文档库 最新最全的文档下载
当前位置:文档库 › (机械制造行业)液压传动技术在工程机械行走驱动中的应用

(机械制造行业)液压传动技术在工程机械行走驱动中的应用

(机械制造行业)液压传动技术在工程机械行走驱动中的应用
(机械制造行业)液压传动技术在工程机械行走驱动中的应用

液压传动技术在工程机械行走驱动中的应用

1、概述

行走驱动系统是工程机械的重要组成部分。与工作系统相比,行走驱动系统不仅需要传输更大的功率,要求器件具有更高的效率和更长的寿命,还希望在变速调速、差速、改变输出轴旋转方向及反向传输动力等方面具有良好的能力。于是,采用何种传动方式,如何更好地满足各种工程机械行走驱动的需要,一直是工程机械行业所要面对的课题。尤其是近年来,随着我国交通、能源等基础设施建设进程的快速发展,建筑施工和资源开发规模不断扩大,工程机械在市场需求大大增强的同时,更面临着作业环境更为苛刻、工况条件更为复杂等所带来的挑战,也进一步推动着对其行走驱动系统的深入研究。

这里试图从技术构成及性能特征等角度对液压传动技术在工程机械行走驱动系统的发展及其规律进行探讨。

2、基于单一技术的传动方式

工程机械行走系统最初主要采用机械传动和液力机械传动(全液压挖掘机除外)方式。现在,液压和电力传动的传动方式也出现在工程机械行走驱动装置中,充分表明了科学技术发展对这一领域的巨大推动作用。

2.1机械传动

纯机械传动的发动机平均负荷系数低,因此一般只能进行有级变速,并且布局方式受到限制。但由于其具有在稳态传动效率高和制造成本低方面的优势,在调速范围比较小的通用客货汽车和对经济性要求苛刻、作业速度恒定的农用拖拉机领域迄今仍然占据着霸主地位。

2.2液力传动

液力传动用变矩器取代了机械传动中的离合器,具有分段无级调速能力。它的突出优点是具有接近于双曲线的输出扭矩-转速特性,配合后置的动力换挡式机械变速器能够自动匹配负荷并防止动力传动装置过载。变矩器的功率密度很大而负荷应力却较低,大批生产成本也

不高等特点使它得以广泛应用于大中型铲土运土机械、起重运输机械领域和汽车、坦克等高速车辆中。但其特性匹配及布局方式受限制,变矩范围较小,动力制动能力差,不适合用于要求速度稳定的场合。

2.3液压传动

与机械传动相比。液压传动更容易实现其运动参数(流量)和动力参数(压力)的控制,而液压传动较之液力传动具有良好的低速负荷特性。由于具有传递效率高,可进行恒功率输出控制,功率利用充分,系统结构简单,输出转速无级调速,可正、反向运转,速度刚性大,动作实现容易等突出优点,液压传动在工程机械中得到了广泛的应用。几乎所有工程机械装备都能见到液压技术的踪迹,其中不少已成为主要的传动和控制方式。极限负荷调节闭式回路,发动机转速控制的恒压,恒功率组合调节的变量系统开发,给液压传动应用于工程机械行走系提供了广阔的发展前景。

与纯机械和液力传动相比,液压传动的主要优点是其调节的便捷性和布局的灵活性,可根据工程机械的形态和工况的需要,把发动机、驱动轮、工作机构等各部件分别布置在合理的部位,发动机在任一调度转速下工作,传动系统都能发挥出较大的牵引力,而且传动系统在很宽的输出转速范围内仍能保持较高的效率,并能方便地获得各种优化的动力传动特性,以适应各种作业的负荷状态。

在车速较高的行走机械中所采用的带闭式油路的行走液压驱动装置能无级调速,使车辆柔和起步、迅速变速和无冲击地变换行驶方向。对在作业中需要频繁起动和变速、经常穿梭行驶的车辆来说这一性能十分宝贵。但与开式回路相比,闭式回路的设计、安装调试以及维护都有较高的难度和技术要求。

借助电子技术与液压技术的结合,可以很方便地实现对液压系统的各种调节和控制。而计算机控制的引入和各类传感元件的应用,更极大地扩展了液压元件的工作范围。通过传感器监测工程车辆各种状态参数,经过计算机运算输出控制目标指令,使车辆在整个工作范围内实现自动化控制,机器的燃料经济性、动力性、作业生产率均达到最佳值。因此,采用液压传动可使工程机械易于实现智能化、节能化和环保化,而这已成为当前和未来工程机械的发展趋势。

2.4电力传动

电力传动是由内燃机驱动发电机,产生电能使电动机驱动车辆行走部分运动,通过电子调节系统调节电动机轴的转速和转向,具有凋速范围广,输人元件(发电机)、输出元件(电动机)、及控制装置可分置安装等优点。电力传动最早用于柴油机电动船舶和内燃机车领域,后又推广到大吨位矿用载重汽车和某些大型工程机械上,近年来又出现了柴油机电力传动的叉车和牵引车等中小型起重运输车辆。但基于技术和经济性等方面的一些原因,适用于行走机械的功率电元件还远没有像固定设备用的那样普及,电力传动对于大多数行走机械还仅是“未来的技术”。

