文档库 最新最全的文档下载
当前位置:文档库 › 直流电动机地反接制动课程设计

直流电动机地反接制动课程设计

直流电动机地反接制动课程设计
直流电动机地反接制动课程设计

1 综述

直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。

直流电动机按励磁方式分为他励、并励、串励和复励四种。

直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。

本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

2 直流电动机的制动

2.1 制动的定义

制动,就是让电动机产生一个与转子转向相反的电磁转矩,以使电力拖动系统迅速停机或稳定放下重物。这时电机所处的状态称为制动状态,这时的电磁转矩为制动转矩。

2.2 制动的目的

在生产过程中,经常需要采取一些措施使电动机尽快停转,或者从某高速降到某低速运转,或者限制位能性负载在某一转速下稳定运转,这就是电动机的制动问题。

2.3 制动的分类

实现制动有两种方法,机械制动和电磁制动。

电磁制动是使电机在制动时使电机产生与其旋转方向相反的电磁转矩,其特点是制动转矩大,操作控制方便。

现代通用电机的电磁制动类型有能耗制动、反接制动和回馈制动。

2.4 各种制动的特点

1)反接制动:设备简单,制动迅速,准确性差,制动冲击力强。

2)能耗制动:制动准确度高,需直流电源,设备投入费用高。

3)回馈制动:经济性好,将负载的机械能转换为电能反送电网,但应用围不广。电容制动对高速、低速运转的电动机均能迅速制动,能量损耗小设备简单,一般用语10KW以下的小容量电动机,可适用于制动频繁的场合。

3 直流电动机反接制动的工作原理

以他励直流电动机为例。

他励电动机反接制动的特点是使U

a

与E的作用方向变为一致,共同产生电枢电

流I

a ,于是由动能转换而来的电功率EI

a

和由电源输入的电功率U

a

I

a

一起消耗在

电枢电路中。

具体实现的方法有两种,分别用于不同的场合。

3.1 电压反向反接制动——迅速停机

3.1.1 制动原理

制动前后的电路如图3-1所示。与电动状态相比,电压反向反接制动时,将电枢电压反向,并在电枢电路串联一制动电阻R

b

。当系统因惯性继续沿原来方向旋转时,

因磁场方向不变,E的方向不变,但因U

a 反向,U

a

与E的作用方向变成一致,一起

使U

a

反向,使得T也反向成为制动转矩,转速迅速下降至零。当转速降至零时,E=0,应立即将电枢与电源断开,否则电机将反向起动。

(a)电动状态

(b)制动状态

图3-1 反接制动迅速停机时的电路图

3.1.2 机械特性

上述制动过程也可以通过机械特性来说明。

电动状态时的机械特性如图3-2的特性1,n 与T 的关系为

n=

ΦE a C U -2

ΦT E a

C C R T

电压反向反接制动时,n 与T 的关系为

n=-(

ΦE a C U -2

ΦT E a

C C R T)

机械特性如图3-2中特性2。设电动机拖动的是反抗性恒转矩负载,负载特性如图3.2中的特性3

制动前,系统工作在机械特性1与负载转矩3的交点a 上面。制动瞬间,因机械惯性,转速来不及变化,工作点由a 点平移到能耗制动特性的b 点。这时T 反向,成为制动转矩,制动过程开始。在T 和T L 的共同作用下,转速n 迅速下降,工作点沿特性2由b 点移至O 点。这时n=0,应立即断开电源,使制动过程结束。否则电动机将反向起动,到d 点去反向稳定运行。

图3-2 反接制动迅速停机过程

3.1.3 特性分析

电压反向反接制动的过程效果与制动电阻R b 大小有关。R b 小,则制动瞬间I a 大,T 大,制动过程短暂,停机快。但制动过程中的最大电枢电流,即工作于b 点时的电枢电流I ab 不得超过I m ax =(1.5~2.0)I aN 。

