文档库 最新最全的文档下载
当前位置:文档库 › 高层结构转换梁弹性应力与内力配筋法的比较

高层结构转换梁弹性应力与内力配筋法的比较

高层结构转换梁弹性应力与内力配筋法的比较
高层结构转换梁弹性应力与内力配筋法的比较

文章编号:1009-6825(2008)16-0009-02

高层结构转换梁弹性应力与内力配筋法的比较

收稿日期:2008-02-23

作者简介:马改改(1982-),女,西安理工大学水利水电学院结构工程硕士研究生,陕西西安 710048

简 政(1962-),男,教授,西安理工大学水利水电学院,陕西西安 710048

马改改 简 政

摘 要:通过工程实例,运用应力配筋法对转换梁作了整体应力分析和应力配筋计算,通过分析比较内力配筋法与应力配筋法的共同点及差异性,表明应力配筋法的合理性和实用性。关键词:转换梁,单元,非杆件结构,应力配筋中图分类号:T U 318

文献标识码:A

在对高层结构进行有限元分析时,通常采用杆系单元来模拟梁,柱壳单元来模拟楼板和剪力墙,由于带转换层的高层结构中转换梁的截面高度、宽度都比较大,转换大梁往往受力复杂,若要在进行整体结构分析的基础上对其进行更为详细的分析,必须借助于有限元方法。在有限元分析的基础上,根据其应力分布再进行计算和配筋得到结构的局部受力效应,例如,单独研究转换梁时,主要想得出转换梁的应力,用杆系单元模拟转换梁,计算结果为弯矩、轴力、剪力和变形等,所以应该用实体单元模拟转换梁,进行转换梁的三维实体分析,算出应力,转换梁用应力配筋,这样能比较精确地满足结构的设计要求。在进行建模时,有多种单元的综合使用,不同单元交接处,需要耦合约束。文中用上述方法模拟一个整体结构,着重得出转换梁的应力,然后用应力配筋和用内力配筋的结果进行对比。

1 应力配筋法

1)应力配筋法的演变。

非杆件结构形状多变,不应简化为杆件结构进行设计,对此类构件的配筋问题,各国正式颁布的规范中尚没有明确的条文规定,也没有推荐对此类构件结构都通用的计算方法。我国在20世纪60年代曾考虑对水工的非杆件结构采用/全面积配筋0的方法。规定/当最大拉应力大于混凝土的许可拉应力时,全部拉应力应由钢筋承担0,这种方法中没有极限状态的概念,未考虑混凝土的抗拉作用,计算结果非常保守。水工规范SDJ 20-78编制组在调查总结了大量工程设计经验的基础上,提出了/按拉应力图形面积中扣除小于混凝土许可拉应力后的剩余应力图形面积配筋0的计算公式,并对公式的适用条件、配筋方式等作了明确的规定,使水工中非杆件结构的设计既安全又比较简便,取得了很好的效果。但是,该公式尚不能考虑混凝土开裂后截面上的应力重分布,而是按许可拉应力把弹性应力图形划分为混凝土承担的部分及钢筋承担的部分。经过多年的工程实践证明,这种做法是偏于保守的,有关研究还从理论上证明了这一保守性。为此,水工规范DL/T 5057-1996应用了以概率理论为基础的、使用分项系数的极限状态设计方法对原有的应力配筋方法进行了改进,建立了更为合理完善的计算公式。经过前辈学者多年系统性的研究,应力配筋的方法已经成为一种在工程界广受欢迎的、准确而简洁的设计方法。

2)对于非杆件结构,当用弹性力学或试验方法求得截面应力图形时,可按DL /5057-1996水工混凝土结构设计规范。a.当截面的应力图形接近线性分布时,可换算成内力,按内力进行配筋计算。

b.若截面应力图形偏离线性分布较大,可按下式计算受拉钢筋:

T =

1

r d

(0.6T c +f y A S )。其中,T 为由荷载设计值确定的弹性总拉力,T =A b ,A 为弹性应力图形中拉应力图形的总面积,b 为结构截面的宽度;T c 为混凝土承担的拉力,T c =A c 1b ,A c 1为弹性应力图形中主拉应力小于混凝土轴心抗拉强度设计值f 1的图形面积;A S ,f y 分别为受拉钢筋的面积及钢筋抗拉设计值;r d 为钢筋混凝土结构的结构系数,取1.2。

2 转换梁按应力曲线图形与沿梁高节点正应力值2.1 计算模型

文中采用的分析模型在贵阳市某广场的基础上,做改动之后模型概况为:地下1层,层高4.5m,地上12层,层高3.0m,结构类型为框支剪力墙,结构体形21m @14m @36m,高宽比36/14=2.57(<4),长宽比21/14=1.5(<5)。转换层以下柱子采用梁单元Beam4,转换大梁采用实体单元Solid45,转换层以上短肢剪力墙和楼板采用壳单元Shell63。为了使模型简化,荷载只施加竖向恒荷载和活荷载。转换梁用实体单元,为了使计算精确,划分网格时,梁截面宽度为0.5m,梁高度为1.5m,沿梁高度方向划分10份,每隔0.15m 有一个节点。

文中取转换楼层中一根转换梁作为研究对象,对转换梁进行受力分析,该转换梁两端上部为L 型短肢剪力墙,跨中上部为/一0字型短肢剪力墙,下部为框架柱,取梁左端为截面1,跨中为截面2,右端为截面3。

2.2 节点Y 方向应力值

节点Y 方向应力值见表1。

表1 控制截面节点正应力

沿梁高节点

高度/m

控制截面1应力值/Pa 控制截面2应力值/Pa 控制截面3应力值/Pa 0-55526002907400-55256000.15-34556002257400-34276000.3-23045001715600-22781000.45-14162001259400-13922000.6-779070861420-7574600.75-292110496280-2727700.901101101408201273501.05489890-2206805052101.20931190-5683209448501.351583700-72531015962001.50

