文档库 最新最全的文档下载
当前位置:文档库 › 有限元分析法

有限元分析法

有限元分析法
有限元分析法

有限元分析法

麻省理工学院

材料科学与工程系

2001 年 2 月 28 日

引言

有限元分析法(FEA )近年来已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,现在用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。

不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。

与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz 2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran 语言编写的,但诸如felt 等某些更新的程序用的是C 语言或其它更时新的程序语言。

在实践中,有限元分析法通常由三个主要步骤组成:

1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD 文件中覆盖网格,因而可以方便地完成有限元分析。

2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或

非线性代数方程表示的系统

式中,u 和f 分别为各结点的位移和作用的外力。矩阵K 的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。

后处理:在有限元1

C.A.Brebbia, ed.,有限元系统(Finite Element System ), A Handbook , Springer-Verlag, Berlin, 1982. 2 O. C. Zienkiewicz and R.L. Taylor, 有限元法(The Finite Element Method ), McGraw-Hill Co., London, 1989.

列出的模型内各离散位置处的位移和应力。这种方法容易漏掉重要的趋向与热点,而最新的程序则利用图形显示来帮助用户直接观察运算结果。典型的后处理模块能显示遍布于模型上的彩色等应力线图,以表示不同的应力水平,显示的整个应力场的图像类似于光弹性法或云纹法的实验结果。

于特定的程序,其运行方法通常会在软件对的附件中详述,那些较为昂贵的程序的销售商经桁架的矩阵分析法

这为引入有限元分析的概念提供了很好的途径的矩阵分析法逐一考虑每根杆件的刚度,然后用这些刚度来确定由于节点(在有限元分常会提供实习场所或举办培训班,以帮助用户弄清楚程序运行中错综复杂的情况。但用户即使经过这种培训后,仍可能遇到问题:程序往往是“黑匣子”,其内部的运行机理是难以明了的。在本模块中,我们将略述大部分当今使用的有限元应力分析程序的基本原理,但目前的讨论仅限于线弹性范围内的分析。掌握这一理论有助于消除黑匣子综合症,同时也是对固体力学的基本分析方法作一总结。

在模块5中,比较充分地讨论过铰接的桁架,。对桁架精确地进行静力学分析,即使是复杂的桁架,其方程也能集成为矩阵形式,以便于用数值方法求解。此法有时称为“矩阵分析法”,它为早期有限元分析法的发展奠定了基础。

桁架析中通常称为结点)位移而产生的杆件力。注意到每根杆件对结点作用力的矢量和必须等于作用在结点处的外力,我们可以列出一系列线性代数方程。在这些方程中,结点位移是未知量而作用在结点上的力是已知量。这些方程可以方便地写成如下的矩阵形式(该方法亦由此得名):

式中,和分别表示第个结点的位移和作用在第i u j f i j 个节点上的力(实际上这些量都是矢量,其分量沿各坐标轴)。系数数组称为整体刚度矩阵,其第分量的物理意义是第ij K ij j 个位移对第个力的影响。该矩阵方程可简写为

i 式中,用下标或黑体字表示矢量和矩阵。

位移这两者中有一个是已知的,但对一个给定的结单根桁架杆件的刚度矩阵

为了得出描述桁架系统的矩阵方程,第一步是需要建立单根桁架杆件每一端的力与位开始时,每个结点所受的外力或结点的点,同时指定任意的位移和任意的外力是不可能的。这些预先给出的结点力和结点位移是问题的边界条件。矩阵分析的任务就是要确定与给定的位移相对应的力、以及结点处有已知外力作用时的位移。

移之间的关系。考虑如图1所示在y x ?平面内的杆件,该杆件连接第i 个和第j 个结点,与水平线的夹角为θ。

图1 单根桁架杆件

沿杆件轴向及垂直于轴线的方向研究杆件待求的伸长量 δ,δ可用杆件两端点的位移之差

来表示:

式中的水平及垂直分量(图1中画出的第个结点的两个位移分量都是

,u 和v 分别为位移i 负的)。上式可写成矩阵形式:

式中,c = cos θ、s = sin θ。

图2 结点力的分量

对线弹性体,与伸长量

δ对应的轴向力P 可由胡克定律得出,即δ)(L AE P /=。水平和垂直的结点力如图2所示。这些关系可写成总轴向力的形式:

进行矩阵乘法运算后得:

方括号中的量乘以后,称为“单元刚度矩阵”。其每一项均有物理意义,表示某个位移对某个力的贡献。对每根桁架杆件依次列出其单元刚度矩阵,将这些单元刚度矩阵组合后,就能得到整个系统的方程,因此单元刚度矩阵的计算是矩阵结构分析法的核心。桁架的矩阵分析法与一般的有限元法的主要区别在于如何形成单元刚度矩阵,而大部分其他的计算机运算是相同的。

L AE /ij K

多个杆件力的集成

图3 各杆件对总结点力的贡献

下一步是考虑各节点连接的多个桁架杆件的集成。与某节点(或结点)相连的各杆件都对该结点施加了作用力,此力由各杆件两端结点的位移来确定(见图3)。对给定的结点,为保持其静力平衡,所有杆件力的合力必须等于作用在该结点处的外力: elem i f ext i f

每个单元的刚度矩阵均加在总的或“整体”刚度矩阵的适当位置。整体刚度矩阵建立了桁架所有位移与所有外力之间的关系。这个过程称为“集成”。上式中下标的数字必须是在整个桁架结构中的“整体”编号。但通常用局部的受力图计算单个单元的刚度矩阵较为方便,然后在集成单个矩阵时由计算机将其转换为整体编号。

elem ij k ij K

例1 集成过程是有限元法的核心,因此用手工求解一个简单的实例、以了解该方法的工作原理是值得的。考虑图4所示的两杆件桁架问题,其中结点从1到3的整体编号是任意编排的。因为每个结点通常能沿两个方向运动,故此问题中总的自由度为3╳2=6个。相应的整体刚度矩阵是一个6╳6的方阵,它建立了六个位移与六个外力之间的关系。此问题中只有一个位移是未知的,因为除结点2的垂直位移(即第4个自由度)外,其余的位移均限定为零。图4所示为对每根杆件列出的整体编号和“局部”编号。