由图3-1(b)可知,只考虑绝对值时b a b z ab R R E U I ++= 式中,E b =E a 。由此求得电压反向反接制动的制动电阻为

R b m ax

I E U b

a +≥

-R a

3.1.4 适用场合

设备简单,操作方便,制动转矩平均值较大,制动强烈,但能量损耗大,适用于要求快速停车的拖动系统,对于要求快速并立即反转的系统更为理想。

3.2 电动势反向反接制动——下放重物

3.2.1 制动原理

制动前后的电路如图4-1所示。制动时,电枢电压不反向,只在电枢电路中串联一个适当的制动电阻R

b

(a)电动状态

(b)制动状态

图4-1 反接制动下放重物的电路图

3.2.2 机械特性

上述制动过程也可以通过机械特性来说明。

直流电动机控制课程设计总结报告

微机原理及应用B 课程设计任务书 2010-2011学年第 2学期第 19 周- 19 周 题目直流电机控制 内容及要求 内容:设计一直流电机控制系统,实现对电机的正转,反转和速度控制 要求:1、用proteus画出原理图; 2、用c语言或汇编编写程序; 3、实现对电机的正转,反转和速度控制 进度安排 1、方案论证 0.5天 2、分析、设计、调试、运行 4天 3、检查、整理、写设计报告、小结 0.5天 学生姓名:5组(组长:25盛夏;组员:23彭亚彬,24阮水盛,26陶志鹏)指导时间2011年6月27日至2011年7月1日指导地点:F 楼 613室任务下达2011年6月 27日任务完成2011 年7 月 1日 考核方式 1.评阅 2.答辩 3. 实际操作□ 4.其它□ 指导教师郭亮系(部)主任 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 摘要 (3) Abstract (4) 一、概述 (5) 二、直流电机硬件电路设计及描述 (6) 2.1直流电机的结构 (6) 2.2直流电机的工作原理 (6) 2.3电磁关系 (7) 2.4直流电机主要技术参数 (7) 2.5直流电机的类型 (8) 2.6直流电机的特点 (8) 三、直流电机硬件电路设计及描述 (8) 3.1 总体方案设计 (8) 3.1.1 设计思路 (8) 3.1.2设计原理图 (10) 3.2设计原理及其实现方法 (10) 3.2.1速度调节的实现 (10) 3.2.2 转向的控制 (11) 四、流程图 (12) 五、.程序代码(C语言) (13) 六、程序代码(汇编语言) (18) 七、收获、体会和建议 (24) 附录 (25) 1. 本设计所需要芯片以及作用 (25) 2.主要参考文献 (26)

他励直流电动机的反接制动(电机与拖动课程设计)

引言 直流电动机以其结构复杂、价格较贵、体积较大、维护较难而使其应用受到了影响。随着交流电动机变频调速系统的发展,在不少应用领域中已为交流电动机所取代。但是直流电动机又以起动转矩大、调速性能好、制动控制方便而著称,因此,在工业等应用领域中仍占有一席之地。本课题将讨论他励电动机的基本结构、工作原理以及反接制动的原理及机械制动。

.专业整理. 1 课程设计的目的及内容 电机与拖动是电气专业的一门重要专业基础课。它主要是研究电机与电力拖动的基本原理,以及它与科学实验、生产实际之间的联系。通过学习使学生掌握常用交、直流电机、变压器及控制电机的基本结构和工作原理;掌握电力拖动系统的运行性能、分析计算,电动机选择及实验方法等。 电机与拖动课程设计是理论教学之后的一个实践环节,通过完成一定的工程设计任务,学会运用本课程所学的基本理论解决工程技术问题,为学习后续有关课程打好必要的基础。 本设计主要研究他励直流电动机的反接制动。 .学习帮手.