2753400

-1651700

2767500

#

9#

第34卷第16期2008年6月 山西建筑SHANXI ARCH ITECTURE

Vol.34No.16Jun. 2008

3 对转换梁进行应力配筋

截面受拉区应力曲线见图1~图3

3.1 受拉区钢筋承担的拉力

对应力进行积分求拉力比较困难,可以用/作图法0,即在A utoCA D 中把截面上(实际上是一根线)几个节点的应力图形画

出来,然后在节点应力间以直线相连,应力为0处就是中性轴,求出中性轴上拉应力图面积再乘以转换梁宽度就是拉应力的合力,也就是由钢筋承担的拉力。

图1~图3是三个控制截面受拉区应力曲线。对以下控制截面受拉区应力曲线求面积再乘以转换梁宽度0.5m,就是所求控制截面拉应力的合力。

3.2 应力配筋计算假定及公式

1)文中讨论仅在竖向恒荷载和活荷载作用下,对转换梁进行配筋。

2)应力配筋设计时,不考虑混凝土受拉作用,所有拉力由钢筋承担。

3)应力配筋设计时,应力沿梁的宽度方向是不变的。

4)配筋计算公式:T =A S f y /r d 。

其中,T 为由荷载设计值确定的弹性总拉力,T =A b ,A 为弹性应力图形中拉应力图形的总面积,b 为结构截面的宽度。

4 转换梁的应力配筋与内力配筋

转换梁应力配筋与内力配筋见表2,表3。

表2 转换梁应力配筋表

控制截面受拉区应力图形面积A 截面宽度B /mm 钢筋承受拉力/N T =A S f y /r d 纵向受拉

钢筋面积A S /mm 2配筋率Q /%最小配筋

率Q min /%

截面16687.25500334362.51337.450.20.26截面212225.1074

500611255.372445.020.340.26截面3

6772.718

500

338635.9

1354.54

0.2

0.26

表3 转换梁内力配筋表

控制截面相对界限受压区高度N b 受压区高度x /mm

相对受压区高度N 纵向受拉钢筋面积A S /mm 2配筋率Q /%最小配筋率Q min /%截面10.55940.06630070.420.26截面20.55650.04520580.290.26截面3

0.55

95

0.066

3040

0.42

0.26

由表2,表3可以看出,转换梁采用杆系模型得到的转换梁内

力与采用实体模型得到的转换梁应力配筋结果有差别,实体模型梁支座处按应力配筋量比杆系模型按内力配筋量要小,有的小的比较多,考虑到转换梁的最小配筋率(文中的最小配筋率为0.26%),这些截面都是按照最小配筋率进行配筋的。可以看出,在梁端按杆系模型进行内力配筋对转换梁设计将造成浪费,不经济。按应力配筋梁跨中配筋量比按内力配筋大,对于转换梁跨中无支撑按杆系模型进行内力配筋对转换梁设计将造成不安全,比较危险。

5 结语

转换梁应该采用实体单元模拟转换梁,梁的控制截面应力分布为曲线分布。一般设计是以平截面假定为前提,应力分布为曲线分布明显不符合平截面假定。所以,按照应力配筋方法进行配筋更符合转换梁的实际情况。差异主要体现在转换梁支撑上部剪力墙的部位,这个部位梁截面应力分布是复杂的曲线分布,所以用应力配筋比较好,对于其他部位应力分布接近线性分布,一般设计方法也适用。

对复杂转换层进行应力分析时,土木工程转换层应力分析实例表明,应力分析结果与杆系模型计算结果相差较大,因此对复杂的转换结构特别是框支剪力墙结构,应按规范要求进行应力分析并按应力设计和校核配筋。从理论上更为合理,实际中更为安全。参考文献:

[1] 包世华.新编高层建筑结构[M ].北京:中国水利水电出版

社,2001.[2] 唐兴荣.高层建筑转换层结构设计与施工[M ].北京:中国

建筑工业出版社,2002[3] JG J 3-2002,高层建筑混凝土结构技术规程[S].[4] GB 50010-2002,混凝土结构技术规程[S].

[5] 郭秀丽.浅谈转换层在高层建筑中的应用[J].山西建筑,

2006,32(23):89-90.

The comparison of stress and internal force reinforcement of high -rise conversion beam elasticity

MA Ga-i gai J IAN Zheng

Abstract:Co mbining w ith an engineering pr actice,the whole stress analysis and str ess r einforcement w ere calculated to conversio n beam using

stress reinfor cement method.By analyzing and compar ing t he common g round and differ ence of stress and internal force reinforcement,it can be concluded that stress reinforcement is reasonable and pr actice.Key words:conversion beam,unit,non -pole structures,str ess reinforcement

#

10#第34卷第16期

2008年6月

山西建筑

应力配筋方法浅析

应力配筋方法浅析 摘要目前的配筋方法主要还是依造结构力学的方法,利用内力进行结构的配筋。但是在水工结构中,有很多结构形式复杂,结构的受力和边界条件等也比较复杂,常规的结构分析方法难于准确地了解结构的变形规律和应力分布;另外随着建筑功能的多样化发展,建筑中运用转换层越来越普遍,而转换层的结构形式多变,整体性强,不应简化为杆系结构;在桥梁工程中,一些悬索桥、斜拉桥索的锚固区受力复杂,配筋一般通过经验进行,比较保守而且导致混凝土浇注困难。这些情况都导致采用内力配筋法无法满足工程的需要,而应力配筋法却可以适用于任何体系结构,因此,本文对应力配筋的方法进行一个初步的探讨。 关键词应力配筋方法 1、应力配筋法的发展史 应力配筋法的思想在水工钢筋混凝土结构中已有所应用。在水工结构中常会遇到一些无法用结构力学方法计算出截面内力(弯矩M,轴力N,剪力V或弯矩T等)的构件,而只能按照弹性理论方法(经典理论解,弹性有限元或弹性模型试验等)求出结构各点的应力状态。因而,也就无法用内力截面极限承载力公式计算配筋用量。在《水工混凝土结构设计规范》中提出了按弹性应力图形配筋的方法。由弹性理论计算得出结构在荷载作用下的拉应力图形,再根据拉应力图形面积计算出配筋用量。这种配筋方法比较简单易行,可适用于各种复杂的结构,但在理论上并不完善,一般情况下配筋偏于保守。 我国在六十年代曾考虑对水工的非杆件结构采用“全面积配筋”的方法,规定“当最大主拉应力大于混凝土的许可拉应力时,全部主拉应力由钢筋承担”。这种方法没有极限状态的概念,为考虑混凝土的抗拉作用,计算结果十分保守。《水工混凝土结构设计规范》SDJ20-78编制组在调查总结了大量的工程设计经验的基础上特制订了附录四的有关条文,提出“按主拉应力图形中扣除小于混凝土许可拉应力的剩余主拉应力图形面积配筋”的计算公式,并对公式的适用条件,配筋方式等做出了明确规定。但是,该公式尚不能考虑混凝土开裂后在截面上的应力重分布,而是按许可拉应力把弹性应力图形划分为混凝土承担的部分和钢筋承担的部分。经过多年的工程实践证明这种做法是偏于保守的,有关研究还从理论上证明了它的保守性。为此,在《水工混凝土结构设计规范》(SL/T191-96)应用了以概率理论为基础的,使用分项系数的极限状态设计方法对原有的应力配筋方法进行了改进。 2、水工混凝土结构设计规范(SL/T191-96)