3、发展中的复合传动技术

从前面的分析可以看出,应用于工程机械行走驱动系统中的基于单一技术的传动方式构成简单、传动可靠,适用于某些特定的场合和领域。而在大多数的实际应用中,这些传动技术往往不是孤立存在的,彼此之间都存在着相互的渗透和结合,如液力、液压和电力的传动装置中都或多或少的包含有机械传动环节,而新型的机械和液力传动装置中也设置了电气和液压控制系统。换句话说,采用有针对性的复合集成的方式,可以充分发挥各种传动方式各自的优势,扬长避短,从而获得最佳的综合效益。值得注意的是,兼有调节与布局灵活性及高功率密度的液压传动装置在其中充当着重要角色。

3.1液压与机械和液力传动的复合

(1)串联方式

串联方式是最为简单和常见的复合方式,是在液压马达或液压变速器的输出端和驱动桥之间设置机械式变速器以扩大调速的高效区,实现分段的无级变速。目前已广泛用于装载机、联合收获机和某些特种车辆上。对其的发展是将可在行进间变换传动比的动力换挡行星变速器直接安装在驱动轮内,实现了大变速比的轮边液压驱动,因而取消了驱动桥,更便于布局。

(2)并联方式

即为通常所称的“液压机械功率分流传动”,可理解为一种将液压与机械装置“并联”分别传输功率流的传动系统,也就是是利用多自由度的行星差速器把发动机输出的功率分成液压的和机械的两股“功率流”,借助液压功率流的可控性,使这两股功率流在重新汇合时可无级调

节总的输出转速。这种方式将液压传动的无级调速性能好和机械传动的稳态效率高这两方面的优点结合起来,得到一个既有无级变速性能,又有较高效率和较宽高效区的变速装置。

按其结构,这种复合式传动装置可分为两类:第一类为利用行星齿轮差速器分流的外分流式,其中常见的分流传动机构又可分为输入分流式和输出分流式两种基本形式;第二类为利用液压泵或马达转子与外壳间的差速运动分流的内分流式。

日本小松公司开发的这种复合方式的液压传动变速器,已经应用在装载机、推土机等工程机械上。德国Fendt拖拉机生产的采用Vario型无级变速器装备的农用拖拉机,到2003年总销量超过了30000台。

由此可以看出,这种新型的传动装置已日益成为大中功率液力传动和动力换档变速器的有力竞争者。

(3)分时方式

对于作业速度和非作业状态下转移空驶速度相差悬殊的专用车辆,采用传统机械变速器用于高速行驶、附加液压传动装置用于低速作业的方式能很好地满足这两种工况的矛盾要求。机械――液压分时驱动的方式在此类车辆上的应用已很普遍,这一技术也已被应用于飞机除冰车和田间移栽机等需要“爬行速度”的车辆和机具上。

(4)分位方式

把液压马达直接安装在车轮内的“轮边液压驱动装置”是一种辅助液压驱动装置,可以解决工程机械需要提高牵引性能,但又无法采用全轮驱动方式,难以布置传统的机械传动装置的问题。液压传动的无级调速性能使以不同方式传动的驱动轮之间能协调同步,这在某种意义上也可视为一种功率分流传动:动力机的功率被分配到几组驱动轮上,经地面耦合后产生推动车辆运动的牵引力。目前,许多工程机械制造厂商将这一技术用于具有部分自走驱动能力的,诸如自走式平地机和铲运机这样的工程机械上。

3.2液压与电力传动的复合

由于现代技术的发展,电子技术在信号处理的能力和速度方面占有很大的优势,而液压与

电力传动在各自功率元件的特性方面各有所长。因此,除了现在已普遍存在的“电子神经+液压肌肉”这种模式外,两者在功率流的复合传输方面也有许多成功的实例,如:由变频或直流调速电机和高效、低脉动的定量液压泵构成的可变流量液压油源,用集成安装的电动泵-液压缸或低速大扭矩液压马达构成的电动液压执行单元,以及混合动力工业车辆的驱动系统等。

3.3二次调节静液传动系统

二次调节静液传动技术是通过对液压元件所进行的调节来实现液压能与机械能互相转换。一般来说,它的实现是以压力耦联系统为基础的,在一次元件(泵)及二次元件(马达)间采用定压力偶合方式,依靠实时调节马达排量来平衡负荷扭矩。目前,对二次调节静液传动技术进行研究的出发点是对传动过程进行能量的回收和能量的重新利用,从宏观的角度对静液传动总体结构进行合理的配置以及改善其静液传动系统的控制特性。

为了使不具备双向无级变量能力的液压马达和往复运动的液压缸也能在二次调节系统的恒压网络中运行,出现了利用二次调节技术的“液压变压器”,它类似于电力变压器用来匹配用户对系统压力和流量的不同需求,从而实现液压系统的功率匹配。