辽宁工程技术大学课程设计 2 2 他励直流电动的基本结构 图2-1 直流电动机结构图 图2 他励直流电动机的基本结构 2.1定子 直流电机的定子由以下几部分组成: 主磁极 换向磁极(简称换向极) 机座 端盖 2.2转子 电枢铁心 电枢绕组 换向器 风扇等 电枢绕组电枢磁扼定子磁扼 换向极绕组换向极 底脚 激磁绕组 极身极掌电枢槽电枢齿

.专业整理. .学习帮手. 3 他励直流电动机的工作原理 3.1直流电动机的工作原理图 图3-1 直流电动机的工作原理图 图中N 和S 是一对固定不动的磁极,用以产生所需要的磁场。在N 极S 极之间有一个可以绕轴旋转地绕组。直流电机的这一部分称为电枢。如图3-1所示将电枢绕组通过电刷接到直流电源上,绕组的转轴与机械负载相连,这是便有电流从电源的正极流出,经电刷A 流入电枢绕组,然后经电刷B 流回电源的负极。载流的转子(即电枢)导体将受到电磁力f 的作用a BLI f 。 3.2他励直流电动机的运行分析 M Uf + -+ -Ua I a I f 图3-2 它励电动机 电枢电路中它励电动机的电枢和励磁绕组分别由两个独立的直流电源供电。它励电动机的电路如图三所示。在励磁电压f U 的作用下,励磁绕组中通过励磁电流f I ,从而产生 N S A B a d b c i +-e n U + -i

用单片机来控制直流电动机的正反转

用单片机来控制直流电动机的正反转、加减速的程序如何写啊 用L293D芯片, EN12\IN1\IN2直接连接单片机(任意) EN12 连接单片机,IO口设为高 IN1\ IN2连接单片机IO口设为高\低时,直流电机正转,为低\高时反转 评论|10 2011-08-04 18:14digogog|三级 最简单的就是一个51 ,用一个p0的两个口来控制(P0^0和P0^1),四个端口 A、B、C、D.分为2组AB CD一组分开接电源正极,一组分开接电源 副极。两组的另外一段分别接电机的正极和副极,然后通过P^0和P^1给信号正转Y=AB /C/D 反转Y=/a/b CD 评论|00 2011-08-04 19:45wangshaoshay|八级 正负极反接就成了反转 单片机不能直接驱动电机,因为它电流输出太小,所以要通过H桥或者ULN2003等来驱动 评论|00 2011-08-09 23:24zhangdaicong|来自手机知道|六级 单片机不能直接驱动电机的,建议使用H桥或L298,新手使用L298吧,比较方便。如需交流请到机械创新论坛找我。 评论|00 2011-10-28 15:20热心网友 正反转就是电流流向改变就可以.加减速度主要是电动机电压大小控制就可以了. 具体的要有硬件才可以实现的. 评论|00 2011-10-28 15:27生活如歌_|十五级 参考这个程序,通过PWM调整占空比来调整转速 #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ;

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电动机正反转proteus仿真设计概要

直流电动机正反转Proteus仿真设计 引言 随着人民生活水平的提高,产品质量、性能、自动化程度等已经是人们选择产品的主要因素。其中,直流电动机正反转自动控制在生活中起了很大的作用,比如洗衣机的工作、遥控汽车的操作、DVD的应用等等,它在实际生活中给人们需求上提供了很大的方便与乐趣。不只是生活,它还在工业、农业、交通运输等各方面得到了广泛的应用,实现电动机正反转的控制是很多产品设计的核心问题。直流电动机显示出交流电动机不能比拟的良好启动性能和调速性能,比较广泛应用于速度调节要求过高,正反转频繁或多元同步协调运转的机械生产。因此,学会电动机正反转控制的原理是极其重要的。然而,在本直流电动机正反转仿真设计中,要借助Proteus软件、Keil软件和C语言的辅助进行仿真设计,通过仿真设计,让我们更清楚了解电动机正反转的原理和电路图,增强对直流电动机的认知。 在Proteus绘制好原理图后,调入已编译好的目标代码文件:*.HEX,可以在Proteus的原理图中看到模拟的实物运行状态和过程,Proteus还提供了一个图形显示功能,可以将线路上变化的信号,以图形的方式实时地显示出来,其作用与示波器相似,但功能更多。这些虚拟仪器仪表具有理想的参数指标,例如极高的输入阻抗、极低的输出阻抗。这些都尽可能减少了仪器对测量结果的影响。在本设计中,Proteus软件采用了电容、电阻、晶振、电动机、LED、开关、电动机等多种元件进行绘图,并基于80C51和ULN2003A进行电路图设计,充分展示Proteus软件元件库量大,掌握它的基本绘图操作。而对于Keil软件,采取创建工程,创建执行文件,利用C语言编写程序,生成hex文件,为Proteus 仿真提供驱动控制,实现直流电动机正反转的设计。 在本论文设计中,主要介绍直流电动机正反转原理,Proteus软件功能绘图、仿真调试,以及Keil软件功能、程序编写和仿真程序文件生成。让大家更清楚了解Proteus软件、Keil软件、C语言在直流电动机正反转仿真设计的应用。