连续梁按弹性理论五跨梁内力系数及弯矩分配法

附表25:等截面等跨连续梁在常用荷载作用下按弹性分析的内力系数(五跨梁)。 弯矩分配法(弯矩分配法计算连续梁和刚架及举例) 一、名词解释 弯矩分配法在数学上属于逐次逼近法,但在力学上属于精确法的范畴,主要适用于连续梁和刚架的计算。在弯矩分配法中不需要解联立方程,而且是直接得出杆端弯矩。由于计算简便,弯矩分配法在建筑结构设计计算中应用很广。 (一)线刚度i 杆件横截面的抗弯刚度EI 被杆件的长度去除就是杆件的线刚度i : (a ) 当远端B 为固定支座时,对于A 点处,AB 杆的转动刚度 i S AB 4=; (b ) 当远端B 为铰支座时,对于A 点处,AB 杆的转动刚度i S AB 3=; (c ) 当远端B 为滑动支座时,对于A 点处,AB 杆的转动刚度 i S AB =; (d ) 当远端B 为自由端时,对于A 点处,AB 杆的转动刚度0=AB S 。 连续梁和刚架的所有中间支座在计算转动刚度时均视为固定支座。 (二)转动刚度S 转动刚度表示靠近节点的杆件端部对该节点转动的反抗能力。杆端的转动刚度以S 表示,等于杆端产生单位转角需要施加的力矩,θ/M S =。施力端只能发生转角,不能发生线位移。AB S 中的第一个 角标A 是表示A 端,第二个角标B 是表示杆的远端是B 端。AB S 表示AB 杆在A 端的转动刚度。 (三)分配系数μ

各杆A 端所承担的弯矩与各杆A 端的转动刚度成正比。 Aj μ称为分配系数,如AB μ表示杆AB 在A 端的分配系数。它表示AB 杆的A 端在节点诸杆中,承担反抗外力矩的百分比,等于杆AB 的转动刚度与交于A 点各杆的转动刚度之和的比值。总之,加于节点A 的外力矩,按各杆的分配系数分配于各杆的A 端。 (四)传递系数C ij C 称为传递系数。传递系数表示当近端有转角(即近端产生弯矩)时,远端弯矩与近端弯矩的比值。因此一般可由近端弯矩乘以传递系数C 得出远端弯矩。 当远端为固定的边支座或为非边支座2 1=C ; 当远端为滑动边支座 1-=C ; 当远端为铰支边支座 0=C 。 节点A 作用的外力矩M ,按各杆的分配系数μ分配给各杆的近端;远端弯矩等于近端弯矩乘以传递系数。 (五)杆端弯矩 弯矩分配法解题过程中所指的杆端弯矩是所有作用于杆端的中间计算过程的最后总的效果。 计算杆端弯矩的目的,是因为杆端弯矩一旦求出,则每相邻节点之间的“单跨梁”将可以作为一根静定的脱离体取出来进行该杆的内力分析。其上作用的荷载有外荷载,每一杆端截面上一般有一个剪力和一个弯矩,两端共有二个剪力和二个弯矩。这两个弯矩就是两端的杆端弯矩,既然它们已经求出,那么余下的两个剪力可由两个静力平衡方程解出。 (六)近端弯矩和远端弯矩

弹性地基梁法(“m”法)公式以及地下连续墙计算书

根据上海市标准《基坑工程设计规程》的规定,在施工临时工况下,地下连续墙的计算采用规范推荐的竖向弹性地基梁法(“m ”法)。弹性地基梁法取单位宽度的挡土墙作为竖向放置的弹性地基梁,支撑简化为与截面积、弹性模量、计算长度有关的弹簧单元,如图1为弹性地基梁法典型的计算简图。 图1 竖向弹性地基梁法计算简图 基坑开挖面或地面以下,水平弹簧支座的压缩弹簧刚度H K 可按下式计算: h b k K h H ..= z m k h .= 式中,H K 为土弹簧压缩刚度(kN/m);h k 为地基土水平向基床系数(kN/m 3);m 为基床系数的比例系数;z 为距离开挖面的深度;b 、h 分别为弹簧的水平向和垂直向计算间距(m)。 基坑内支撑的刚度根据支撑体系的布置和支撑构件的材质与轴向刚度等条件有关,按下式计算: B L A E K ....2α= 式中:K ——内支撑的刚度系数(kN/m/m); α——与支撑松弛有关的折减系数,一般取0.5~1.0;混凝土支撑或钢支撑施加预压力时,取1.0; E ——支撑构件材料的弹性模量(kN/m 2); A ——支撑构件的截面积(m 2); L ——支撑的计算长度(m); S ——支撑的水平间距(m)。 (2)水土压力计算模式 作用在弹性地基梁上的水土压力与土层分布以及地下水位有关系。水土压力计算采用水土分算,利用土体的有效重度和c 、?强度指标计算土压力,然后叠加水压力即得主动侧的水

土压力。土的c 、?值均采用勘察报告提供的固结快剪指标,地下连续墙变形、内力计算和各项稳定验算均采用水土分算原则,计算中地面超载原则上取为20kPa 。基坑周边地下连续墙配筋计算时分项系数取1.25。 ①土压力计算: 墙后主动土压力计算采用朗肯土压力计算理论,主动土压力强度(kPa )计算公式如下: a a i i a K c K h r q p 2)(-+=∑ 其中,i r 为计算点以上各土层的重度,地下水位以上取天然重度,地下水位以下取水下重度; i h 为各土层的厚度; a K 为计算点处的主动土压力系数,)2 45(tan 2φ-= a K ; φ,c 为计算点处土的总应力抗剪强度指标。 按三轴固结不排水试验或直剪固快试验峰值强度指标取用。 ②水压力计算:作用在支护结构上主动土压力侧的水压力在基坑内地下水位以上按静水压力三角形分布计算;在基坑内地下水位以下水压力按矩形分布计算(水压力为常量),并不计算作用于支护结构被动土压力侧的水压力,见下图所示。其中, w h ?为基坑内外水位差,w r 为水的重度,取为10kN/m 3。 图2 静水压力分布模式