图4 两杆件桁架的整体与局部编号

应用局部编号,根据式(2),可算出两杆件中每一根杆件的4╳4单元刚度矩阵。倾角可按结点坐标计算:

得出杆件1的刚度矩阵为:

杆件2的刚度矩阵为:

(单位的统一十分重要。此处长度的单位为英寸、力的单位为磅、弹性模量的单位为磅/英

寸(psi )

。两杆的弹性模量均为2=E 10Mpsi 、横截面面积均为=0.1in 。)这些矩阵行和列的编号均为从1到4,与杆件的局部自由度数相对应。而每个局部的自由度又可以与总系统的整体自由度中的一个相对应。通过对图4的观察,我们可列出下表,以表示局部与整体的自由度编号之间的关系:

A 2

局部 整体 整体

杆件1 杆件

2

例如,由此表可看出,杆件2的第2个自由度即整体编号系统中的第4个自由度,其第3个局部自由度对应于第5个整体自由度。因此,杆件2的刚度矩阵中第2行第3列元素的值(记为),应该放在6╳6整体刚度矩阵中第4行第5列的位置。我们将此过程记为 )

2(23k

两根杆件中每一杆件的刚度矩阵中都有16个元素,这些元素都要根据上表给出的对应关系放到整体刚度矩阵中。由此可得如下结果

根据式(1),上述矩阵右乘结点位移矢量后,可得作用在结点上的外力矢量。再考虑已知的力和位移,完整的系统方程为

注意:对每个自由度,力和位移两者中必有一个为已知量而另一个为未知量。本例仅一个位移()为未知量,但在大多数问题中,未知位移的数目要远多于未知力。还应注意:只有与给定结点直接相连的杆件才能对该结点施力。对大多数情况,这一条件使整体的刚度矩阵中许多元素为零,零元素对应的一对结点之间没有杆件相连。有效的计算机执行程序将利用矩阵稀疏的特点来节约内存并减少运算时间。

4u 在更为庞大的问题中,矩阵方程通过高斯消元法或其他技术来求解未知位移和未知力。在此两杆件问题中,几乎通过观察就可直接写出唯一的未知位移的解。将系统方程的第4行相乘后可得

现在,已可直接求得任意的未知力。例如,将第1行相乘即得

此处的负号表示:整体的1号结点处的水平力指向左方,与图4中假设的方向相反。 整个求解过程可归纳为:依次建立每根杆件的单元刚度矩阵;将各单元刚度矩阵集成到整体刚度矩阵的正确位置;求解方程得到位移、再左乘以计算力;最后打印结果。编制通用性很好的计算机程序后,上述过程可自动完成。

用精心编制的计算机程序可出色地完成大型桁架(和其他结构)的有限元分析。为学习此方法,可从下述网站下载一个优秀的计算机程序:https://www.wendangku.net/doc/c515825322.html,/。该程序名为felt ,作者是Jason Gobat 和Darren Atkinson 。程序专门用于教学,而且增添了许多新特色以改进用户的友好性。从其网页中还可找到说明该程序的完整信息以及C 语言的源程序、大量的试运行软件和辅助软件模块。如果你能够访问X-window 工作站,还能得到一个称为velvet 的图形软件。

例2 为了说明对较大的桁架问题,该程序是如何运行的,考虑如图5所示的六杆件桁架,之前已经在模块5 中用节点法和卡斯蒂利亚诺法对其分析过。

数据组既可人工输入,也可在velvet 中以图象方式形成。因为在有限元分析中,数据输

入这一步骤极为枯燥且易出错,故采用语法分析技术以简化数据集的输入。该六杆件桁架的数据组如下:

图5 在velvet /felt 图象界面中生成的六杆件桁架

问题说明:结点数为5;杆件数为6。

各结点的编号、z y x ,,坐标、约束条件(铰链约束或平面约束)

、受力状况。

各杆件编号及各杆件两端结点的编号,材料为钢。

材料性能:钢的,横截面面积7

103×=E 5.0=A 。

分布载荷的状况

各种约束条件下约束反力的表示方法

集中力状况

结束

虽然更详尽的细节可以参考felt文件,但在检查时,上述各行语句的含义应该相当清楚。根据上述数据,由felt产生的输出为:

注意:节点3的垂直位移(自由度2的值)为- 0.0844,与模块5中用封闭解所得的值相同。图6所示为velvet 输出的桁架变形图(经高倍放大)。

图6 六杆件桁架变形前后的形状

一般的应力分析

对桁架杆件,可以精确地形成其单元刚度矩阵,但对一般的应力分析,情况并非如此。对一般的二维或三维的应力分析问题,结点力与结点位移之间的关系是无法预知的,为得出单元刚度矩阵,必须用近似的关系式。

在有限元法通常的“位移法”中,组合的控制方程内只有位移作为未知量出现。要做到这一点,可用胡克本构方程,将平衡方程中的应力用应变来代替;然后用运动学方程,将应变用位移来代替,最终得到

当然,在实际问题中,遇到不规则的的边界条件时,通常不可能求得这些方程的封闭解。但这些方程可以离散化,用诸如有限差分法或有限元法之类的数值方法来求解。

一些近似的数值方法可用于求解工程的边界值问题,有限元法就是其中之一。材料力学问题常常会得出这类方程,而有限元法在处理这类方程时有不少优点。它尤其适合于求解几何形状和边界条件不规则的问题;而且用通用的计算机程序,就可求解许多不同的问题。

为了得到应力分析问题的数值解,我们假设以函数),(u ~y x 作为位移函数u 的近似:

对近似函数u ~,可采用许多不同的形式。有限元法将解的区域离散化为若干个子区域(或称为“单元”)的集成,每个单元都有各自的近似函数。具体地说,单元内的位移近似函数),(u ~y x 可以写成该单元内各结点位移(迄今尚未知)的组合:

式中,下标j 的范围遍及单元内的所有结点,为结点位移,为“插值函数”

。这些插j u j N

值函数通常是简单的多项式(一般是线性或二次多项式,偶尔也会用三次多项式),其值在结点j 处为1,在单元的其他结点上为零。借助标准的子程序,可求得插值函数在单元内任意位置处的值,于是单元内任意位置处的近似位移可根据结点位移直接从式(5)得到。

图7 一维插值

为了说明插值的概念,假定我们已知函数在)(x u 0=x 和1=x 两结点处的结点值和,我们将如何猜测在两结点之间的任意位置)0(u )1(u x 处的函数值?作为合理的近似,我们可以假设:就在这两个结点值之间简单地作线性变化,如图7所示,于是可写成

)(x u )(x

u

式中,和是此一维近似的线性插值函数。有限元程序的子程序可以把插值概念推广到二维和三维。

0N 1N

应变和应力的近似值随后可由位移直接得到:

式中,是由插值函数派生的矩阵:

),(L ),(B y x N y x j j

=

为了建立结点j 的结点位移和作用于结点i 处的各外力之间的关系,现引入“虚功”的概念:如果在结点i 上叠加一个很小的或者说“虚的”位移j u j u δ,则在与此结点相连的单元内的应变能增量U δ由下式给出:

式中,V 是单元的体积。从插值后的位移得到的近似应变为i i u B ε~=,而i i δδu B ε~=是由结点的虚位移引起的应变虚增量的近似值。应用式(7)和矩阵恒等式,可得:

T

T T A B AB)(

=

式中,结点位移和不是T i u δj u x 和的函数,故可提到积分号外。应变能增量y U δ必须等于各结点力所做的功,后者为

令式(10)和式(11)相等并消去公因子,得: T i δ

u

这正是我们希望得到的形式i j j i f u k =,其中d V 是单元的刚度。

j V T i j i B D B k ∫=最后,式(12)中的积分必须用计算机可接受的数值上等价的量来代替。有限元程序中为此目的通常采用高斯-勒让德(Gauss-Legendre)数值积分,因为这项技术的精度与所耗费机时的比值高。简短地说,该积分过程包括:在单元内优选的各个积分点上,算出被积函数的值;然后将各积分点上的被积函数值加权后求和。在对二维单元的面积进行积分的情况,积

分式可写成:

取样点的位置和与之相关的权重由标准子程序提供。在大部分最新的程序中,这些子程序把单元映射成一个方便的形状,在变换后的坐标系内确定积分点和权重,再把结果映射到原来的坐标系。先前用于插值的函数也可以用于映射,而且使编程明显地简洁而高效。经上述处理后得到了所谓的“数值积分的等参数单元”,这些单元已经成为有限元产业的一大支柱。

l l y x ,l w j N 式(12)是有限元分析时与式(3)的微分控制方程相当的式子,其中的积分可用式(13)的数值积分形式来代替。计算机将对每个单元依次进行分析,而在每个单元内,分析将遍及各个积分点。在每个积分点,根据式(12)计算出单元刚度矩阵的分量,然后加到整体刚度矩阵的适当位置,具体做法如同前节桁架矩阵分析法的集成步骤中所述。可以觉察到:仅为得到刚度矩阵的各元素,就需进行大量的计算,因此,若不能如此方便而廉价地使用计算机,有限元法根本就不可能发展。

j i k j i K

圆孔周围的应力

在前面的模块中,我们曾研究过有圆孔的单轴向受载荷的板,包括柯尔什(Kirsch)的理论解(参见模块16)和用光弹性法及波纹法的实验测定(参见模块17)。这个问题具有重要的实用价值——例如,我们注意到出现在铆钉孔附近危险的应力集中——而不管是理论分析还是数值分析,都需要很高的技能。由于在孔的附近应力急剧增大,该处的有限元网格必须精心设计,才能得到可接受的结果。

图8 圆孔问题的网格

对于有圆孔的单轴向受载荷的板,其三结点三角形单元网格如图8所示,网格是由felt-velvet有限元分析图像包生成的,还可用图像包求孔周围的位移和应力的近似值。因为如前所述,该应力场的理论和实验结果都是可得到的,所以圆孔问题是我们熟悉程序运算的很好例子。

只要有可能,用户应该充分利用对称性来简化问题的尺寸,在现在的情况下,只需将板的一个象限网格化即可。孔的中心是固定的,所以对称性要求沿着左边缘的各结点可以垂直移动、但不能水平移动。同样地,沿着下边缘的各结点可以水平移动而不能垂直移动。载荷作用在沿着上边缘的各结点上,每个载荷是作用在一定范围内的远处应力场的应力的合力,一定范围是指:给定结点与其相邻结点之间的单元边界的一半。远处应力场的应力取为1。对该问题,felt输入的部分数据为:

问题说明:结点数为76;单元数为116。

各结点的编号、z y x ,,坐标、约束条件。

关于中心对称的三角形平面单元的编号及该单元上三结点的编号、载荷状况,材料为钢。

材料性能:钢的,泊松比11

1005.2×=E 33.0=ν,板厚1=t 。

.分布载荷的状况:

载荷类型、显示色彩、方向、数值。

各种约束条件下约束反力的表示方法及显示色彩。

结束

y 方向的位移和垂直应力y σ的等值线分别如图9(a )和(b )所示,这些图应该与模块17中图8(a )和图10给出的光弹性法和云纹法的分析结果相比较。孔上最靠近x 轴的积分点处算得的应力为26.3max ,=y σ,比理论值3.00大9%。在画图9(b )的等值线时,后处理模块通过单元内所有四个积分点的应力,按适合最小二乘方平面的算法,外推各结点的应力。这就得到了一个甚至更高的应力集中因数的值3.593。用户必须意识到:图像后处理模块平滑处理的结果本身只是一些近似值,完全可能存在数值误差。改进网格、特别是改进圆孔水平直径顶端高应力梯度区附近的网格,可以减小误差。