课程设计报告直流电机调速系统(单片机)

专业课程设计 题目三 直流电动机测速系统设计 院系: 专业班级: 小组成员: 指导教师: 日期:

前言 1.题目要求 设计题目:直流电动机测速系统设计 描述:利用单片机设计直流电机测速系统 具体要求:8051单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。 元件:STC89C52、晶振(12MHz )、小按键、ST151、数码管以及电阻电容等 2.组内分工 (1)负责软件及仿真调试:主要由完成 (2)负责电路焊接: 主要由完成 (3)撰写报告:主要由完成 3.总体设计方案 总体设计方案的硬件部分详细框图如图一所示: 单片机 PWM 电机驱动 数码管显示 按键控制

一、转速测量方法 转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。在频率的工程测量中,电子式定时计数测量频率的方法一般有三种: ①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为 f x =Nt(1) ②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。 ③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。 电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差; 另一项是量化±1 误差。当时基误差小于量化±1 误差一个或两个数量级时,这时测量准确度主要由量化±1 误差来确定。对于测频率法,测量相对误差为: Er1 =测量误差值实际测量值×100 % =1N×100 % (2) 由此可见,被测信号频率越高, N 越大, Er1 就越小,所以测频率法适用于高频信号( 高转速信号) 的测量。对于测周期法,测量相对误差为: Er2 =测量误差值实际测量值×100 % =1m0×100 % (3) 对于给定的时钟脉冲fc , 当被测信号频率越低时,m0 越大, Er2 就越小,所以测周期法适用于低频信号( 低转速信号) 的测量。对于多周期测频法,测量相对误差为: Er3 =测量误差值实际测量值100%=1m2×100 % (4) 从上式可知,被测脉冲信号周期数m1 越大, m2 就越大,则测量精度就越高。

直流电动机的反接制动

烟台南山学院 电机与拖动课程设计题目直流电动机的反接制动 姓名: XXX 所在学院:计算机与电气自动化学院 所学专业:自动化 班级:自动化XXXX 学号: XXXXXXXXXXX 指导教师:XXX 完成时间: 2013.12.20

目录 绪论 (1) 第一章直流电动机的制动 (2) 1.1 制动的定义 (2) 1.2 制动的目的 (2) 1.3 制动的分类 (2) 1.4 各种制动的特点 (2) 第二章直流电动机反接制动的工作原理 (3) 2.1 电压反向反接制动——迅速停机 (3) 2.1.1 制动原理 (3) 2.1.2 机械特性 (3) 2.1.3 特性分析 (4) 2.1.4 适用场合 (5) 2.2 电动势反向反接制动——下放重物 (5) 2.2.1 制动原理 (5) 2.2.2 机械特性 (5) 2.2.3 特性分析 (6) 2.2.4 适用场合 (7) 第三章反接制动制动电阻的计算 (8) 3.1 电枢电阻的计算 (8) 3.2 相关参数的计算 (8) 3.3 迅速停机 (8) 3.4 下放重物(以800r/min下放重物) (8) 结论 (9) 总结 (10) 参考文献 (11)

