 8. 9;软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和 摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和 硬式可以混合使用。 9. 增升装置有襟翼、前缘缝翼、后缘襟翼,还有涡流发生器等。增升原理:增大翼型弯度, 增大机翼的面积和控制机翼上的附面层。增升装置作用是增加升力,在飞机起飞和着落 阶段,可以减小起飞速度和着落速度 10. 液压系统组成动力装置。执行元件,控制调节元件,辅助元件,工作介质 11. 液压泵分类:齿轮泵叶片泵柱塞泵螺杆泵

飞机原理及构造

第一章 1、飞机的主要组成及其功能? 组成:机翼、尾翼、机身、起落架、动力系统、飞行控制系统、航空电子系统及机载设备。 功能:机翼,产生升力的主要部件,可以安装发动机、起落架、油箱。 尾翼:保证飞机的平衡、稳定并操纵飞机。 机身:装载设备、乘员、和货物,并将机翼、尾翼、发动机、起落架等部件连接为一个整体。 起落架:用于飞机的起飞、降落和地面停放时支持飞机的装置。动力系统:提供推力或拉力使飞机克服飞行时受到的阻力。 飞行控制系统:用于操纵和控制飞机。 2、飞机研制过程? 1)拟定技术要求2)飞机设计过程3)飞机制造过程4)飞机的试飞、定型过程。 第二章 1、介绍流体特性,气体动力学基本概念? 流体特性:压缩性、粘性、传热性。 概念:用流体流动过程中的各个物理量描述的基本物理定律(质量守恒定律、牛顿运动三定律、热力学第一定律)就组成了空气动力学的基本方程组。 2、流体流动的基本规律,飞机升力的产生?

规律:流体绕物体流动时他的各个物理量,如速度、压力和温度等都会发生变化,但这些变化必须遵循基本的物理定律。 升力的产生:主要由机翼产生。而升力的产生又主要是由于上下翼面的压力差,因此压力差所作用的“机翼面积”越大,升力也越大。 3、飞机的升力和阻力? 升力:除了与翼型及迎角有关外,还与飞机机翼的平面形状,相对气流速速、空气密度有关。 阻力:飞机上不但机翼会产生阻力,机身、起落架、尾翼等都可能产生阻力。 摩擦阻力、压差阻力、干扰阻力与升力无关,故又统称为零升阻力。 诱导阻力:伴随升力的产生而产生的。 4、飞机翼型参数? 几何弦长,弯度分布,厚度分布 5、什么是流体的压缩性? 对流体施加压力,液体的体积会发生变化,在一定温度条件下,具有一定质量流量的体积或密度随压力变化而改变的特性,叫做可压缩性或弹性。 6、大气层的结构是什么? 从海平面起,最低一层是对流层,上层是平流层,再上是中间大

飞机构造之结构

第一章 飞机结构 1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构 1.6 尾翼和副翼 1.7 机体开口部位的构造和受力分析 1.8 定位编码系统

1.1.概述 固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。 直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。 机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。飞机各部件由不同构件构成。飞机各构件用来传递载荷或承受应力。单个构件可承受组合应力。 对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。 1.2.飞机载荷 飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。 1.2.1.平飞中的受载情况 飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。 即: Y = G P = X 图 1 - 1 平飞时飞机的受载

减速。由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。翼型越接近对称形,机翼上下表面的局部气动载荷就越大。所以,如果机翼蒙皮刚度不足,在高速飞行时,就会被显著地吸起或压下,产生明显的鼓胀或下陷现象,影响飞机的空气动力性能。 1.2.2. 飞机在垂直平面内作曲线飞行时的受载情况 飞机在垂直平面内作曲线飞行的受载情况如图1-2所示。这时,作用于飞机的外力仍是飞机的重力、升力、阻力和发动机的推力。但是,这些外力是不平衡的。 曲线飞行虽是一种受力不平衡的运动状态,但研究飞机在曲线飞行中的受载情况时,为了方便起见,可以假设飞机上还作用着与向心力大小相等、方向相反的惯性离心力。这样,就可以把受力不平衡的曲线飞行作为受力平衡的运动状态来研究。 飞机在垂直平面内作曲线飞行时,升力可能大大超过飞机重量。飞机在曲线飞行中所受的载荷可能比平飞时大得多。可以推导出如下公式:其中r 为飞机机动飞行的曲率半径,v 为飞行速度。 Y -Gcos = m r v 2 由于飞机在每一位置的θ角不同,而且飞行速度和曲率半径也不可能一样,所以,飞机在垂直平面内做曲线飞行时,飞机的升力也是随时变化的。 图 1 - 2 飞机在垂直平面内的曲线飞行 N (惯性离心力)

飞机各个系统的组成及原理

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面

形状。 左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员

最全图解直升机的结构(最全)

直升机结构图解 之一……机身结构图 转自铁血社区ttp://bb https://www.wendangku.net/doc/ca5376153.html,/ 图解直升机的结构之二……机身机体用来支持和固定直升机部件、系统,把它们连接成一个整体,并用来装载人员、物资和设备,使直升机满足既定技术要求。机体是直升机的重要部件。下图为UH—60A直升机的机身分段图。 机体外形对直升机飞行性能、操纵性和稳定性有重要影响。 在使用过程中,机体除承受各种装载传来的负荷外,还承受动部件、武器发射和货物吊装传来的动负荷。这些载荷是通过接头传来的。为了装卸货物及安装设备,机身上要设计很多舱门和开口,这样就使机体结构复杂化。 旋翼、尾桨传给机体的交变载荷,引起机身结构振动,影响乘员的舒适性及结构的疲劳寿命。因此,在设计机身结构时,必须采取措施来降低直升机机体的振动水平。 军用直升机机体结构应该有耐弹击损伤和抗坠撞的能力。近年来,复合材料日益广泛地应用于机身结构,与铝合金相比较,它的比强度、比刚度高,可以大大减轻结构重量,而且破损安全性能好,成型工艺简单,所以受到人