图9 按图8的网格算得的垂直位移(图a)和垂直应力(图b) 习题

1 (a)–(h) 用有限元分析法确定下图桁架中各杆件所受的力。

题1图

2 (a)–(c) 写出下列桁架的整体刚度矩阵,并求未知力和未知位移。

题2图

3 有一个载荷作用在悬臂梁的自由端,试用有限元分析法求梁在平面内的应力。可用任意选择(但必须合理)的尺寸和材料性能。在沿梁跨度的任意位置处,画出应力x σ和xy τ关于的函数曲线。再画出由梁弯曲的初等理论(参见模块13)给出的这两个应力的同样曲线,并估算数值解误差的大小。 y

题3图

4 对载荷对称的三点弯曲梁,重解上题。

5 在厚壁压力容器(可用任意的几何尺寸和材料参数)中,用轴对称的单元求径向应 力的有限元解。并将结果与理论解(参见模块16习题2)比较。

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

第9章 非线性问题的有限单元法

第9章非线性问题的有限单元法 9.1 非线性问题概述 前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。 1. 材料非线性(塑性, 超弹性, 蠕变) 材料非线性指的是材料的物理定律是非线性的。它又可分为非线性弹性问题和非线性弹塑性问题两大类。例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。 2. 几何非线性(大应变, 大挠度, 应力刚化) 几何非线性是有结构变形的大位移引起的。例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。 3. 状态非线性(接触, 单元死活) 状态非线性是一种与状态相关的非线性行为。例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。这些系统的刚度随着它们状态的变化而发生显著变化。 9.2 非线性有限元问题的求解方法 对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。 1.迭代法 迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。 与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。以平面问题 为例,迭代法的存贮量一般只需直接法的14左右。在求解非线性方程组时,一般采用迭代 法。 2. 牛顿—拉斐逊方法 ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性救求解是将载荷分成一系列的载荷增量,即逐步递增载荷和平衡迭代。它可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的

MD Nastran突破有限元分析的极限

MD Nastran突破有限元分析的极限 作者:MSC.Software公司来源:汽车制造业 有限元法FEM分析变得日益复杂,同时有限元分析模型的大小和细节设计要求也在不断增加。尤其是在汽车行业,这一趋势尤其明显。 项目背景 由数百万个单元和数百万的自由度组成的有限元网格的模型已经变得司空见惯,然而模型的尺寸仍在不断地增加。由于数学方法和软件工程学技术的改进,有限元法程序的工作效率和计算能力也在不断提升,同时构建模型和网格划分软件技术的飞速进步使模型的生成变得更加方便快捷。数年前,发动机引擎气缸体的网格划分需要几个月的时间,而现在只是几个小时的问题。 德国汽车制造商宝马公司是大范围使用虚拟仿真技术的公司之一。在宝马公司和其他一些制造商中,为了缩短研发周期,减少物理样机和物理试验的次数,完整的汽车模型得到了最优化的使用,其基础便是日益复杂的有限元仿真模型,包括对噪音和舒适度的刚性评定、乘客安全性和空气动力学仿真等。在数值计算方法方面,使用了隐式线性分析和显式非线性瞬态分析。 图1 “后天之模型”的基础是宝马X3汽车的车体 早在2007年初,宝马公司便对计算机辅助工程CAE的流程重新进行了检测,以便发现将来可能由仿真模型尺寸增加引起的瓶颈问题。宝马公司的车体和零部件设计小组开发了迄今为止最大的有限元法模型作为基准测试的考题模型,被冠以“后天之模型(Model of the

Day After Tomorrow)”的名称。小组成员丹尼尔·海泽尔博士表示,“对我们来说,在标准的硬件和软件设备上进行此次基准测试是非常重要的,使用当前的基础设施解决基准模型问题的目的,并不是为了要减少计算时间,而是为了识别理论极限和当前方法的瓶颈。” 基准考题的目的是为了寻找标准分析(双载荷工况条件下的线性静态分析)中进行有限元法分析基本步骤的极限和时间: 1. 读取输入数据,对它们进行分类、制成表格,并进行一致性检查; 2. 计算单元刚体矩阵,并集成一个整体刚体矩阵; 3. 计算位移和应力数据; 4. 输出结果。 宝马公司提出的问题是有限元分析还能应对这一增长趋势多长时间?用“后天之模型”作为考题的目的是如何突破近10年间所要面临的硬件和软件极限问题。MSC.Software公司同美国国际商用机器IBM公司合作,能够在短短的几个月的时间内解决这一问题。在一份用该模型分析的详细报告中,项目成员彼得·沙尔茨和杰拉德·希姆莱(MSC.Software公司),丹尼尔·海泽尔(宝马汽车制造公司)和D·皮特施(IBM公司)详细介绍了他们实现宝马公司苛刻要求的方法。 图2 BMW X3减振器支座外壳模型(蓝色),MODAW部分描绘图(黄色) 软、硬件的发展 大多数有限元法分析程序都存在计算能力不在最佳状态的情形。1957年,雷W克拉夫和他的学生在一台内存只有16位的IBM701计算机上开发出了后来成为有限元法的程序。方程式大约在40个以上的问题需要out of core(即数据不全部存储在内存中,而是存储在硬盘的临时文件夹中)求解逻辑,这意味着要借助二级存储介质。10年之后,Nastran软件被开发出来之后,要求条件也非常类似。软件客户美国国家航空航天局(NASA)要求开