二次调节静液传动系统与传统静液传动系统相比,其优点是更便于控制,能在四个象限中工作,可在不转变能量形式情况下回收能量,进行能量的存储,利用液压蓄能器加速可大大提高加速功率,且系统中无压力峰值,由于一次元件和二次元件分开安装,可通过一个泵站给多个液压动力元件提供油源,减少了冷却费用,设备的制造成本降低,系统效率高。

二次调节静液传动与电力传动相比,具有闭环控制动态响应快、功率密度高、重量轻、安装空间小等优点。

由于二次调节静液传动系统具有许多优点,使它在很多领域得到广泛地应用。国外已将其成功应用于造船工业、钢铁工业、大型试验台、车辆传动等领域。奔驰汽车公司已将二次调节技术应用于无人驾驶运输系统中的行驶驱动。

4、结束语

自2O世纪9O年代以来,工程机械进入了一个新的发展时期,新技术的广泛应用使得新

结构和新产品不断涌现。随着微电子技术向工程机械的渗透,工程机械日益向智能化和机电一体化方向发展,对工程机械行走驱动装置提出的要求也越来越苛刻。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在工程机械传动系统中的应用突飞猛进,液压传动所具有的优势也日渐凸现。可以相信,随着液压技术与微电子技术、计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行走驱动系统的发展中发挥出越来越重要的作用。

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

液压传动技术在自动化生产中的应用

液压传动技术在自动化生产中的应用 摘要:液压传动控制当前主要应用于钢铁领域,通过液压来实现能量传递。由 于该技术具有操作便捷性、应用灵活性以及控制方便等方面的特点,钢铁企业普 遍重视液压控制技术的应用。有压流体是液压传动的能源介质来实现机械设备的 自动控制。本文浅析液压传动技术在自动化生产中的应用。 关键词:应用;自动化生产;液压传动技术 引言 帕斯卡原理是液压传动技术的根本性理论依据,即液体自身存在着较强的均 匀性,因此内部压强一致,某一系统处于平衡状态下,活塞的大小直接决定了所 施加压力的大小,使液体保持静止的状态。以液体为介质,在传递作用下可以通 过不同端来产生不同的压力。 1液压传动的优缺点 1.1优点 (1)液压系统中的动力元件、执行元件、控制元件等,能够根据需要灵活布局,使用方便。(2)在同等功率情况下,液压装置体积小、质量小,单位质量输出功率大。(3)操作控制简单,在液压系统运行过程中便可实现无级调速。(4)安全可靠, 具备过载保护功能。(5)液压传动中,由于功率损失产生的热量可以被液体带走, 避免了产生局部过度温升。(6)自动化程度高。液压传动能够使机器实现自动化、 智能化。若采用电液联合控制,则自动化程度更高,且能够实现远程遥控。正是 因为具备上述优点,液压传动在机械钢铁和国防建设等领域得到了广泛的应用。 液压传动的优点是其他传动形式无法比拟的,所以在未来具有广阔的发展前景。 1.2缺点 (1)流体易泄漏。液压系统内充满了大量的流体,由于流体在运行过程中受到 阻力且会发生泄漏,一方面造成场地污染,另一方面也增加了安全隐患。(2)受温 度影响较大。液压系统对工作环境的温度要求较严格,不能在过高或过低的温度 环境中正常运行。(3)液压元件价格昂贵。由于液压系统易泄漏,为了减少该种现 象的发生,液压元件制作精度通常较高,这就使得成本大大增加。(4)传动比易受 影响。液压系统中流体的泄漏会一定程度地影响传动比。(5)维修难度大。通常液 压传动出现问题时,不易维修。虽然上述这些缺点有部分已被改善(如泄漏问题),但是还存在其他问题需要解决。因此,今后在液压方面要着重对这些问题进行研 究探索。 2基于单一技术的传动方式 2.1机械传动 对于部分以机械方式进行驱动的传送装置来说,由于只能够采用平均负荷系 数较小的发动机,变速类型只局限为有级变速,只能够应用于通用客货汽车等对 于调整范围要求较低的设备中。而对于作业速度恒定以及对经济性指标较为敏感 的家用机械设备,该技术则具有主体性地位。 2.2液力传动 该技术的优势在于能够达到输出扭矩-转速特性,在换挡式机械变速器的配合 下能够避免出现传动装置过载的问题。由于变矩器自身有着较小的负荷应力以及 较大的功率密度,生产成本相对较低,能够大范围投入到坦克、重型机械等设备中。 2.3电力传动