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的内力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和内力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的内力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的内力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add按钮新建实力常量

弹性地基梁计算模型的选择

pkpm弹性地基梁5种模式的选择 pkpm弹性地基梁结构在进行计算时,程序给出了5种计算模式,现对这5种模式的计算和选择进行一些简单介绍。⑴按普通弹性地基梁计算:这种计算方法不考虑上部刚度的影响,绝大多数工程都可以采用此种方法,只有当该方法时基础设计不下来时才考虑其他方法。⑵按考虑等代上部结构刚度影响的弹性地基梁计算:该方法实际上是要求设计人员人为规定上部结构刚度是地基梁刚度的几倍。该值的大小直接关系到基础发生整体弯曲的程度。而上部结构刚度到底是地基梁刚度的几倍并不好确定。因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。⑶按上部结构为刚性的弹性地基梁计算:模式3与模式2的计算原理实际上最一样的,只不过模式3自动取上部结构刚度为地基梁刚度的200倍。采用这种模式计算出来的基础几乎没有整体弯矩,只有局部弯矩。其计算结果类似传统的倒楼盖法。该模式主要用于上部结构刚度很大的结构,比如高层框支转换结构、纯剪力墙结构等。⑷按SATWE或TAT的上部刚度进行弹性地基架计算:从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。所以此种计算模式不适用带剪力墙的结构。另外,设计人员在采用《JCCAD 用户手册及技术条件》附录C中推荐的基床反力系数K时,该值已经包含上部刚度了,所以没有必要再考虑一次。⑸按普通梁单元刚度的倒楼盖方式计算:模式5是传统的倒楼盖模型,地基梁的内力计算考虑了剪切变形。该计算结果明显不同与上述四种计算模式,因此一般没有特殊需要不推荐使用。

结构配筋设计全过程

柱内纵向钢筋的摆放间距: 板内钢筋的配置: 1.板底受力钢筋间距板厚h≤150mm时不宜大于200mm,板厚h>150mm 不宜大于且不宜大于 250mm。配筋与梁相同)。板的经济配筋率为 %~ % 。 2.板面负筋钢筋间距及构造要求见混凝土规范注意最小配筋的限制。 3.单向板分布钢筋 4.温度钢筋、防裂缝钢筋 5.在楼板角部,布置附加钢筋自己还不懂。 6.双向板的短向h0应取h-(15+d/2),一般可取h-20(相当于钢筋直径d=10),长向h0应取h-(15+d+d/2), 一般可取h-30(相当于钢筋直径d=10)。如果对此问题未予注意,而将两个方向的h0取为等值,这使另一方向的配筋量偏小。 7. 什么情况下的板可以采用双层双向配筋?关于双层双向配筋问题,规范没有明确的要求,哪 些部位必须双层双向配筋。但建议在厚板(180)以上,或受温度应力较大的部位混凝土易出现裂缝等部位,使用双层双向配筋。在这样的建议下,我个人在设计中通常都在以下部位采用双层双向配筋:基础筏板、地下室防水刚性底板、高层结构作为崁固层的楼板、使用荷载较大,且受力复杂的楼板(如,汽车坡道)、有动力荷载的楼板、屋面板、裸露在室外的楼板、异形楼板等等。还有就是面积比较小的房间,比如厨房,卫生间,拉通省事。在我所见过的和做过的设计里,板双层双向配筋的情况主要有筏板基础、地下室顶板、还有屋面板。筏板基础和地下室顶板双层双向配筋主要是因为荷载大,受力复杂,容易受力不均匀,所以双层双向配筋;屋面板双层双向配筋是因为屋面板受温度应力的影响很大,需要配温度钢筋,这样的话在施工上就造成了麻烦,所以一般屋面板就双层双向配筋了。 8.卧置在地基上的基础筏板,当板厚>2m时:宜沿板厚度方向间距不超过1米设置与板面平行的构造 钢筋网片直径≥12mm 间距≤200mm见混凝土规范 9.不能机械的固守“负筋必须与梁轴线垂直”的概念,应综合考虑钢筋的布置,以钢筋尽量不交叉重叠 为原则。如三角形板应双层双向布置,不应采用分离式配筋,这样施工起来也较方便。 框架梁纵向钢筋的配置: 1.非抗震梁(五级)的配筋按PKPM计算的结果配筋即可, 2.抗震梁的配筋除应满足一侧受拉纵筋最小钢筋直径 对于跨中钢筋的超筋限制规范没有明确规定,一般就按混凝土书的ζb来确定,其实PKPM会计算,我们只需按结果配筋就行。 对于梁端(即支座)的超筋; 考虑支座内力塑性重分布梁端ζ; 在满足计算要求的前提下,还要满足梁端截面的底面和顶面纵向钢筋配筋量的比值,而且要注意这里的比值应该以实际配筋来计算。 概括一下:在计算最小配筋率时,实际工程中:1.当你计算梁的配筋率的时候,验算是否达到最小配筋率,请用b·h来做乘数,验算最大配筋率的时候,分子请用b·h。,这样偏安全。2.计算柱子配筋率时,全用b·h。 经济配筋率:矩形梁%~% ,T形梁%~%

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add 按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic 3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add 按钮新建实力常量

