文档库 最新最全的文档下载
当前位置:文档库 › 07年完成基因组测序的生物

07年完成基因组测序的生物

07年完成基因组测序的生物
07年完成基因组测序的生物

07年完成基因组测序的生物

生物通报道:在即将过去的2007年,动物、植物、微生物的基因组测序工作进行的如火如荼,多项基因组测序结果被公布,包括第一个个人基因组图谱、马基因组图谱、肺癌基因组图谱和多种致病性细菌的基因组测序结果。

人类基因组测序的进一步深入

世界首份个人DNA图谱出炉

57年前,美国生物学家詹姆斯·沃森与弗朗西斯·克里克共同发现了脱氧核糖核酸(DNA)分子结构的双螺旋模型,并因这项基因研究领域的重大突破获得诺贝尔奖。今天,沃森成为自己研究的受益者--他将成为世界第一份完全破译的“个人版”基因组图谱的拥有者。

第一个个体基因组序列公布

来自美国克莱格凡特研究所(J. Craig Venter Institute,由TIGR所建立),加拿大多伦多大学,加州大学圣地亚哥分校,西班牙巴塞罗那大学(Universitat de Barcelona)的研究人员近期公布了单个个体二倍体基因组序列,为未来的基因组比较打开了一道门,也开创了个体基因组信息的新纪元。

杜克大学公布第一张人类基因组印记基因图谱

来自杜克大学的研究人员创造了第一张人类基因组印记基因(imprinted genes)图谱,并且他们表示其成功的关键在于一个称为机器学习(machine learning)的人工智能形式:modern-day Rosetta stone。这项研究新发现了四倍于之前识别的印记基因,并即将公布在12月3日《Genome Research》封面上。

完成测序的动物

第一张马基因组图谱草图公布

国际马类基因组序列计划(the international Horse Genome Sequencing Project)宣布,科学家们首次完成家马((Equus caballus))的基因图谱草图,得到了270万个DNA碱基对的数据,全部数据已经进入公共数据库,可免费供全世界的生物学家和兽医学家使用。

《自然》封面:首个有袋动物基因组序列公布

一种灰色短尾负鼠(Monodelphis domestica)的基因组测序的完成则为这一推测给出了切实的证据。负鼠是第一个完成基因组测序的有袋动物,测序结果公布在4月10日的《自然》杂志上,而且这种小动物还登上了该期杂志的封面。

家猫基因组测序完成

在新一期的《Genome Research》杂志上发表的一篇文章公布了对家猫(Felis catus)基因组的首个装配、注释和比较分析详细信息。

研究人员对一只四岁大的名叫Cinnamon的阿比西尼亚猫(Abyssinian cat)的DNA进行了测序。之所以选取这种猫是因为对它的血统很了解,能够追溯到几代前的瑞典。

10种灵长类动物基因组研究成果公布

在最新一期的《基因组研究》杂志的网络版上,来自美国科罗拉多卫生科学中心大学和斯坦福大学的研究人员公布了一项大规模基因组研究的结果。

该研究的目的是分析调查10种包括人类在内的灵长类动物之间基因复制数量的差异,剩余九种灵长类动物分别为黑猩猩、大猩猩、倭黑猩猩、猩猩、长臂猿、短尾猿、狒狒、狨和狐猴。这项研究系统地分析了不同种系灵长类动物的基因和基因簇。在漫长的6000万年的进化过程中,这些基因曾发生过基因拷贝数的增加和缩减。

老鼠基因组单体型图谱出炉

美国的研究人员希望通过对15只常用于生物医药研究的小鼠的DNA进行研究来帮助科研人员确定出与环境疾病敏感性相关的基因。目前这些数据被存放在了基

因变异数据目录之下,即小鼠基因组单体型图谱(将染色体分隔成许多小的片段),从而帮助研究人员找出小鼠中影响健康和疾病的基因和遗传变异。这个单体型图谱公布在7月29日的《自然》杂志上,该图谱首次完整描述了小鼠基因组测序和SNP计划的分析数据。该研究计划由美国环境卫生科学研究院进行。

屠志坚等人参与完成伊蚊基因组测序工作

登革热是一种由登革热病毒所引起的传染病,受感染后所产生的临床病征从非特异性症状,到严重可致死的出血热皆有可能。这种疾病的主要传播者则是伊蚊。

现在,埃及伊蚊首个基因组草图的完成将为研发预防和控制登革热和黄热病的新药物和疗法奠定基础。这项研究计划的主要负责人是美国基因组研究所的Vishvanath Nene和法国Notre Dame大学的David Severson。这个基因组是包含了基因和其他DNA片段的完整一套的遗传物质信息。这项研究的结果发表在5月18日的Science Express上。来自世界24所大学和研究机构参与了这项研究。参与该项研究的研究人员还有多名华人科研工作者,他们是弗吉尼亚理工的屠志坚(Zhijian Tu)副教授、朱劲松(Jinsong Zhu)副教授、李颂(Song Li)。