(发展战略)液压技术国内外发展方向最全版

(发展战略)液压技术国内 外发展方向

液压技术国内外发展趋势 液压技术发展趋势 液压技术是实现现代化传动和控制的关键技术之壹,世界各国对液压工业的发展都给予很大重视。世界液压元件的总销售额为350亿美元。据统计,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%,而我国只占1%左右,这充分说明我国液压技术使用率较低,努力扩大其应用领域,将有广阔的发展前景。液压气动技术具有独特的优点,如:液压技术具有功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,且易和微电子、电气技术相结合,形成自动控制系统。因此,液压气动技术广泛用于国民经济各部门。可是近年来,液压气动技术面临和机械传动和电气传动的竞争,如:数控机床、中小型塑机已采用电控伺服系统取代或部分取代液压传动。其主要原因是液压技术存在渗漏、维护性差等缺点。为此,必须努力发挥液压气动技术的优点,克服缺点,注意和电子技术相结合,不断扩大应用领域,同时降低能耗,提高效率,适应环保需求,提高可靠性,这些都是液压气动技术继续努力的永恒目标,也是液压气动产品参和市场竞争是否取 胜的关键。 液压产品技术发展趋势 由于液压技术广泛应用了高科技成果,如:自控技术、计算机技术、微电子技术、可靠性及新工艺新材料等,使传统技术有了新的发展,也使产品的质量、水平有壹定的提高。尽管如此,走向21世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。其主要 的发展趋势将集中在以下几个方面。 减少损耗,充分利用能量 液压技术在将机械能转换成压力能及反转换过程中,总存在能量损耗。为减少能量的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失;减少或消除系统的节流损失,尽量减少非安全需要的溢流量;采用静压技术和新型密封材料,减少摩擦损失;改善液压系统性能,采用负荷传感系统、二 次调节系统和采用蓄能器回路。 泄漏控制 泄漏控制包括:防止液体泄漏到外部造成环境污染和外部环境对系统的侵害俩个方面。今后,将发展无泄漏元件和系统,如发展集成化和复合化的元件和系统,实现无管连接,研制新型密封和无泄漏管接头,电机油泵组合装置等。无泄漏将是世界液压界今后努力的重要方向之壹。 污染控制 过去,液压界主要致力于控制固体颗粒的污染,而对水、空气等的污染控制往往不够重视。今后应重视解决:严格控制产品生产过程中的污染,发展封闭式系统,防止外部污染物侵入系统;应改进元件和系统设计,使之具有更大的耐污染能力。同时开发耐污染能力强的高效滤材和过滤器。研究对污染的在线测量;开发油水分离净化装置和排湿元件,以及开发能清除油中的气体、水分、化学物质和微生物的过滤元江及检测装置。 主动维护 开展液压系统的故障预测,实现主动维护技术。必须使液压系统故障诊断现代化,加强专家系统的开发研究,建立完整的、具有学习功能的专家知识库,且利用计算机和知识库中的知识,推算出引起故障的原因,提出维修方案和预防措施。要进壹步开发液压系统故障诊断专家系统通用工具软件,开发液压系统自补偿系统,包括自调整、自校正,在故障发生之前进行补偿,这是液压行业努力的方向。 机电壹体化

工程机械液压与液力传动

第一章概述 一、液压传动:利用密闭工作容积内液体压力能的传动。 二、液压系统的组成:1、动力元件,即液压泵(将机械能转换为液体的压力能);2、执行元件(将液体的压力能转换为机械能);3、控制元件,即各种阀(压力阀、流量阀、方向阀); 4、辅助元件(油箱、滤油器、储能器等); 5、传动介质(液压油)。 三、液压系统图图形符号只表示元件的职能和连接通路,不表示元件的具体结构和参数,也不表示从一个工作状态转到另一个工作状态的过度过程,系统图只表示各元件的连接关系,而不表示系统布管的具体位置或元件在机器中的实际安装位置。 第二章液压流体力学基础 一、粘性:液体在外力作用下流动(或有流动趋势)时,分子间的内聚力要阻止分子间的相对运动,而产生的内摩擦力的性质叫做液体粘性。液体流动(或有流动趋势)时才会呈现粘性。我国生产的全损耗系统用液压油采用40°C的远动粘度值为其粘度等级标号,即油的牌号。温度升高,粘度下降; 二、可压缩性:液体的可压缩性可以用体积压缩系数k,即单位压力变化下体积的相对变化量来表示。 三、理想液体:无粘度,不可压缩。 四、L 表示石油产品;H 表示液压系统的工作介质。 五、液压油的选择:环境温度高时,应选用粘度较高的油;工作压力高时,宜选择高粘度的油;工作装置运动速度很高时,宜选择粘度较低的油。 六、液压系统压力损失:1、沿程压力损失:油液沿等直径直管流动时所产生的压力损失。 2、局部压力损失:油液流经局部障碍时,由于液体的方向和速度的突然变化,在局部形成漩涡引起的流速在某一局部受到扰动而变化所产生的损失。 第三章液压动力元件 一、齿轮泵:低压泵、定量泵,结构简单、制造容易、成本低,对油液污染不敏感,磨损严重,泄漏大。泄漏、困油、径向不平衡力。 二、齿轮泵泄漏:1、轴向间隙(泄漏最严重),2、径向间隙,3、两个齿轮的齿面齿合处。高压齿轮泵中,使用轴向间隙补偿装置,以减小端面泄漏,提高容积效率。 三、消除齿轮泵困油:在齿轮泵的两侧端盖上铣两条卸荷槽。 四、减小径向不平衡力:缩小压油口,同时适当增大径向间隙。 五、叶片泵:单作用叶片泵(变量泵)、双作用叶片泵(定量泵) 六、柱塞泵:变量泵,泄漏小,抗污染能力低。分类:斜盘式、斜轴式。 第五章液压控制阀 一、单向阀:普通单向阀、液控单向阀(可以双向流动) 二、换向阀:“O”型:双向锁死;“H”型:双向浮动,中位卸荷; 三、溢流阀作用:限制最高压力,防止系统过载;维持系统压力恒定。(进口调压,常闭) 四、减压阀:使出口压力(二次压力)低于进口压力(一次压力)的一种压力控制阀。(出口调压,常开) 五、顺序阀:控制液压系统中各执行元件动作先后顺序的。(常闭) 六、压力继电器:一种将油液的压力信号转换成电信号的电液控制元件。 七、调速阀为什么比节流阀稳定:因为多了一个定差减压阀。 八、比例电磁阀工作原理: 九、执行机构三种连接方式: 十、液压系统性能指标:

液压传动在汽车上的应用

液压传动在汽车上的应用 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是 现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡 量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习 与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保的方向发展。在这些发展中液压 气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构 和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。由于其工作介质是气体, 因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。如液压 汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大, 自动润滑性能也差。 下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。 1.液压动力转向系统液压动力转向系统是在液压动力转向系统的基础上增设了电子控制装置。该系统能够 根据汽车行驶条件的变化对助力的大小实行控制,使汽车在停车状态时得到足够大的助力,以便提高转向系统 操作的灵活性。当车速增加时助力逐渐减小,高速行驶时无助力,使操纵有一定的行路感,而且还能提高操纵 的稳定性。另外,液压系统一般工作压力不高,流量也不大。 2.液力自动变速器液力自动变速器在现代汽车上用得也越来越多。使用液力变速器可以简化驾驶操作,使 发动机的转速控制在一定的范圉内,避免车速急剧变化,有利于减少发动机振动和噪音,而且能消除和吸收传 动装置的动载荷,减少换档冲击,提高发动机和变速器的使用寿命。 3.汽车防抱死液压系统ABS即汽车防抱死系统,其主要功能是在汽车制动时,防止车轮抱死。无论是气压 制动系统还是液压制动系统,ABS均是在普通制动系统的基础上增加了传感器、ABS执行机构和ABS电脑三部分。液压制动系统ABS广泛应用于轿车和轻型载货汽车上。气压制动系统ABS丰要用于中、重型载货汽车上,所装用的ABS按其结构原理主要分为两种类型:用于四轮后驱动气压制动汽车上的ABS和用于汽车列车上的ABS。气顶液压制动系统ABS兼有气压和液压两种制动系统的特点,应用于部分中重型汽车上。

液压与气压传动教案.doc

《液压与气压传动》课教案《液压与气压传动》课程组

《液压与气压传动》课教案 本课共36学时,讲课32学时,实验4学时。属院级必修课。 每一节课都应做到承前启后。 1 液压传动概述(第一次课) 首先介绍什么是传动?传动的类型有哪些? (5分钟) 引导学生举生活中常见的实例说明以下五种传动。 (1)机械传动;(2)电传动;(3)气压传动;(4)液压传动;(5)复合传动。 使学生对传动及其类型有所认识和掌握。 1.1液压传动的发展概况(5分钟) 讲清什么是液压传动,液压传动是如何发展的,液压传动的应用领域如何。 1.2液压传动系统的组成及工作原理 1.2.1液压传动系统的工作原理(15分钟) 用两个例子说明液压传动系统的工作原理: (1)手动液压千斤顶半结构图——最简单的例子,用于换轮胎等举升工作,生活中常见。 (2)磨床工作台的液压传动系统半结构图——涵盖的液压元件种类比较全,用于讲解液压传动系统的组 成及液压系统的图形符号很适合。 通过动画演示磨床工作台向左运动、向右运动、过载溢流、油缸停止油泵卸荷等工况下各元件的工作状态,让学生了解液压系统的工作原理、组成及各液压元件的作用。 1.2.2液压传动系统的组成(5分钟) 磨床工作台的液压传动系统半结构图——用于讲解液压传动系统的组成及液压系统的图形符号很适合,该系统涵盖的液压元件种类比较全。 1.2.3 介绍液压系统图及图形符号(5分钟) 将磨床工作台的液压传动系统半结构图改画成用职能符号表示的液压系统图:体现液压系统图的特点,强调液压图形符号的特点。 1.3 介绍液压传动系统的优缺点(10分钟) 第一章小结(5分钟) 习题:1.1 1.2 1.4 2 液压泵和液压马达 2.1液压泵和液压马达概述 2.1.1 液压泵和液压马达的工作原理(20分钟) 用“电机→油泵→马达→滚筒”图,讲解液压泵及液压马达的能量转换过程。 用单柱塞泵结构简图的吸入及排出过程,说明容积式泵及马达的基本工作原理。强调构成容积式泵必须具 备的条件。强调常用的三大类泵及马达;强调泵及马达的职能符号。 2.1.2 液压泵和液压马达的性能参数(20分钟) 讲清液压泵(马达)的基本性能参数,使学生掌握以下几点: (1)什么是液压泵的压力?液压泵的工作压力是如何变化的?(2)什么是液压泵的排量和流量?什么是流量损失?流量损失受哪些因素影响? (3)什么是液压泵的输入功率和输出功率?液压泵的功率损失有哪几方面? (4)什么是液压泵的容积效率和机械效率?它们分别受哪些因素影响?如何计算液压泵的总效率? (5)什么是液压马达的容积效率和机械效率?强调其与液压泵的区别。 2.2齿轮泵 2.2.1外啮合齿轮泵的结构及工作原理(5分钟) 用实物录像或三维动画演示其结构组成及工作原理。为下一次课进行其结构分析奠定基础。