定应力求配筋容许应力法的简捷计算方法汇总

定应力求配筋容许应力法的简捷计算方法 陈永运 本方法是“按容许应力法直接计算钢筋面积的方法”的发展,更全面更实用。 1 偏心压力作用在矩形面内按容许应力法计算,仍然可以直接求钢筋面积 偏心压力作用在矩形面内按容许应力法计算,仍然可以直接求钢筋面积。因为我们的求解途径依然是确定钢筋应力后直接算面积。不同的是,力作用在截面内时要先计算出钢筋可以使用的应力值,这里称其为“设定应力”。针对设定应力的含义,最初使用的是“容许应力”这个名词,这是因为力作用截面以外,钢筋的应力值是可以达到规范规定的数值的,尽管我们不一定用到那样高。而力作用在截面内时,就不一定能达到规范所规定的那样高的数值了。为避免误会,以后均以“设定应力”来代替曾采用过的容许应力。 偏心压力作用在截面以外,之所以能对钢筋的设定应力取较高的数值,是因为受压区可以缩得很小。当配筋既定,受压区将随着偏心弯矩的增大而变小。即便偏心力很小,如果配筋数量不多的话,随着裂缝开展,受压区也会缩小;因为从理论上来说,假定混凝土是不承受拉应力的。 按容许应力法的平面直线的基本假定,随着受压区高度的减小和裂缝开展,受拉钢筋的应力将逐渐变大,其应力终将能达到所设定的数值。如果按计算所得的面积配置钢筋,从理论上来说,该钢筋的受拉应力就等于设定的应力值。如果实际配筋较计算有所增加或减少,则钢筋应力会较设定应力值偏低或稍高。 当偏心压力作用在截面内时,偏心力的着力点就作用在受压区范围内的某个位置处。受压区面积不会像偏心力作用在截面外那样缩得很小,是有一定限值的,换句话来说,是有一个最小的受压区的。该受压区合力中心直接与偏心力平衡。对于矩形截面,这个最小的受压区的高度是“偏心力作用点至截面受压端距离的3倍”,即x =3()o s h e (符号意义见图1)。 这仅是为讨论方便,既没有考虑混凝土的强度,也不考虑构件的总体稳定问题。受压区不会因偏心力的增大而缩小,截面的受压区只会因配筋的增多而加高。随着受压区的加高,钢筋应力将不断降低。因此在偏心力作用在截面内时,钢筋的应力不能随意设置。所用的设定应力。一般要较规范规定有不同幅度的降低。只有当偏心力作用在截面受压侧上边缘附近,即内力臂z 值 较大时,或钢筋容许应力本身就较低的的情况下,经计算或可以按规范规定设定其数值。而当偏心距较小或偏心力较小时,受拉钢筋的应

跨连续梁内力计算程序程序

六跨连续梁内力计算程序 说明文档

一.程序适用范围 本程序用来解决六跨连续梁在荷载作用下的弯矩计算。荷载可以是集中力Fp(作用于跨中)、分布荷载q(分布全垮)、集中力偶m(作用于结点)的任意组合情况。端部支承可为铰支或固支。 二.程序编辑方法 使用Turbo C按矩阵位移法的思路进行编辑,用Turbo C中的数组来完成矩阵的实现,关键的求解K⊿=P的步骤用高斯消元法。 三.程序使用方法 运行程序后,按照提示,依次输入结点编号,单元编号,单元长度,抗弯刚度(EI的倍数),集中力,均部荷载,集中力偶,各个数据间用空格隔开,每一项输入完毕后按回车键,所有数据输入完毕后按任意键输出结果。 输出结果中包括输入的数据(以便校核),角位移的值(以1/EI为单位)以及每个单元的左右两端弯矩值。 四.程序试算 1.算例1 算力图示: 输入数据: 结点:1 2 3 4 5 6 0;单元:1 2 3 4 5 6;长度:4 6 6 8 4 6; EI:1 1 2 1 ;Fp:0 12 8 0 6 0;q:8 0 0 4 0 6;m:0 0 -8 0 10 0 0 运行程序如下:

结果为: 角位移为:1 (11.383738,-1.434142,-8.980504,14.053733,-10.192107,10.048027,0)EI 单元编号 1 2 3 4 5 6 左端弯矩 右端弯矩 2. 算例2 算例图示: 6EI 8kN/m 4m 3m 2m 8m kN/m 123 6547 4kN/m 3m 3m 3m 2m 6m 12kN 8kN 8kN.m 6kN 10kN.m EI EI EI 1.5EI 1.52EI 输入数据: 结点:0 1 2 3 4 5 6; 单元:1 2 3 4 5 6; 长度:4 6 6 8 4 6; EI :1 1 2 1 ; Fp :0 12 8 0 6 0; q :8 0 0 4 0 6; m :0 0 -8 0 10 0 0

混凝土结构配筋设计

混凝土结构配筋设计 关键词:混凝土结构加固砌体式结构钢筋结构加固1混凝土结构加固混凝土结构的加固分为直接加固,并加强间接两种,在设计时可根据实际条件和使用要求选择适宜的方法和必要的技术。1.1直接加固的一般方法1)放大段加固法添加混凝土现浇钢筋发生水平弯曲受压区混凝土构件,可能会增加部分有效高度,扩大截面面积,从而提高了组件的右侧部分反弯,斜截面抗切割能力部分刚度,起到加固补强的作用。在适当的肌肉范围,改变混凝土弯曲的组件的右侧部分配套能力,随着钢筋面积和强度的提高增加。在原来的组件的右侧部分钢筋的比例不太高的情况,增加了主要加固面积有可能提出的高原组件的右侧部分抗弯曲能力,有效地支持。拉一节中,通过新的加拿大部分和原构件共同工作的领域添加现浇现浇混凝土外套组成部分增加,但提高了有效成分的配套能力,改善正常的经营业绩。放大段加固法施工工艺简单,兼容,并具有成熟的设计和施工经验,在梁,板,柱,墙和一般结构用混凝土加固;但现场施工的湿作业时间长,对生产与生活有一定的影响,并加强建筑清拆后有一定减少。2)置换混凝土加固法该法与放大优点的部分方法被关闭,并经过加强的,不影响建筑物的清拆,但同样存在施工湿作业时间长的缺点;适合偏低或有混凝土承运人等严重缺陷梁,柱受压区混凝土强度的钢筋。3)粘结外包段加固法外包头钢铁厂强化是在部分或钢板包裹是钢筋构件的外,境外包头钢铁厂强化钢筋混凝土梁使用湿外包法律一般,即采用环氧树脂化中的牛奶等上与方法,以加强段施工委员会蛋糕一个整体,加固后的组件,因为是压缩钢横截面面积大幅度提高拉,所以右侧部分配套能力和部分刚性大幅度的提高。该法还表示,包头钢铁厂外湿加固法,应力可靠,施工简便,现场工作量小,但与钢材数量大,不宜在上面,在非600℃用途,保护的形势高温场所;适合不允许在使用明显增加原构件截面尺寸,但要求以增强其承载能力的大型混凝土结构的加固。4)粘钢加固法外面的钢筋弯曲混凝土构件粘钢加固是(右边部分被拉到在组件配套能力不足,扇形的面积,右侧部分受压区或斜截面)表面胶钢板,这样可以提高是增强组件的配套能力,和施工方便。 10 该法施工速度快,现场工作或不湿上只有少数湿抹灰工程等,对生产与生活的影响小,经过加强的,是不显着原有结构的外观和原定清拆影响,但加固效果是决定由胶粘工艺和操作水平很大程度上,是在合适的承受静态函数,而在正常的湿度环境是弯曲或拉构件加固。5)粘胶纤维增强塑料加固法外贴纤维加固与胶结材料粘贴在该组件是加强该地区的拉纤维增强复合材料,使其与一节加强联合工作,达到磨练组件承载能力的目的。除了具有类似胶水的钢板的优点,又具有防腐泥泞,耐潮湿,不增加自身结构重量近,耐用,维护费用低等优点,但需要特殊的防火处理,是适合各种应力混凝土结构构件的性质和一般建设。此法的优点和缺点与扩大部分将接近法是适用于钢筋混凝土结构构件的斜截面承载力不足,或必须施加横向约束力的挤压成员的情况。6)缫丝法此法的优点和缺点与扩大部分将接近法是适用于钢筋混凝土结构构件的斜截面承载力不足,或必须施加横向约束力的挤压成员的情况。7)锚杆锚固法方这项法律是在合适的混凝土强度等级为C20的混凝土?C60的承重成员改造,加固,它已经不适合上述结构,素质结构,光认真适合很体面。1.2间接加固的一般方法1)预应力加固法(1)Thepre,强调加强横向拉杆弯曲混凝土的成员,因为前强调,增加外部装入拉杆的共同作用,有轴向张力,通过杆结束这一部分的人数上的偏心传输锚(当拉杆与梁底部表面紧密贴合板,拉杆可以寻找调整与组件一起,这股热潮已分压传输组件底部表面直接),在组件中的偏心压缩功能,这个功能已经克服弯矩以外的部分负荷生产外荷载效应降低,从而激化组件的抗弯曲能力。同时,由于拉杆传递给组件的压力的作用,组件裂纹的发展可以缓解,控制,斜截面反减的配套能力也增强与它一起。作为水平提升干的函数的结果,原来的组件的部分由收到弯曲应力的特点变成了偏心受压,因此,在加固,组件的配套能力,主要是在弯曲决定的条件下,原始组件的配套能力。(2)在钢