有限元极限载荷分析法在压力容器分析设计中的应用2010

有限元极限载荷分析法在压力容器分析设计中的应用2010-07-15 10:39:54| 分类:分析设计| 标签:极限分析分析设计asme规范先进设计方法经验分享|字号大 中 小订阅 在某炼化一体化项目中,几个加氢反应器均采用分析法设计。详细设计时,国内计算后,反应器的主要受压元件厚度均要比专利商建议的厚度多出10~30mm不等。这其中有国内设计出于保守的考虑,另一个原因:同是采用分析设计,ASME的非线性分析相对先进一点。参与国际竞争时,先进的设计方法值得我们研究。 1.背景 随着中国加入WTO,国内各工程公司正积极走向海外。随之进入国际市场的压力容器产品也面临着严峻的挑战,为了在国际舞台上获得竞争优势,各工程公司必须采用先进的技术设计出更安全和更低成本的产品。压力容器分析设计是力学与工程紧密结合产物,解决了常规设计无法解决的问题,代表了近代设计的先进水平[1]。过去,国内分析设计通常采用弹性应力分析法,通过路径分析,应力线性化处理获得路径上的一次应力和二次应力,进而进行强度评定。该方法主要存在以下问题:⑴对大多数情况是安全可靠的,但对某些结果可能出现安全裕度不足的情况(如球壳开打孔);⑵如何对有限元法求解获得的总应力分解并正确分类遇到了困难。假如把一次应力误判为二次,则设计的结果将非常危险,反之,把二次应力误判为一次,则又非常保守。文[2]5.2.1.2节明确提到:应力分类需特殊的知识和识别力,应力分类方法可能产生模棱两可的结果。国内专家亦也认为对应力进行正确的分类存在一定困难[3-6]。 以弹性分析代替塑性分析,是一种工程近似方法。实际结构的破坏往往是一个渐进过程,随着载荷的增加,高应力区首先进入屈服,载荷继续增加时塑性区不断夸大,同时出现应力重新分布。当载荷增大到某一值时,结构变为几何可变机构,此时即使载荷不在增加,变形也会无限增大,发生总体塑性变形(overall plastic deformation),此时的载荷称为“极限载荷(limit load)”。 极限载荷分析法(下文简称极限分析)的目的是求出结构的极限载荷。在防止塑性垮塌失效时,极限分析相比弹性应力分析更接近工程实际,同时避免了应力分类,对防止塑性垮塌有比较精确的评定。 2.极限载荷的求解方法 塑性力学提出极限分析法由来已久。经典的极限分析方法有如下3种[8]:(1)广义内力与广义变形法;(2)上限定理与下限定理法;(3)静力法和机动法。经典解法的分析与计算均很复杂,只能应用于少数结构简单的压力容器元件,从而使极限分析的工程应用受到了限制。 上世纪七十年代出现三维有限元计算后,有限元的应用大大扩展。为了适应工程需要,有限元极限分析应运而生,形成了分析设计中的一个重要分支,它使得复杂的塑性极限分析可以通过计算机数值计算得以解决。在不久的将来,极限分析必与弹性应力分析法、弹-塑性应力分析法一同形成三足鼎立之势。极限分析的模型精度和计算成本居后两者之间。

第八章几何非线性问题的有限元法

第八章 几何非线性问题的有限元法 引言 前面各章所讨论的问题都是在小变形假设的前提下进行的,即假定物体所发生的位移远小于物体自身的几何尺寸,应变远小于1。在此前提下,建立物体或微元体的平衡条件时可以不考虑物体的位置和形状(简称位形)的变化,因此在分析中不必区别变形前后位形的差别,且应变可用一阶无穷小的线性应变表达。 实际上,上述假设有时是不成立的。即使实际应变可能是小的,且不超过材料的弹性极限,但如果需要精确地确定位移,就必须考虑几何非线性,即平衡方程应该相对于变形后的位置得出,而几何关系应该计及二次项。例如平板大挠度理论中,由于考虑了中面内的薄膜应力,求得的挠度比小挠度理论的结果有显著的减低。再如在结构稳定性问题中,当载荷达到一定数值后,挠度比线性解答予示的结果更剧烈地增加,并且确实存在承载能力随继续变形而减低的现象。在冷却塔、薄壁结构及其它比较细长的结构中,几何非线性分析都显得十分重要。 几何非线性问题可以分为以下几种类型: (1)大位移小应变问题。一般工程结构所遇到的几何非线性问题大多属于这一类。例如高层建筑或高耸构筑物以及大跨度网壳等结构的分析常需要考虑到结构大位移的影响。 (2)大位移大应变问题,如金属压力加工中所遇到的问题就属于这一类型。 (3)结构的变形引起外载荷大小、方向或边界支承条件的变化等。 结构的平衡实际上是在结构发生变形之后达到的,对于几何非线性问题来说,平衡方程必须建立在结构变形之后的状态上。为了描述结构的变形需要设置一定的参考系统。一种做法是让单元的局部坐标系始终固定在结构发生变形之前的位置,以结构变形前的原始位形作为基本的参考位形,这种分析方法称作总体的拉格朗日(Lagrange )列式法;另一种做法是让单元的局部坐标系跟随结构一起发生变位,分析过程中参考位形是不断被更新的,这种分析方法称作更新的拉格朗日列式法。 本章首先对几何非线性问题作一般性讨论,从中导出经典的线性屈曲问题的公式;然后建立平板大挠度问题和壳体的大位移(及大转动)分析的有限方法公式;接着还给出了大应变及大位移的一般公式,最后还详细讨论了杆系结构几何非线性问题的有关公式。在讨论中我们采用总体的拉格朗日列式法,但对杆系结构,为应用方便我们给出了两种列式法的公式。 & 一般性讨论 理论基础 无论是对于何种几何非线性问题,虚功原理总是成立的。由虚功原理,单元的虚功方程可以写成如下的形式 {}{}{}{}0=-???**v e eT e eT F dv δσε () 其中{}F 为单元节点力向量,{}e *ε为单元的虚应变,{}e *δ为节点虚位移向量。 增量形式的应变一位移关系可表示为 {}[] {}e e d B d δε= ()