绪论 直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。 直流电动机按励磁方式分为他励、并励、串励和复励四种。 直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。 本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

单片机控制直流电动机课程设计

目录 一、设计目的 二、设计任务和要求 三、设计原理分析 四、硬件资源及原理 五、硬件图 六、程序框图 七、程序 八、调试运行 九、仿真截图 十、设计心得体会

一、设计目的 1、通过单片机课程设计,熟练掌握C语言的编程方法,将理论联系到实践中,提高我们的动脑和动手的能力。 2、通过对单片机控制直流电动机控制系统的设计,掌握A/D转换、D/A转换的有关原理,加深对PWM波的理解和使用,同时对单片机的使用更加熟练,通过对简单程序的编写提高我们的逻辑抽象能力。 二、设计任务和要求 任务:采用单片机设计一个控制直流电动机并测量转速的装置。 要求: 1、通过改变A/D输入端的可变电阻来改变A/D输入电压,D/A输入检测量大小,进而改变直流电机的转速。 2、手动控制。在键盘上设置两个按键——直流电动机加速键和直流电机减速键。在手动状态下,每按一次键,电机的转速按照约定的速率改变。 3、键盘列扫描(4*6)。 三、设计原理分析 1. 设计思路 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR 为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。设计以AT89C51单片机为核心,以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。本文介绍了直流电机的工作原理和数学模型、脉宽调制控制原理和H桥电路基本原理设计了驱动电路的总体结构,根据模型,利用PROTEUS软件对各个子电路及整体电路进行了仿真,确保设计的电路能够满足性能指标要求,并给出了仿真结果。 2、基本原理 主体电路:即直流电机PWM控制模块。PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。这部分电路主要由80C51单片机的I/O端口、定时计数器、外部中断扩展等控制直流电机的加速、减速,并且可以调整电机的转速,还可以方便的读

直流电动机的反接制动课程设计报告书

1 综述 直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。 直流电动机按励磁方式分为他励、并励、串励和复励四种。 直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。 本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

2 直流电动机的制动2.1 制动的定义

制动,就是让电动机产生一个与转子转向相反的电磁转矩,以使电力拖动系统迅速停机或稳定放下重物。这时电机所处的状态称为制动状态,这时的电磁转矩为制动转矩。 2.2 制动的目的 在生产过程中,经常需要采取一些措施使电动机尽快停转,或者从某高速降到某低速运转,或者限制位能性负载在某一转速下稳定运转,这就是电动机的制动问题。 2.3 制动的分类 实现制动有两种方法,机械制动和电磁制动。 电磁制动是使电机在制动时使电机产生与其旋转方向相反的电磁转矩,其特点是制动转矩大,操作控制方便。 现代通用电机的电磁制动类型有能耗制动、反接制动和回馈制动。 2.4 各种制动的特点 1)反接制动:设备简单,制动迅速,准确性差,制动冲击力强。 2)能耗制动:制动准确度高,需直流电源,设备投入费用高。 3)回馈制动:经济性好,将负载的机械能转换为电能反送电网,但应用范围不广。电容制动对高速、低速运转的电动机均能迅速制动,能量损耗小设备简单,一般用语10KW以下的小容量电动机,可适用于制动频繁的场合。

3 直流电动机反接制动的工作原理 以他励直流电动机为例。 他励电动机反接制动的特点是使U a 与E的作用方向变为一致,共同产生电枢电 流I a ,于是由动能转换而来的电功率EI a 和由电源输入的电功率U a I a 一起消耗在电 枢电路中。 具体实现的方法有两种,分别用于不同的场合。

直流电机正反转和加减调速控制电路板的制作

直流电机正反转和加减调速控制的电路板制作 摘要:随着社会的发展与进步,电动机作为日常生产生活中必不可少的工具,在今天已经变得非常重要,无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品中,都大量使用着各种各样的电动机。据有关资料显示,当今社会人类生产生活中所用到的能源有接近百分之九十来源于电动机。在我国,目前有百分之六十的电能用于电动机。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于XS128内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,将电动机转速反馈到单片机中。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。 关键词:XS128,LM298,LM2940,直流电机正反转及调速。