SATWE配筋简图

一、 SATWE 配筋简图有关数字说明 1.1 梁 1.1.1砼梁和劲性梁 1 3 21321Ast VTAst Asm Asm Asm As As As GAsv ----- 其中: As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asv 表示梁在Sb 范围内的箍筋面积(cm2), 取抗剪箍筋Asv 与剪扭箍筋Astv 的大值; Ast 表示梁受扭所需要的纵筋面积(cm2); Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。 G ,VT 分别为箍筋和剪扭配筋标志。 梁配筋计算说明: (1)对于配筋率大于1%的截面,程序自动按双排筋计算,此时,保护层取60mm ; (2)当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋; (3)各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配 箍率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使 用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算 结果进行换算; 若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参 考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计 算结果进行换算。

1.1.2 钢梁 R1-R2-R3 其中: R1表示钢梁正应力与强度设计值的比值F1/f; R2表示钢梁整体稳定应力与强度设计值的比值F2/f; R3表示钢梁剪应力与抗剪强度设计值的比值F3/fv。 其中F1,F2,F3,的具体含义: F1=M/(Gb Wnb) F2=M/(Fb Wb) F3(跨中)=V S/(I tw), F3(支座)=V/Awn 1.2. 柱 1.2.1 矩形混凝土柱和劲性柱 在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注: Asy、引出线标注:As_corner As_corner ( Asx 其中: As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值限制(cm2); Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2); Asv 表示柱在Sc范围内的箍筋; Uc 表示柱的轴压比。 柱配筋说明: (1)柱全截面的配筋面积为:As=2*(Asx+Asy) - 4*As_corner; (2)柱的箍筋是按用户输入的箍筋间距计算的,并按加密区内最小体积配箍率要求控制; (3)柱的体积配箍率是按双肢箍形式计算的,当柱为构造配筋时,按构造要求的体积配箍率计算的箍筋也是按双肢箍形式给出的。

转换结构的主次梁应力分析

转换结构的主次梁应力分析 第1l期 2007年11月 广东土木与建筑 GUANGD0NGARCHITECTURECIVILENGINEERING No.11 N0V2oo7 转换结构的主次梁应力分析 成林星1韩小雷2 (1,东莞市常平建筑设计院广东东莞523560;2,华南理工大学广州510640) 摘要:在主次粱转换工程中,必须对转换主,次梁进行应力分析并按应力校核配筋,文中着重分析水平及竖向荷 栽作用下转换主次梁相应的应力分布规律,为转换梁工程设计提供类似结构转换粱受力概念及计算分析方法. 关键词:转换层;转换梁:有F~-,L分析 1引言 在高层建筑主次梁转换层结构中.框支主梁需 承受剪力墙,转换次梁及其上的剪力墙荷载,其传力 途径多次转换.受力复杂.框支主梁除承受其上部 剪力墙的作用外.还需承受次梁传来的剪力,扭矩和 弯矩.故较易发生受剪破坏[2=.《高层建筑混凝土结 构技术规程》规定,转换层上部的竖向抗侧力构件 (墙,柱)宜直接落在转换层的主结构上,当结构竖向 布置复杂.框支主梁承托剪力墙,转换次梁及其上剪 力墙时.应进行应力分析和应力校核进行配筋.并加 强配筋构造措施[1=在实际工程中常会遇到转换层

上部剪力墙平面布置复杂的情况 高层建筑结构梁式转 换层的主要受力构件是转 换大梁.作为支承上部剪力 墙的基础.如何保证其具有 足够的承载力.就要了解转 换梁的受力形式及影响其 受力的各方面因素其中 主要的影响因素如下:①上 部结构的结构形式:②上部 结构与转换梁的相对刚度: ③转换梁与其下部支承结 构(柱或墙)的相对刚度等. 实际上转换梁的受力 特性与上部墙柱构件参与 共同工作的比例相关:①部 分墙体支承在框支柱上的 转换梁:它与上部墙体共同 工作.墙体的一部分荷载直 14 接传递给柱,剪力墙的受力性能发生较大的改变.在转换梁上部靠近支座处的墙体内有较大的剪应力: ②部分墙体位于框支柱净跨中的转换梁:其受力相当于梁跨中间段承受一定长度的均布荷载.但在转换梁的受荷载梁段由于存在着剪力墙的共同作用也相当于普通梁中间有一段刚性梁段.由于上部墙体的作用.相应墙下转换梁就有一段范围出现受拉区. 这是墙转换梁作为一个整体共同弯曲变形.墙体约束了梁的变形.使转换梁所受的弯矩明显减小