《自然》封面:首个有袋动物基因组序列公布

包括人类在内的现代哺乳动物并没有进化出太多新的基因,而是常常对已有基因进行重新编排。在这个过程中,之前被认为是垃圾的遗传成分起到意外的辅助作用。

基因组学专家多年来一直只是推测垃圾DNA有这种功能,而现在一种灰色短尾负鼠(Monodelphis domestica)的基因组测序的完成则为这一推测给出了切实的

证据。负鼠是第一个完成基因组测序的有袋动物,测序结果公布在4月10日的《自然》杂志上,而且这种小动物还登上了该期杂志的封面。

从海葵基因组看多细胞动物的进化

象鼻鲨基因组研究获美国资助766万

测序的植物

葡萄基因组测定完成

一项由法国科学家领导的最新研究捍卫了法国作为“葡萄酒之都”的荣誉,他们完整测定了一种葡萄的基因组。葡萄也由此成为人类完成基因测序的第一种水果作物和第四种开花植物(其它3种分别是小麦、拟南芥和白杨木),这有望加深科学家对开花植物进化过程的理解。相关论文8月26日在线发表于《自然》杂志。

阿联酋生技中心将测序海枣基因组

阿联酋迪拜生物技术和基因工程区域中心计划测序海枣(date palm)的基因组。根据该中心的网页上的消息,该中心董事会日前为开始进行灵活的研究计划开出绿灯。而海枣计划将是该中心向着好的方向发展的开端。这种研究计划旨在利益海枣的基因组数据来确定或者开发出对付那些威胁这种植物的疾病的方法。研究人员将会在阿联酋大学海枣中心进行这项研究计划。阿联酋是世界第四大海枣生产国。

烟草基因组计划

测序的微生物

抗药TB基因组序列公布

一个国际研究队伍公布了一种具有极强抗药性的结核杆菌基因组的初步数据。哈佛大学公共卫生学院的研究人员表示,该项目的目定是开发出一种能迅速诊断这种疾病的检测方法。这种所谓的结核分枝杆菌的XDR株与最近在南非

KwaZulu-Natal爆发的导致50多人死亡的疫情有关。迄今为止,在该地区已经确定出了超过300个XDR病例。

《科学》:基因组数据再分析解开死亡基因之谜

到目前为止,科学家已经积累了大量的基因组数据“矿藏”。而那些被忽略的数据则可能揭示出非比寻常的重要信息。现在,美国能源部联合基因组研究所(DOE JGI)进行的一项对大量微生物基因组序列数据的系统性的再次分析正是这样的一个绝佳例子。这项研究鉴定出了杀死了测序过程中使用的细菌的基因。该研究还给出了发现新抗生素的可能策略。这项研究的发现刊登在10月19日的《科学》杂志上。

《自然·生物技术》:黑曲霉基因组测序计划完成

荷兰工业化学公司DSM已经完成了一项测序黑曲霉(Aspergillus niger CBS513.88)基因组的合作计划。DSM公司利用这种黑曲霉来生产酶和其他化合物。DSM和它的合作者们将这项测序计划的结果公布在2月号的《自然·生物技术》杂志上。DSM表示,除去该公司外,参与这项测序计划的还有29个研究机构,包括Gene Alliance、Biomax、Affymetrix、阿姆斯特丹大学等。这种A. niger 的基因组大约有3390万个碱基对,并且构成超过14000个独特的基因。其中大约6500个基因的功能将被确定

基因组重测序

基因组重测序 背景介绍 全基因组重测序,是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。与已知序列比对,寻找单核苷酸多态性位点(SNP )、插入缺失位点(InDel ,Insertion/Deletion )、结构变异位点(SV ,Structure Variation )位点及拷贝数变化(CNV) 。 可以寻找到大量基因差异,实现遗传进化分析及重要性状候选基因的预测。涉 及临床医药研究、群体遗传学研究、关联分析、进化分析等众多应用领域。 随着测序成本的大幅度降低以及测序效率的数量级提升, 全基因组重测序已经成为研究人类疾病及动植物分子育种最为快速有效的方法之一。利用illumina Hiseq 2000 平台,将不同插入片段文库和双末端测序相结合,可以高效地挖掘基因序列差异和结构变异等信息, 为客户进行疾病研究、分子育种等提供准确依据。 重测序的两个条件:(1)该物种基因组序列已知;(2)所测序群体之间遗传性差异不大( >99% 相似度 ) 在已经完成的全基因组测序及其基因功能注释的基础上,采用全基因组鸟枪法(WGS )对DNA 插入片段进行双末端测序。 技术路线 生物信息学分析

送样要求 1.样品总量:每次样品制备需要大于5ug 的样品。为保证实验质量及延续性,请一次性提供至少20ug的样品。如需多次制备样品,按照制备次数计算样品总量。 2.样品纯度:OD值260/280应在1.8~2.0 之间;无蛋白质、RNA或肉眼可见杂质污染。 3.样品浓度:不低于50 ng/μL。 4.样品质量:基因组完整、无降解,电泳结果基因组DNA主带应在λ‐Hind III digest 最大条带23 Kb以上且主带清晰,无弥散。 5.样品保存:限选择干粉、酒精、TE buffer或超纯水一种,请在样品信息单中注明。 6.样品运输:样品请置于1.5 ml管中,做好标记,使用封口膜封好;基因组DNA如果用乙醇沉淀,可以常温运输;否则建议使用干冰或冰袋运输,并选择较快的运输方式。 提供结果 根据客户需求,提供不同深度的信息分析结果。