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压传动论文

液压传动论文 液压传动,是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 在伦敦用水作为工作介质, 以水压机的形式将其应用于工业上, 诞生了世界上第一台水压机。1905 年将工作介质水改为油, 又进一步得到改善。 第一次世界大战(1914 -- 1918) 后液压传动广泛应用, 特别是1920 年以后, 发展更为迅速。液压元件大约在19 世纪末20 世纪初的20 年间, 才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers) 发明了压力平衡式叶片泵, 为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G · Constantimsco) 对能量波动传递所进行的理论及实际研究;1910 年对液力传动( 液力联轴节、液力变矩器等) 方面的贡献,使这两方面领域得到了发展。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。目前,液压传动发展的动向, 概括有以下几点: 1. 节约能源, 发展低能耗元件, 提高元件效率; 2. 发展新型液压介质和相应元件, 如发展高水基液压介质和元件, 新型石油基液压介质; 3. 注意环境保护, 降低液压元件噪声; 4. 重视液压油的污染控制; 5. 进一步发展电气-液压控制,提高控制性能和操作性能; 6. 重视发展密封技术,防止漏油; 7. 其它方面,如元件微型化、复合化和系统集成化的趋势仍在继续发展,对液压系统元件的可靠性设计、逻辑设计,与电子技术高度结合,对故障的早期诊断、预测以及防止失效的早期警报等都越来越准确. 一、液压传动的主要优点 与机械传动、电气传动相比,液压传动具有以下优点: (1)液压传动的各种元件、可根据需要方便、灵活地来布置; (2)重量轻、体积小、运动惯性小、反应速度快; (3)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); (4)可自动实现过载保护; (5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; (6)很容易实现直线运动;

工程机械液压传动解读

在单泵液压系统中,为获得几种不同的调定压力时,可用调压回路。 3.增乐回路(图3,4) 其作用是使系统的局部汕路或某个执行元件获得比液压泵工作压力高得多的压力,或用于气—液传动,利用压缩空气(压力—般为0.6~0.8HPa)来获得高压。凡具有负载人、行程小和作业时间短等丁作特点的执行机构均可采用增压回路。 4.卸荷回路 回路中液压泵以最小输山功率运转,液压泵输出的油液以最低压力流回油箱,或以最小流量(补偿系统泄漏所需之流量)输出压力油。其作用是减少动力,降低系统发热。 常见的卸荷回路有以/几种方式: 1)图3,5为采用ld型(或U、K型)滑阀机能来实现液压泵卸荷的回路。 2)图3.6是用溢流阀卸荷的回路。 3)图3.7为复合泵卸荷的回路。当工作负载小时,泵2输山的油经单向阀与泵1合流,实现轻载快速运动。当工作负载增大,系统压力超过卸荷阀4调定压力时,卸荷阀4打开,使泵2卸荷,液压泵1单独向系统供油,实现重载慢速运动。 第114页

4)图3.8是采用限压式变量泵的卸荷回路。该泵可按实际工况需要,调定最大供油压力,而执行机构运行速度缓慢,所需流量极小,因此泵虽然在高乐下工作,但由于压力反馈作用,输山流量极小,故基本上是处于卸荷状态。 3.1.2速度控制回路 工程机械一般都要求调速,而液压系统能在原动机转速不变的情况下,方便地实现大范围的无级调速。 调速方法可分为三大类:节流调速、容积调速、容积节流调速。前两种在工程机械上应用较多。 1.节流调速