(整理)倒楼盖法与弹性地基梁法

倒楼盖法 在计算筏型基础时,假设基底净反力为直线分布,当地基比较均匀,上部结构刚度较好、梁板式筏型基础的高跨比或平板式筏型基础的高厚比不小于1/16,且相邻柱荷载及柱距变化不超过20%,筏型基础可仅考虑局部弯曲作用,按倒楼盖来计算,即为倒楼盖法。 倒楼盖模型和弹性地基梁板模型 桩筏筏板有限元计算筏板基础时,倒楼盖模型和弹性地基梁板模型计算结果差异很大的原因 这主要是因为二者的性质是截然不同的: (1)弹性地基梁板模型采用的是文克尔假定,地基梁内力的大小受地基土弹簧刚度的影响,而倒楼盖模型中的梁只是普通砼梁,其内力的大小只与筏板传递给它的荷载有关,而与地基土弹簧刚度无关。

(2)由于模型的不同,实际梁受到的反力也不同,弹性地基梁板模型支座反力大,跨中反力小。而倒楼盖模型中的反力只是均布线载。(3)弹性地基梁板模型考虑了整体弯曲变形的影响,而倒楼盖模型的底板只是一块刚性板,不受整体弯曲变形的影响。 (4)由于倒楼盖模型的底板只是一块刚性板,因此各点的反力均相同,由此计算得到的梁端剪力无法与柱子的荷载相平衡,而弹性地基梁板模型计算出来的梁端剪力与柱子的荷载是相平衡的。 λ 地基模型的选择 λ 地基计算模型,大致可分为不连续模型和连续性模型两大类。在基础设计时,如何选择相应的地基模型则是一个比较复杂的问题,很难给出一个统一的标准。在此,本人仅就上述地基计算模型的力学特点和适用范围做一些简单的介绍。 λ 1.文克尔地基模型的受力特点和适用范围 λ 文克尔地基模型实质上来源于阿基米德浮力定律的一个推论,比如浮桥结构是严格执行文克尔地基模型的。显然,力学性质与液体相近的地基,比较符合文克尔模型假定。 λ 因此,该模型主要用于抗剪强度极低的流态淤泥质土或地基土塑

结构力学连续梁程序计算

1.用连续梁程序计算连续梁的内力,作弯矩图. 输入数据: 3 4 2 2 20 4 20 4 20 4 20 60 2 60 3 -12 0 1 2 -30 2 3 1 输出结果: *************连续梁内力计算***************** 单元数= 3 支承类型= 4 节点荷载个数= 2 非节点荷载个数= 2弹性模量= 20.0000 杆长,惯性矩GC(NE),GX(NE) 4.000 20.000 4.000 20.000 4.000 20.000 节点荷载大小,对应未知数序号PJ(I,1),PJ(I,2) 60.000 2.000 60.000 3.000 非结点荷载值,距离,单元号,荷载类型号

-12.000 .000 1.000 2.000 -30.000 2.000 3.000 1.000 :::::::::位移:;:::::::: 结点号= 1 .0000 结点号= 2 .0692 结点号= 3 .0233 结点号= 4 .0000 .................各单元杆端内力.................... 单元号= 1 左端弯矩= 13.833 右端弯矩= 27.667 单元号= 2 左端弯矩= 32.333 右端弯矩= 23.167 单元号= 3 左端弯矩= 36.833 右端弯矩= -7.833 ====================== 计算结束==================== 弯矩图: 2.用连续梁程序计算连续梁的内力,作弯矩图.

22.62 输入数据: 4 2 1 4 20 3 20 3 20 3 20 3 20 30 4 -20 3 1 2 40 1. 5 2 1 -40 1.5 3 1 -20 3 4 2 输出结果: *************连续梁内力计算***************** 单元数= 4 支承类型= 2 节点荷载个数= 1 非节点荷载个数= 4弹性模量= 20.0000 杆长,惯性矩 GC(NE),GX(NE) 3.000 20.000 3.000 20.000 3.000 20.000 3.000 20.000 节点荷载大小,对应未知数序号 PJ(I,1),PJ(I,2) 30.000 4.000 非结点荷载值,距离,单元号,荷载类型号 -20.000 3.000 1.000 2.000 40.000 1.500 2.000 1.000 -40.000 1.500 3.000 1.000

弹性地基梁结构5种计算模式的选择

弹性地基梁结构5种计算模式的选择 弹性地基梁结构在进行计算时,程序给出了5种计算模式,现对这5种模式的计算和选择进行一些简单介绍。 ⑴按普通弹性地基梁计算:这种计算方法不考虑上部刚度的影响,绝大多数工程都可以采用此种方法,只有当该方法时基础设计不下来时才考虑其他方法。 ⑵按考虑等代上部结构刚度影响的弹性地基梁计算:该方法实际上是要求设计人员人为规定上部结构刚度是地基梁刚度的几倍。该值的大小直接关系到基础发生整体弯曲的程度。而上部结构刚度到底是地基梁刚度的几倍并不好确定。因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。 ⑶按上部结构为刚性的弹性地基梁计算:模式3与模式2的计算原理实际上最一样的,只不过模式3自动取上部结构刚度为地基梁刚度的200倍。采用这种模式计算出来的基础几乎没有整体弯矩,只有局部弯矩。其计算结果类似传统的倒楼盖法。 该模式主要用于上部结构刚度很大的结构,比如高层框支转换结构、纯剪力墙结构等。 ⑷按SATWE或TAT的上部刚度进行弹性地基架计算:从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。所以此种计算模式不适用带剪力墙的结构。 另外,设计人员在采用《JCCAD用户手册及技术条件》附录C中推荐的基床反力系数K时,该值已经包含上部刚度了,所以没有必要再考虑一次。 ⑸按普通梁单元刚度的倒楼盖方式计算:模式5是传统的倒楼盖模型,地基梁的内力计算考虑了剪切变形。该计算结果明显不同与上述四种计算模式,因此一般没有特殊需要不推荐使用。

ANSYS四跨连续梁的内力计算

ANSYS四跨连续梁的内力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和内力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的内力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位,抗弯惯性矩为,截面高度为;材料的弹性模量为1000kN/m2,泊松比为。补充这些参数对于梁的内力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic 3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add按钮新建实力常量