有限元极限分析发展及其在岩土工程中的应用

科技论坛 有限元极限分析发展及其在岩土工程中的应用 何小红 (长春科技学院,吉林长春130000) 有限元极限分析法实际应用于岩土工程中,能够对岩土工程的安全系统、失稳数据等做出判断,但是在应用的过程中,需要做出假设,并且求解范围相对有限,在应用上有一定的限制。尽管如此,有限元极限分析法的适应性能也比较强,尽管它在使用的过程中不能对稳定安全系数F做出明确计算,受到了限制,但是在实际应用中依然能够发挥出其自身价值,为工作人员提供有用的数据信息,让岩土工程的发展也得到促进性作用。 1有限元极限分析法发展历程 有限元极限法最初的提出者是英国科学家,时间在20世纪70年代中期,这也是首次将有限元极限分析法应用于岩土工程中,计算出岩土工程额极限荷载及其安全系数。在20世纪90年代,该方法又应用于边坡和地基的稳定性分析中,但当时收到技术限制,并没有较强大和可靠的元程序支持,计算的精度也不够,在岩土工程中的推广使用收到了限制。 在20世纪末,国际又对有限元极限分析法做出了新的研究,主要以有限元强度折减法的求解上比较集中,计算结果和之前的结果仍然很相似,慢慢也就被学术界接受到,从此有限元极限分析法也就进入了一个新的发展时期。直到20世纪末,有限元分析法才在我国开始应用,主要是应用于土坡分析上。在21世纪初,我国学者分析边坡稳定性上,有效应用了有限元折减法,这也是我国最早对有限元强度折减法的应用,并在基本理论以及计算精度上做出了细致研究。在这两方面,我国也得到了较好的应用,并向着长远发展目标推进。 在研究方面,有限元强度折减法主要集中在安全系数与滑面系数方面,而有限元增量超载法主要是在地基极限车承载力方面。这方面的研究文献虽然不多,但是却取得了可观的研究成果。这两种方法,统称为有限元极限分析法,从根本上来说,均为采用数值分析方法求解的一种极限分析法。在国际上,有限元极限分析法大都采用编数值分析程序比较多,而该方法的应用范围仅局限于二维平面土基与土坡分析中。而在国内方面,大都采用大型通用程序,在计算、程序可靠性、功能等方面,均有很大的优势。近年来,国内在有限元极限分析法方面,取得了很大的进展。但是从整体情况来看,仍然研究的起步阶段,距离革新设计方法,尚有一段很长的距离。 2有限元极限分析法原理 2.1安全系数概念。对于有限元极限分析法安全系数有很多种定义,这些定义都是和岩土工程受破坏状态有直接关系。安全系数定义主要非两种,即有限元强度折减法以及有限元增量超载法;有限元强度折减法主要指受到环境影响,让岩土强度较低,边坡失去稳定性,通过岩土强度的降低计算出最终破坏的状态;有限元增量超载法主要指岩土地基上的荷载持续性增加,让地基稳定性受到破坏,导致超载安全系数呈现倍数递增上涨趋势;这两种方式计算的安全系数是有所不同的。 2.2有限元极限分析法原理。(1)有限元强度折减法原理。在岩土工程中,主要采用莫尔-库仑材料,安全系数w的计算式为:T= c'=c/ω,tanφ'=(tanφ)/ω(2) 有限元增量超载法。在工程中,岩土的破坏,不是朝夕之事,而是一个循序渐进的过程,由线弹性状态,逐步过渡到塑性流动,最终达到 极限破坏状态。因此,这就给增量超载方法求解地基的极限承载力,提供了有利的条件。 3有限元极限分析法基本理论 3.1判断岩土工程整体失稳的依据。所谓岩土工程整体失稳破坏,主要是指岩土沿滑面出现滑落或者是坍塌情况,导致岩土不能达到极限的平衡状态,不能继续承载,滑面的岩土也会有位移现象发生。在滑面节点上位移导致的塑形或者是突变性就是对边坡整体失稳的判断标志。所以,可以利用有限元静力计算来确定边坡是否失稳,判断出边坡失稳特征。 3.2提高计算精度的条件。在有限元极限分析法中,要想将计算的精度提高上来,就要满足一定的条件。首先是成熟可靠、程序的功能足够强大,尤其是通用于国际的程序;其次是强度准则以及结构模型有较高的实用性;最后是满足计算的需要,即计算的范围、网络划分以及边界条件等。只有满足这些条件,有限元极限分析法的计算精度才能够提高上来,降低计算的误差。 4有限元极限分析法的应用 4.1在二维边坡中的应用。结合下面的算例,探讨该方法的应用。通过大型有限元ANSYS5.62软件建立有限元模型,根据平面建立有限元模型,左右两侧为边界约束条件。按照边坡破坏的特点,在边坡遭到破坏时,滑面上的塑性应变和节点上的位移,将发生突变、塑性应变突变和滑动面水平位移。所以,这就能够按照塑性应变值云图方法来确定滑动面,并与之前的滑面方法相比。 4.2有限元超载法在土基上的应用。光滑刚性条形地基的极限承载力,均承受为垂直半无限、无重量地基,计算的方法如下:qu=ccosφ[exp(πtanφ)tan2(π/4+φ/2)-1 根据上述公式,当地基处于极限状态下,基础附近局部位移矢量将随着基础附近局部的等效塑性应变等发生变化。通过计算结果可看出,计算的结果与实际相符合。而对于有重地基极限承载力的计算,已经存在各种公式,但是相比较而言,魏锡克经验公式计算的记过比较准确。此外,有限元极限分析法在隧道工程、滑坡支档结构等均有着实际的应用,而且该方法的应用范围还在不断扩大。 结束语 从有限元极限分析法的自身应用方法来看,主要有有限元强度折减法以及有限元超载法这两种,这两种方法在当前的应用上都处于快速发展阶段,对其的研究也一直在进行,应用于岩土工程中也有着较好的效果。本文中,主要是从岩土工程的实际工作中应用有限元极限分析法做出简单分析,从其发展历程,再到安全系数定义,最后到岩土工程中的应用,这些都能够有效促进有限元极限分析法的进一步发展,以期有着借鉴价值。 参考文献 [1]赵尚毅,郑颖人.基于Drucker-Prager 准则的边坡安全系数转换[J].岩石力学与工程学报,2013(11). [2]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2013(21). [3]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2014(23). [4]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程 学院学报,2011(21). [5]宋亚坤,赵尚义,郑颖人.有限元强度折减法在三维边坡中的应用 与研究[J].地下空间与工程学报,2010(12). 摘要:从有限元极限分析法的优点上来看,该方法特别适合在岩土工程中应用,也得到了较好的发展。在实际应用过程中,是需要做 出假设并求解的,而且应用的范围有一定的局限性,这是有限元极限分析法应该创新的地方,在科技进步之下,对方法进行完善,让其适用的范围有所扩大,同时也推动在岩土工程中应用的价值。本文主要从有限元极限分析法做出了介绍,进而分析其在岩土工程中实际的应用。 关键词:有限元极限分析法;应用;岩土工程92··