按节流元件安装位置的不同,节流调速回路可分为三种:进油路节流调速、回油路节 第4章工程机械液压传动系统设计与实践 4.1 液压传动系统的设计 对一台工程机械设备的传动方式,究竞选用机械传动、电力传动还是液压传动,要根据工程机械设备工作要求经过充分的分析、比较来确定。有时‘种传动方式不能满足设备的工作要求或者机构兄得过于复杂,则叫·将两种传动方式结合起来使用。当决定采用液压传动的方式之后,液压系统的设计任务才被确定下来。这时必须明确: 1)设备总体布置及工艺要求,液压执行元件的位置及空间尺寸的限制。 2)设备的工作循环,液压执行元件的运动方式(移动、转动或摆动)及其工作范围。 3)液压执行元件的运动速度及其变化范围。 4)液压执行元件的负载及变化范围。 5)各液压执行元件动作之间的顺序、转换和互锁要求。 6)丁作性能如工作平稳性、可靠性、转换精度、停留时间等方面的要求。 对于液压系统小工作循环较复杂的单个液压执行元件或相互动作关系复杂的多个液压执行元件来说,应绘出其完整的动作周期表,以使设汁要求一目了然,便于进行工作。 液压系统设计是工程机械设备设计的一部分,它与设备设计是紧密联系的,必须同进行。一般把设计步骤归结为如下儿点: 1)明确液压系统的设计要求; 2)初步确定液压系统的性能和参数; 3)拟定液压系统方案图: 4)计算和选择液压元件; 5)估算液压系统性能: 6)绘制液压传动装置系统图: 7)设计液压传动装置。 4.1.1 工况分析 工况分析指分析下程机械设备工作过程的具体情况,其内容包括对负载、速度和功率变化规律的分析或这些参数最大值的确定。工况分析的关键是分析负载性质和编制负载图。 作往复直线运动的工程液压缸的负载由6部分组成,它们是工作阻力、摩擦阻力、惯性阻力、重力、密封阻力和背压阻力,前4项为外负载,后2项为内负载。 1.丁作阻力斤 工作阻力是指沿液压缸方向上的力。此阻力可正可负:凡作用方向与液压缸(或活塞)运动方向相反者为正,相同者为负。工作阻力有基本上恒定不变的、有周期性变化的,需根据具体情况分析决定。…占是液压缸负载中最主要的部分。 2.摩擦阻力f 摩擦阻力是指工程机械设备工作时工作台导轨处的摩擦力或被液压缸拖动部件与静止 第131页

液压传动技术的发展状况及发展趋势

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:130101020071

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30 年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,

工程机械液压传动系统的研究论文.

工程机械液压传动系统的研究论文 2019-11-05 一、液压传动系统常见故障的特点 1.1故障位置比较隐蔽,不易察觉 相比于一般的工程性机械,液压传统系统的故障往往发生在机器内部。其 工作介质由于密闭封装在机器内部,受检测条件和工具限制,在现场很难直接 检测出故障。 1.2故障交错出现,联系紧密 液压系统故障的原因和与症状间可能存在多个关联的情况。一种故障原因 可能会产生多种故障,这种情况下故障原因的分析和查明会比较困难,需要考 虑的因素比较全面,应综合考虑各影响因素以及各个因素造成故障的主次轻重。一个故障可能也有多种原因,比如,液压传动系统执行速度比较慢,有可能是 由于工程机械重载或过载运行,执行元件由于使用时间长而造成的性能下降, 也有可能是调压系统、调速系统的故障所致。 1.3外界干扰源多,故障具有随机性 供电电压由于电网电压波动而不稳定,工作场所环境温度的骤变,机器负 载的变化等,都有可能使液压传动系统发生随机性故障。 二、液压传动系统故障诊断与排除 2.1液压传动系统故障诊断的主要工作内容 1)应根据施工现场状况,初步判断是什么性质的故障(压力、速率等),另外还需要判断故障的`严重程度以及是否会影响到正常施工等; 2)在作出初步判断,大致弄清楚故障的性质、严重程度及对施工的影响后,应确定停工对机器进行检查。检查的过程重点查明失效部件及故障发生的位置; 3)在对故障性质、故障元件、故障位置、严重程度作出初步判断后,应在此基础上寻找造成故障的初始原因。这里主要是分析故障的外部原因,如外界 污染、环境因素等随机性因素; 4)抛开随机性因素,更进一步的分析故障产生的内部原因,综合考虑造成故障的可能因素以及这些因素之间的联系; 5)在液压传动系统各部件的现有性能状况的基础上,预测故障的发展方向;

液压传动技术的现状及发展

液压传动技术的现状及发展 班级:13级模具二班 姓名:王金露 学号:

液压传动技术的现状及发展【摘要】液压作为一个广泛应用的技术,在未来有更广泛的前景,随着计算机的深入发展,液压控制系统可以和只能的技术,计算机的技术等技术结合起来,这样能够在更多的场合中发挥作用,也可以更加精巧的,更加灵活的完成预期的控制任务。与机械传动相比,液压传动更容易实现其运动参数和动力参数的控制。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在机械系统中的应用突飞猛进,液压传动具有的优势也日渐凸显。随着液压技术与微电子技术,计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行业走驱动系统发展中发挥越来越重要的作用。世界各国对液压工业的发展都给予很大重视。 【关键词】液压装置,计算机,自动控制,微电子 【引言】液压传动技术是工业上最常见的一门技术,他是利用各种元件根据帕斯卡原理来达到力的传递所设计的一种技术。液压传动技术根据其自身的特点在工业上得到了广泛的应用,但也相应的有一

定的局限性。为了给用户提供更全面、更可靠、更物美价廉的自动化,保证产品质量的均一性,减轻单调或繁重的体力劳动,提高生产效率,降低生产成本就需要对液压传动技术不断的创新,因此对于机器的性能、质量、可靠性的要求不断提高,液压传动技术必将在工程机械行业的发展中发挥出越来越重要的作用。 【正文】 液压传动是根据17世纪帕斯卡提出的液体静压力传动原理 而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼,在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。第一次世界大战后液压传动广泛应用,特别是 1920 年以后,发展更为迅速。 1925 液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克对能量波动传递所进行的理论及实际究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。第二次世界大战期间,在美国机床中30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20多年。在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。近30年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着