们的普遍重视。例如波音360直升机由于采用了复合材料结构新技术以及先进气动、振动和飞行控制技术,可使巡航速度增加35%,有效载荷增加1296,生产效率提高50%。 转自铁血社区ttp://bb https://www.wendangku.net/doc/ca5376153.html,/ 之三……发动机直升机的动力装置大体上分为两类,即航空活塞式发动机和航空涡轮轴发动机。在直升机发展初期,均采用技术上比较成熟的航空活塞式发动机作为直升机的动力装置。但由于其振动大,功率质量比和功率体积比小、控制复杂等许多问题,人们就利用已经发展起来的涡轮喷气技术寻求性能优良的直升机动力装置,从而研制成功直升机用涡轮铀发动机。 实践证明,涡轮轴发动机较活塞式发动机更能适合直升机的飞行特点。当今世界上,除部分小型直升机还在使用活塞式发动机外,涡轮轴发动机已成为直升机动力装置的主要形式。 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Art ouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为XH—13F),于1954年进行了首飞。 涡轴发动机自从问世近40年来,产品不断改进发展,结构、性能一代比一代好,型号不断推陈出新。据不完全统计,世界上直升机用航空涡轴发动机,经历了四代发展时期,输出轴功率从几十千瓦到数千千瓦,大大小小约有二十几个发展系列。 西方典型的四代航空涡轴发动机

捕食者无人机的原理和结构

捕食者无人机的原理与结构 MQ-1 捕食者(Predator)就是一种无人机,美国空军将其描述为“中海拔、长时程”(MALE)无人机系统。它可以扮演侦察角色,可发射两枚AGM-114地狱火飞弹。它就是一种遥控飞行器,机长8、27米,翼展14、87米,最大活动半径3700公里,最大飞行时速240公里,在目标上空滞空时间24小时,最大续航时间60小时。捕食者无人机装有光电/红外侦察设备、GPS导航设备与具有全天候侦察能力的合成孔径雷达,在4000公尺高处分辨率为0、3米,对目标定位精度0、25米。可采用软式着陆或降落伞紧急回收。 军事指挥官们要应用各种战略与战术,力求以最少的资源与战斗人员来给敌人造成最沉重的打击。这正就是开发RQ-1与MQ-1型“捕食者”无人机的核心原则。这种高科技飞行器可以由远离战斗危险数公里之外的机组进行控制,并能够在最危险的战场上执行侦察、战斗与支援任务。在最糟糕的情况下,即使有一架“捕食者”飞机在战斗中损失了,那么作战人员也只需派出一架新的无人机,而且在短时间内就可以把它送上天空——整个过程中不会发生常规飞机坠毁所导致的人员伤亡或被俘的惨重损失。 “捕食者”曾经与有人驾驶飞机并肩战斗,也曾为地面部队提供过空中支援,还曾对敌方防空力量尚未被完全压制的地区实施打击。另外,它们还可以代替载人飞机在非常危险的环境中(如远海或受到生化污染的环境)执行任务。而且,即使在装载了MTS系统之后,“捕食者”MQ-1型无人机仍能有效地执行战场侦察任务。 一.捕食者无人机的发展历程、 捕食者远程无人机,就是作为“高级概念技术验证”而从1994年1月到1996年6月发展起来的。加利福尼亚州圣地亚哥的通用原子公司得到了第一份合同,首飞于1994年,并于当年具备了实战能力。 2002年6月,美国空军正式将携带“地狱火”的RQ-1B命名为MQ-1B。M表示多用途,反映了“捕食者”从侦察无人机发展为多任务型飞无人机。正式的MQ-1B无人机将装载雷神公司的多频谱瞄准系统,采用一个增强型热成像器、高分辨率彩色电视摄像机、激光照射器与激光测距器。此外还可能装Talon Radiance 超频谱成像器,可穿透树叶探测隐蔽的地面目标。同时装有信号情报装置。 1998年5月,“捕食者”系统开始进行Block 1升级计划。改进包括一个用于减轻系统工作的系统,使得侦察信息在系统内部不受损失,提供保密空中交通管制语音中转,Ku波段卫星调谐与空军任务支援系统。 2001年3月“捕食者-B”无人机001号首飞。该项目包括具有不同结构的3架飞机。“捕食者”B001装备一台通用电气公司的TPE-331-10T涡轮螺桨发动机,起飞重量2900公斤,能携带340千克的负载,在15200米的高度以370千米/小时的速度巡航飞行。目前正在制造的“捕食者”B002号机将使用一台威廉姆斯公司的FJ44-2A涡喷发动机,可在约18300米的高度以500千米/小时的速度飞行。其飞行试验于2001年秋进行。“捕食者”B系列的最后机种ALTAIR将用于科学与商业用途,需要具有较大的负载能力与15850米的升限。ALTAIR将装备通用电气公司的涡桨发动机。它能同时执行各种大气研究任务,并且通过卫星将搜集到的数据实时发送出去。 “捕食者”B基型单价在250万美元至450万美元之间。B型能够在5000米高度至10000米高度之间执行任务, 约为基型的两倍。飞行速度为基型的三倍。 下一步的计划还包括发射FIM-92“毒刺”近距地空导弹的试验。另外“从无人机向战斗机传送图像”的试验也在进行。。

相关文档
相关文档 最新文档