钢筋混凝土梁非线性有限元分析方法

第28卷第1期 V ol.28 No.1 工 程 力 学 2011年 1 月 Jan. 2011 ENGINEERING MECHANICS 82 ——————————————— 收稿日期:2009-06-19;修改日期:2010-03-11 基金项目:国家科技支撑计划项目(2006BA904B03) 作者简介:*周凌远(1968―),男,四川成都人,副教授,工学博士,从事桥梁结构行为分析研究(E-mail: zhoulingyuan@https://www.wendangku.net/doc/c515825322.html,); 李 乔(1954―),男,黑龙江铁力人,教授,工学博士,博导,西南交通大学土木工程学院院长,从事桥梁结构行为分析研究 文章编号:1000-4750(2011)01-0082-05 钢筋混凝土梁非线性有限元分析方法 * 周凌远,李 乔 (西南交通大学土木工程学院,成都 610031) 摘 要:针对钢筋混凝土结构有限元分析中,材料进入非线性阶段后,难以通过梁理论准确描述混凝土截面和钢筋应力状态的问题,提出了基于柔度法和分布式塑性理论的钢筋混凝土梁单元材料非线性方法——网格截面法。这种方法采用平面等参单元将梁单元网格化,由单元轴向积分点位置截面网格积分点的混凝土应力描述单元截面应力分布,同时考虑钢筋对刚度的贡献,并通过对截面网格材料的积分计算积分点位置的截面刚度矩阵,再利用力插值函数和能量原理得到梁单元的柔度矩阵,进而对柔度矩阵求逆计算单元刚度矩阵。通过算例验证该方法在钢筋混凝土承载力分析时的准确性。 关键词:有限元;钢筋混凝土梁;柔度法;网格截面;极限承载力 中图分类号:TU375.1; O241.82 文献标识码:A AN APPROACH OF NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAM * ZHOU Ling-yuan , LI Qiao (School of Civil Eng, Southwest Jiaotong University, Chengdu 610031, China) Abstract: A beam element with a meshed section based on distributed plasticity and flexibility theory is presented for the material nonlinear finite element analysis of a reinforced-concrete framed structure, the sections of a concrete beam element are discretized into the plane isotropic components in this formulation, the stress distribution on the sections is described with the stresses at quadrature points in the mesh, the stiffness matrices of the sections are calculated by integration of the stress-strain relations of the material on the meshes and the contribution of the stiffness by reinforcing steel is also counted, the flexibility matrix of the element is formed by integration of section flexibility matrices with force-interpolation functions, and then it is inverted to obtain the element stiffness matrix. Finally, a numerical example of the ultimate load capacity analysis of a reinforced concrete beam illustrates the accuracy of the formulation. Key words: finite element; reinforced concrete beam; flexibility method; meshed section; load capacity 钢筋混凝土结构的整体承载力问题一直为工程界所关注,材料非线性有限元方法是研究这类问题的有效手段,其分析模型主要包括集中塑性铰 法[1]和纤维模型法,1977年,Kang 提出了基于纤维模型的二维梁单元[2],并运用于预应力混凝土框 架的分析,1993年Izzuddin B A 等提出了三次多项式插值的分布式塑性方法分析空间梁单元[3 ―4] ,通 过对沿梁轴方向两个积分点位置的截面划分监控区域,并假定每个监控区域内的法向应力均匀,得到单元的刚度矩阵和节点力,这样在同一个单元内

极限分析有限元法讲座_岩土工程极限分析有限元法

第26卷第1期 岩 土 力 学 V ol.26 No.1 2005年1月 Rock and Soil Mechanics Jan. 2005 收稿日期:2004-08-02 修改稿收到日期:2004-10-25 作者简介:郑颖人,男,1933年生,中国工程院院士,教授,博士生导师,从事岩土本构关系理论与数值分析及岩土工程稳定性研究。E-mail:zhaoshangyi@https://www.wendangku.net/doc/c515825322.html, 文章编号:1000-7598-(2005) 01―0163―06 极限分析有限元法讲座—— Ⅰ岩土工程极限分析有限元法 郑颖人,赵尚毅,孔位学,邓楚键 (后勤工程学院 土木工程系,重庆 400041) 摘 要:经典岩土工程极限分析方法一般采用解析方法,有些还要对滑动面作假设,且不适用于非均质材料,尤其是强度不均的岩石工程,从而使极限分析法的应用受到限制。随着计算技术的发展,极限分析有限元法应运而生,它能通过强度降低或者荷载增加直接算得岩土工程的安全系数和滑动面,十分贴近工程设计。为此,探讨了极限分析有限元法及其在边坡、地基、隧道稳定性计算中的应用,算例表明了此法的可行性,拓宽了该方法的应用范围。随着计算机技术与计算力学的发展,岩土工程极限分析有限元法正在成为一门新的学问,而且有着良好的发展前景。 关 键 词:极限分析有限元法;边坡稳定分析; 地基极限承载力;隧道稳定性 中图分类号:O 241 文献标识码:A Geotechnical engineering limit analysis using finite element method ZHENG Ying-ren ,ZHAO Shang-yi, KONG Wei-xue, DENG Chu-jian (Department of civil Engineering, Logistical Engineering University, ChongQing, 400041,China) Abstract: The analytical method is adopted in classical geotechnical engineering limit analysis method. It cannot involve the stress-strain behavior of soil and sometimes assumptions needs to be made in advance about the shade or location of the failure surface. It is not suitable for heterogeneous materials, especially the rock engineering. So its application still remains limited. With the development of computer and computing technology, the limit analysis finite element method was put forward. With the strength reduction or load increase, the stability safety factor and failure surface can be obtained directly at limit state. It is very practical for geotechnical engineering design. This paper studies the limit analysis finite element method and its application in the slope 、tunnel 、ultimate bearing capacity of foundations. Through a series of case studies, the applicability of the proposed method is clearly exhibited. Keywords: limit analysis finite element method, slope stability analysis, ultimate bearing capacity of foundations, tunnel stability. 1 经典岩土极限分析法的发展及问题 极限分析法的力学基础是土体处于理想弹塑性或者刚塑性状态,并处于极限平衡状态,即土体滑动面上每点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。土体处于极限平衡状态有两个力学特征:一是土体已处于濒临破坏失稳状态,因而它可作为岩土工程破坏失稳的判据;二是岩土材料强度得到充分发挥,达到了最经济的效果,因而土体极限平衡状态常被作为岩土工程设计的依据,它是安全可靠、经济合理的最佳结合状 态。 将地基或者土坡引入极限状态有两种方法:一是增量加载,例如求地基的极限承载力;二是强度折减,例如求土坡的稳定安全系数。 经典极限分析方法一般采用解析方法,适用于均质材料。极限状态的设计计算只引用屈服条件或破坏条件,不必引用复杂的岩土本构关系,从而使岩土工程的设计计算大为简化。极限状态计算应满足如下条件: (1) 静力平衡条件和力的边界条件; (2) 应变、位移协调条件和位移边界条件;