应力配筋方法浅析

摘要目前的配筋方法主要还是依造结构力学的方法,利用内力进行结构的配筋。但是在水工结构中,有很多结构形式复杂,结构的受力和边界条件等也比较复杂,常规的结构分析方法难于准确地了解结构的变形规律和应力分布;另外随着建筑功能的多样化发展,建筑中运用转换层越来越普遍,而转换层的结构形式多变,整体性强,不应简化为杆系结构;在桥梁工程中,一些悬索桥、斜拉桥索的锚固区受力复杂,配筋一般通过经验进行,比较保守而且导致混凝土浇注困难。这些情况都导致采用内力配筋法无法满足工程的需要,而应力配筋法却可以适用于任何体系结构,因此,本文对应力配筋的方法进行一个初步的探讨。 关键词应力配筋方法 1、应力配筋法的发展史 应力配筋法的思想在水工钢筋混凝土结构中已有所应用。在水工结构中常会遇到一些无法用结构力学方法计算出截面内力(弯矩m,轴力n,剪力v或弯矩t等)的构件,而只能按照弹性理论方法(经典理论解,弹性有限元或弹性模型试验等)求出结构各点的应力状态。因而,也就无法用内力截面极限承载力公式计算配筋用量。在《水工混凝土结构设计规范》中提出了按弹性应力图形配筋的方法。由弹性理论计算得出结构在荷载作用下的拉应力图形,再根据拉应力图形面积计算出配筋用量。这种配筋方法比较简单易行,可适用于各种复杂的结构,但在理论上并不完善,一般情况下配筋偏于保守。 我国在六十年代曾考虑对水工的非杆件结构采用“全面积配筋”的方法,规定“当最大主拉应力大于混凝土的许可拉应力时,全部主拉应力由钢筋承担”。这种方法没有极限状态的概念,为考虑混凝土的抗拉作用,计算结果十分保守。《水工混凝土结构设计规范》sdj20-78编制组在调查总结了大量的工程设计经验的基础上特制订了附录四的有关条文,提出“按主拉应力图形中扣除小于混凝土许可拉应力的剩余主拉应力图形面积配筋”的计算公式,并对公式的适用条件,配筋方式等做出了明确规定。但是,该公式尚不能考虑混凝土开裂后在截面上的应力重分布,而是按许可拉应力把弹性应力图形划分为混凝土承担的部分和钢筋承担的部分。经过多年的工程实践证明这种做法是偏于保守的,有关研究还从理论上证明了它的保守性。为此,在《水工混凝土结构设计规范》(sl/t191-96)应用了以概率理论为基础的,使用分项系数的极限状态设计方法对原有的应力配筋方法进行了改进。 2、水工混凝土结构设计规范(sl/t191-96) 附录h,非杆件体系钢筋混凝土结构的配筋计算原则。 h.0.1,无法按杆件结构力学方法求得截面内力的钢筋混凝土结构,可由弹性力学分析方法或试验方法求得结构在弹性状态下的截面应力图形,再根据主拉应力图形面积,确定配筋数量。 当材料的本构关系等因素已确定时,也可用钢筋混凝土有限元分析方法对结构进行分析。 h.0.2 ,当由力学计算或试验得出结构在弹性阶段的截面应力图形,并按弹性受拉应力图形配置钢筋时,可按下列原则处理: (1)、当截面应力图形接近线性分布时,可换算为内力,按第6章及第7章的规定进行配筋计算及裂缝控制验算。 (2)、当应力图形偏离线性分布较大时,受拉钢筋截面面积应满足下式要求: (1) 式中:-由荷载设计值(包含结构重要性系数及设计状况系数 ) 确定的弹性总拉力,,在此,为弹性应力图形中主拉应力图形总面积,为结构截面宽度; -混凝土承担的拉力,,在此,为弹性应力图形中主拉应力值小于混凝土轴心抗拉强度设计值的图形面积;

第五章 结构力学的方法

第五章结构力学的方法 1、常用的计算模型与计算方法 (1)常用的计算模型 ①主动荷载模型:当地层较为软弱,或地层相对结构的刚度较小,不足以约束结构茂变形时,可以不考虑围岩对结构的弹性反力,称为主动荷载模型。 ②假定弹性反力模型:先假定弹性反力的作用范围和分布规律、然后再计算,得到结构的内力和变位,验证弹性反力图形分布范围的正确性。 ③计算弹性反力模型:将弹性反力作用范围内围岩对衬砌的连续约束离散为有限个作用在衬砌节点巨的弹性支承,而弹性支承的弹性特性即为所代表地层范围内围岩的弹性特性,根据结构变形计算弹性反力作用范围和大小的计算方法。 (2)与结构形式相适应的计算方法 ①矩形框架结构:多用于浅埋、明挖法施工的地下结构。 关于基底反力的分布规律通常可以有不同假定: a.当底面宽度较小、结构底板相对地层刚度较大时假设底板结构是刚性体,则基底反力的大小和分布即可根据静力平衡条件按直线分布假定求得(参见图5.2.1 ( b )。 b.当底面宽度较大、结构底板相对地层刚度较小时,底板的反力与地基变形的沉降量成正比。若用温克尔局部变形理论,可采用弹性支承法;若用共同变形理论可采用弹性地基上的闭合框架模型进行计算。此时假定地基为半无限弹性体,按弹性理论计算地基反力。 矩形框架结构是超静定结构,其内力解法较多,主要有力法和位移法,并由此法派生了许多方法如混合法、三弯矩法、挠角法。在不考虑线位移的影响时,则力矩分配法较为简便。由于施工方法的可能性与使用需要,矩形框架结构的内部常常设有梁、板和柱,将其分为多层多跨的形式,其内部结构的计算如同地面结构一样,只是要根据其与框架结构的连接方式(支承条件),选择相应的计算图式。 ②装配式衬砌 根据接头的刚度,常常将结构假定为整体结构或是多铰结构。根据结构周围的地层情况,可以采用不同的计算方法。松软含水地层中,隧道衬砌朝地层方向变形时,地层不会产生很大的弹性反力,可按自由变形圆环计算。若以地层的标准贯入度N来评价是否会对结构的变形产生约束作用时,当标准贯入度N>4时可以考虑弹性反力对衬砌结构变形的约束作用。此时可以用假定弹性反力图形或性约束法计算圆环内力。当N<2时,弹性反力几乎等于零,此时可以采用白由变形圆环的计算方法。 接头的刚度对内力有较大影响,但是由于影响因素复杂,与实际往往存在较大差距,采用整体式圆形衬砌训算方法是近似可行的。此外,计算表明,若将接头的位置设于弯矩较小处,接头刚度的变化对结构内力的影响不超过5%。 目前,对于圆形结构较为适用的方法有: a.按整体结构计算。对接头的刚度或计算弯矩进行修正;

相关文档
相关文档 最新文档