Manufacture of DC motor reversing and add and subtract speed control circuit board Abstract:With the development and progress of society, motor as an essential tool in daily life, have become very important in today, both in industrial and agricultural production, transportation, national defense, aerospace, medical and health, business and office equipment, or in daily life of household appliances and consumer electronics products, a large number of motor using a variety of.According to statistics, the use of today's society energy in human production and life have close to ninety percent from motor. In China, there are currently sixty percent of the energy used in motor. Motor and people's life, are inseparable.The age of electricity, motor speed control using simulation method, PID control, simple and the motor control application more. Simple control refers to the motor starting, braking, reverse control and sequence control. This kind of control through a relay, optocoupler, programmable controller and switching elements to achieve. There is a kind of control called complex control, refers to the motor speed, angle, torque, voltage, current, power and other physical quantity control.The motor control system design of MCU based on MC9S12XS12kernel, use LM298 DC motor driver, using the PWM pulse width modulation control motor, and through the coupler tube speed, the microcontroller I/O port timing sampling, the motor speed feedback to the mcu. After the design and debugging, the control system can realize the control of motor speed with less error, system has a display of speed and control the motor starting, stopping and reversing function PC. Has certain practical significance. Keywords:XS128.LM298.LM2940.Manufacture of DC motor reversing and add and subtract speed control.

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

电力电子课程设计报告 直流电机驱动

南京工程学院 自动化学院 电力电子技术课程设计报告题目:直流电机的脉宽调速驱动电源的设计专业:自动化(自动化)___________ 班级:保密 学号: 保密 学生姓名:保密 指导教师:保密 起迄日期:2014.12.23~2014.12.25 设计地点: 工程实践中心4-207

目录 直流电机的脉宽调速驱动电源的设计 (3) 一、引言 (3) 1.1、课题研究现状 (3) 1.2、课题背景及研究意义 (3) 二、设计任务 (4) 三、设计方案选择及论证 (5) 3.1、控制电路的方案选择 (5) 3.2、辅助电源的方案选择 (5) 3.3、过电流检测电路的方案选择 (5) 3.4、主电路的方案选择 (6) 3.5、驱动电路的方案选择 (6) 四、总体电路设计 (7) 五、功能电路设计 (8) 5.1、辅助电源的设计 (8) 5.2、驱动电路的设计 (8) 5.3、控制电路的设计 (9) 5.4、检测电路的设计 (11) 5.5、主电路的设计 (12) 六、电路制作与焊接 (14) 七、调试与总结 (15) 7.1、实际调试 (15) 7.1.1、调试过程 (15) 7.1.2、输出波形及说明 (16) 7.1.3、实物图 (18) 7.2 、总结与收获 (18) 八、参考文献 (20) 九、附录 (21) 9.1总体电路原理图 (21) 9.2、BOM表 (21)

直流电机的脉宽调速驱动电源的设计 一、引言 1.1、课题研究现状 直流电动机是最早出现的电动机,也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。 近年来,直流电动机的结构和控制方式都发生了很大变化。随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制(PulseWidthModulation,简称PWM)控制方式已成为绝对主流。这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。 1.2、课题背景及研究意义 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。长期以来,直流电动机因其转速调节比较灵活,方法简单,易于大范围平滑调速,控制性能好等特点,一直在传动领域占有统治地位。它广泛应用于数控机床、工业机器人等工厂自动化设备中。