岩土工程极限分析有限元法及其应用

岩土工程极限分析有限元法及其应用 摘要:通过研究分析发现,将工程结构离散化是极限分析有限元法的核心内容,简单地说实际的工程结构是通过想象进行离散一定数量的规则单元组合体,然后 分析这些组合,结果应用于实际的结构中,通过这种实践在一定程度上解决了工 程建设过程中的问题。因此,本文笔者将详细对极限分析有限元法进行分析阐述。关键字:岩土工程;极限分析有限元法;应用 引言 自上世纪初,岩土工程的极限分析方法(包括极限平衡法、滑移线场法、上下限分析法)取得了较好进展,在实际工程得到了广泛的应用。其中一些方法需要一些人工架设,一些方 法的解决方案非常有限,这限制了该方法的开发和应用。其中有限元法数值方法适应力较强 且应用广泛,但在工程设计中,不能求出稳定安全系数 F 和极限承载力,从而限制了岩土工 程中有限元数值分析方法的运用。 一、经典岩土极限分析法的发展及问题 基于力学的极限分析方法,土体处于理想的弹塑性或者刚塑性状态,处于极限平衡状态,即土体滑动面上各点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。 极限平衡状态下的土体有两个力学性质:第一是土体处于不稳定的状态,所以它可以作为一 个岩土工程破坏失稳的判据;第二是岩土材料强度充分发挥,达到最大经济效益,因此,在 岩土工程中常把土体极限平衡作为设计依据。有两种方法可以将地基或土坡引入极限状态: 一是增量加载,如地基的极限承载力;二是强度折减,如土坡的稳定安全系数。 经典极限分析方法普遍应用于均质材料。极限状态的设计计算仅参考破坏条件及屈服条件,不需要参考岩土复杂的本构关系,从而大大简化了岩土工程的设计计算。极限状态计算 应满足以下条件: (1)屈服条件或者破坏条件。 (2)静力平衡条件和力的边界条件。 (3)应变、位移协调条件和位移边界条件。 目前主要采用以下4种经典极限分析法:上、下限分析法、滑移线场法、变分法与极限 平衡法。每种都具有各自的特点,但还有一些需作假定,如上限法、滑移线场法、极限平衡 法等都需对临界滑动面作假定,不适用于非均质材料,特别是岩石工程强度的不均性,从而 限制了极限分析法的应用,这正是极限分析法在经典岩土工程的缺陷。 二、极限分析有限元法的基本原理 2.1 安全系数的定义 有两种方法可以将地基或者土坡引入极限状态:一是增量加载,如求地基的极限承载。 力二是强度折减,如求土坡的稳定安全系数。 极限平衡方法是先假定滑动面,再使用传统边坡稳定分析,按照力(矩)的平衡计算安全系 数并将其定义为滑动面的抗滑力(矩)与下滑力(矩)之比。 目前,不平衡推力法(传递系数法)在我国滑坡稳定分析中得到广泛应用,该方法是我国 独立开创的滑坡稳定分析方法。有关推力安全系数,一般将增加下滑力的分项系数作为安全 贮备,但严格意义上不是荷载增加系数,因为边(滑)坡工程中荷载增加,不但会导致下滑力 增加,还会导致抗滑力增加,但目前的传递系数法中不考虑抗滑力增加,这与力学规律相符。一般,滑坡推力的标准值为:

有限元分析的基本步骤

一个典型的ANSYS分析过程可分为以下6个步骤: 1定义参数 2创建几何模型 3划分网格 4加载数据 5求解 6结果分析 1定义参数 1.1指定工程名和分析标题 启动ANSYS软件,选择File→Change Jobname命令 选择File→Change Title菜单命令 1.2定义单位 (2) 设置计算类型 ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK (3) 定义分析类型 ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK 1.3定义单元类型 选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令 单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定 1.4定义单元常数 在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令 单击[Add]按钮,进行下一个[Choose Element Type]对话框 1.5定义材料参数 在ANSYS程序主界面,选择Main Menu→Preprocessor→Material Props→Material Models命令 (1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所示[Linear Isotropic Properties for Material Number 1]对话框。 在[EX]文本框中输入弹性模量“200000”,在[PRXY]文本框中输入泊松比“0.3”,单击OK 2创建几何模型 在ANSYS程序主界面,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令 选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令 3网格划分(之前一定要进行材料的定义和分配) 选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令 选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所示网格 4加载数据 (1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令, 出现如下所示对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。

相关文档
相关文档 最新文档