液压传动简介

哈尔滨铁道职业技术学院毕业论文 毕业题目:液压传动论文 学生:傅立金 指导教师:卜昭海 专业:工程机械 班级:08机械一班 年月

目录 摘要 (3) 一.绪论 (3) 二.液压传动技术的应用简单介绍(行走驱动) (5) 三.液压传动的特点和基本原理 (6) 四.液压传动的常见故障及排除方法 (8) 五.液压传动的广阔前景 (10) 六.总结 (11)

液压传动论文 摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 一.绪论 ----社会需求永远是推动技术发展的动力,降低能耗,提高效率,适应环保需求,机电一体化,高可靠性等是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。 ----由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面: 1.减少能耗,充分利用能量 ----液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题: ①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 ②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。 ③采用静压技术,新型密封材料,减少磨擦损失。 ④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。 ⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。 ⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 2.主动维护 ----液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 ----要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有

浅析液压传动技术的应用对汽车性能的改善(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅析液压传动技术的应用对汽车 性能的改善(2021版)

浅析液压传动技术的应用对汽车性能的改善 (2021版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 液压传动技术在现代汽车上应用的越来越广泛,对于汽车性能带来了多方面的变革,如动力性、制动性、操控稳定性、行驶平顺性、通过性等汽车性能的改善,液压传动技术的应用,均起到了主导作用。 汽车工业随着科学技术的进步而不断发展,尤其是现代汽车上广泛使用了微电脑、机电液一体化的高新技术,使得汽车的各项技术性能有了较大程度的提高,其中液压传动技术的应用,起到了主导作用。 液压传动技术应用到汽车上,通过与电子技术、机械技术等相结合,促进了汽车的多项性能发生了变革性的改善,主要是制动性、操控稳定性、行驶平顺性、通过性、动力性等,使得汽车不断向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保等方向发展。 2.1液压传动技术与汽车制动性能 汽车制动性是指汽车行驶时在短距离内停车且维持行驶方向稳定,以及汽车在长坡时维持一定车速的能力。汽车的制动性能评价指

液压传动在汽车上的应用(正式版)

文件编号:TP-AR-L3242 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 液压传动在汽车上的应 用(正式版)

液压传动在汽车上的应用(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒

适、安全可靠、节能环保的方向发展。在这些发展中液压气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。由于其工作介质是气体,因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。如液压汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大,自动润滑性能也差。 下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。

液压与气压传动技术

《液压与气压传动技术》复习题 一、单项选择题:在给定选项中选出唯一的正确答案) 1.液压与气压传动是以流体为工作介质并以其()来进行能量传递和转换一种传动方式。 (A)流动的动能;(B)静压力势能;(C)总机械能;(D)总动量。2.利用液体传递力或转矩的理论基础是()。 (A)帕斯卡原理;(B)流量连续性方程;(C)伯努利方程;(D)质量守恒定律。3.液压传动与气压传动相比,气压传动的稳定性较差,这主要是因为空气()。(A)粘性几乎为零,(B)没有一定的体积,(C)具有较大的可压缩性,(D)容易泄露。4.液压系统中油液的压力是由()决定的,这是液压传动的一个重要概念。 (A)外界负载;(B)油泵;(C)液压阀;(D)液压油。 5.理论上讲,执行元件的运动速度与负载的大小无关,但实际上,在液压传动中执行元件的速度会随负载增大而减小,这主要是因为系统中()。 (A)运动部件间存在摩擦;(B)液压系统不可避免存在泄露; (C)液压油内存在粘性阻力的消耗;(D)液压油具有一定压缩性。6.在液压系统中。因()加剧金属液压元件表面腐蚀的现象,称为气蚀。 (A)液压油的酸、碱性;(B)液压油的压力过大; (C)运动部件间的摩擦;(D)空穴现象。 7.由液压泵密闭容积的结构尺寸,经计算得到的单位时间内该容积的变化量就是泵的()。 (A)实际流量;(B)额定流量;(C)理论流量;(D)平均流量。 8.液压泵的总效率在数值上等于其机械效率与容积效率的()。 (A)之和;(B)之差;(C)乘积;(D)比值。 9.一台额定压力为6.3MPa的液压泵,其出口接油箱,则该泵的工作压力就是()。 (A)7.3MPa;(B)6.3MPa;(C)5.3MPa;(D)0。 10.外啮合齿轮泵的泄露是导致其输出压力不能太高的主要原因,在该类泵的各种泄露途径中,最最主要的泄漏途径是()。 (A)齿轮轴与轴承间的配合间隙;(B)两齿轮的轮齿啮合处的间隙; (C)齿顶圆与泵体内孔间的径向间隙;(D)齿轮端面与泵盖间的轴向间隙。11.叶片泵的叶片数目越多,泵的()。 (A)输出的液压油流量越小;(B)输出的液压油压力越小; (C)输出的液压油流量脉动频率越小;(D)输出的液压油压力脉动越小。

相关文档
相关文档 最新文档