电动机反接制动

她励直流电动机反接制动仿真 一、 工作原理 直流电动机的反接制动分为电压反向的反接制动与倒拉反接制动。电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。反接制动就就是通过调换电动机电枢电压方向以改变电枢电流方向,从而使电动机的电磁转矩方向发生改变,最终实现电动机制动。 当电动机在电动运转状态下以稳定的转速n 运行时候,如图1-1所示,为了使工作机构迅速停车,可在维持励磁电流不变的情况下,突然改变电枢两端外施电压的极性,并同时串入电阻,如图1-2所示。由于电枢反接这样操作,制动作用会更加强烈,制动更快。电机反接制动时候,电网供给的能量与生产机械的动能都消耗在电阻Ra+Rb 上面。 E Uf ( a )电动状态 图1-1 制动前的电路图 E Uf (b)制动状态 图1-2 制动后的电路图 同时也可以用机械特性来说明制动过程。电动状态的机械特性如下图三的特性1 n 与T 的关系为

T C C R C U C I R U C E n I R U E I C T n C T E a E a E a a a E a a a a T E 2 E Φ -Φ=Φ-=Φ= -=Φ=Φ= 电压反向反接制动时,n 与T 的关系为 其机械特性如图1-3中的特性2。设电动机拖动反抗性恒转矩负载,负载特性如图1-3中的特性3。 T T L n 2 31 b a c o n o T L 图1-3 反接制动迅速停机过程 制动前,系统工作在机械特性1与负载特性3的交点a 上,制动瞬间,工作点平移到特性2上的b 点,T 反向,成为制动转矩,制动过程开始。在T 与L T 的共同作用下,转速n 迅速下降,工作点沿特性2由b 移至c 点,这就是0=n ,应立即断开 电源,使制动过程结束。否则电动机将反向起动,到d 点去反向稳定运行。 电压反向反接制动的效果与制动电阻b R 的大小有关,b R 小,制动过程短,停机快,但制动过程中的但制动过程中的最大电枢电流,即工作于b 点时的电枢电流 ab I 不得超过aN a I I )0.25.1(max -=。由图1-3可知,只考虑绝对值时 b ab I R R E U a b a ++= 式中,E b =E a 。由此求得电压反接制动的制动电阻为 )(2 T C C R R C U n T E b a E a Φ+-Φ-=

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

他励直流电动机的能耗制动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机的能耗制动 学期: 2013-2014学年第2学期 专业: 班级: 姓名: 学号: 指导教师:

课程设计任务书 一、设计题目 他励直流电动机的能耗制动 二、设计任务 对一台已知额定参数的他励直流电动机进行能耗制动,设计求出合适的制动电阻R b , 并设计求出在已知制动电阻R b 采用稳定下放重物时的转速n。 已知一台他励直流电动机P N=22kW,U aN =220V,I aN =115A,n N =1500r/min.I amax =230A,T0 忽略不计。 (1)拖动T L=120N?m的反抗性恒转矩负载运行,采用能耗制动迅速停机,电枢电路 中至少要串联多大的制动电阻R b ? (2)拖动T L=120N?m的位能性恒转矩负载运行,采用能耗制动以1000r/min的速度 稳定下放重物,电枢电路中至少要串联多大的制动电阻R b ? 三、设计计划 第一天,熟悉题目,查阅有关资料,并进行初步的规划。 第二天,进行设计,并记录有关的数据和过程。 第三天,继续完善设计。 第四天,完成课程设计任务书。 第五天,进行答辩。

课程设计成绩评定表

目录 1.直流电动机的基本结构和工作原理 (1) 1.1直流电动机的基本结构 (1) 1.2直流电动机的工作原理 (3) 2.他励直流电动机的制动方法和制动过程 (4) 2.1直流电动机之他励直流电动机 (4) 2.1.1 电流 (5) 2.1.2 转速 (5) 2.2他励直流电动机的制动方法和制动过程 (6) 2.2.1他励直流电动机能耗制动过程之迅速停机 (6) 2.2.2他励直流电动机能耗制动过程之下放重物 (8) 3、参数的设定与计算 (10) 3.1中间参数的计算 (11) 3.2迅速停机时的制动电阻b R (11) 3.3下放重物时的制动电阻b R (11) 3.4迅速停机过程参数与稳定下放重物过程参数的对比 (12)

相关文档
相关文档 最新文档