已完成基因组测序的生物(植物部分)分析解析

水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生 拟南芥籼稻粳稻葡萄番木瓜高粱黄瓜玉米栽培大豆苹果蓖麻野草莓马铃薯白菜野生番茄番茄梨甜瓜香蕉亚麻大麦普通小麦西瓜甜橙陆地棉梅毛竹桃芝麻杨树麻风树卷柏狗尾草属花生甘蓝 物种基因组大小和开放阅读框文献 Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1 Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2 Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3 Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4 Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5 Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8 Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10 Prunus mume 梅280 Mb, 31,390 orfs 11 Gossypium hirsutum L.陆地棉2.425 Gb 12 Gossypium hirsutum L. 雷蒙德氏棉761.8?Mb 13 Citrus sinensis甜橙87.3% of ~367 Mb, 29,445 orfs 14 甜橙367 Mb 15 Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

细菌的基因预测以及注释

Whole-genome Annotation of an A.baumannii strain A.baumannii ACICU

摘要 随着新一代测序技术的发展,微生物全基因组测序的成本大大减少,DNA序列的生成速度已远远超过其基因的注释速度。功能基因组学的研究已经成为当今研究的主流。然而如此多的数据对现有的基因注释工具提出了巨大的挑战。本研究通过对A.baumanii ACICU染色体序列使用GeneMarks进行基因预测,预测到了3718个基因,然后使用RAST进行基因注释,共注释到了3683个功能基因,将得到的结果与原文献中所注释到的基因进行对比。最后得到结论,基因的预测与注释都需要综合不同软件的结果进行分析,才能得到较为准确的结果。本研究为原核生物全基因组的注释提方法供了参考。 关键字:基因注释全基因组鲍曼不动杆菌GeneMarksRAST

目录 1.引言(Introduction) (2) 1.1.背景介绍 (2) 1.2.全基因组注释软件 (3) 1.3. A.baumannii ACICU相关 (4) 2.材料与方法(Methods and Materials) (5) 2.1.使用GeneMarks进行ORF预测 (5) 2.2.使用RAST进行功能基因注释 (6) 3.结果与讨论(Results and Discussion) (8) 3.1.使用GeneMarks预测ORF的结果以及分析 (8) 3.2.使用RAST进行功能基因注释结果以及分析 (9) 3.3.综合分析 (10) 参考文献 (10) 1.引言(Introduction) 1.1.背景介绍

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

微生物基因组研究

微生物基因组研究 微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、 环保等诸多领域。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,

植物基因组测序

千年基因将应邀参加第十六届全国植物基因组学大会 第十六届全国植物基因组学大会将于2015年8月19日-22日在陕西杨凌召开,千年基因应邀参加此次会议,并将在会场学术交流区设立展台。届时千年基因的技术团队会向大家展示我们最全面的测序平台、一站式的基因组学解决方案以及近年来在植物基因组学领域取得的科研成果,欢迎广大科研人员莅临指导交流! 在测序平台方面,千年基因目前拥有国内最全面的测序平台,能够为科研人员提供一站式解决方案。以PacBio RS II三代平台为例,千年基因自去年提供PacBio RS II测序以来,通过项目经验的积累及严格的质量控制,目前各项数据指标已达国内最高水平。数据产出已稳步升级至1.4Gb/ SMRT cell,读长最长可达42 Kb,reads N50高达18Kb,远超PacBio官方提供的数据标准!在植物基因组de novo测序的研究中,千年基因提供的超长读长测序可更好地跨越基因组高重复序列、转座子区域以及大的拷贝数变异区域和结构变异区,从而实现对高杂合及高重复基因组的完美组装。在植物转录组测序的研究中,千年基因提供的超长读长测序无需拼接即可获得全长转录组序列信息,同时可获得全面的可变剪切、融合基因以及Isoform信息。另外,千年基因提供的HiSeq 4000及HiSeq 2000/2500测序可解决研究人员在植物基因组重测序、转录组测序、小RNA测序等方面的科研需求。 在项目经验方面,千年基因与来自全球的科研人员合作开展了大量植物基因组项目,相关成果已发表于Nature、Nature Genetics、Science等杂志。例如,油棕榈基因组项目在Nature 杂志同时发表两篇文章,辣椒基因组项目的成果发表于Nature Genetics,玉米基因组项目的成果发表于Science。在国外合作方面,千年基因与美国爱荷华州立大学Patrick Schnable教授领导的国际玉米基因组团队合作开展的上万份玉米样本重测序项目也正在进行中;千年基因与国际半干旱热带作物研究所建立长期战略合作关系,正在开展上千份木豆、鹰嘴豆及高粱样本的群体遗传学研究;同时千年基因与华盛顿大学的Evan Eugene Eichler院士及佐治亚大学的Jeffrey Lynn Bennetzen院士也有大量基因组项目合作。在国内合作方面,千年基因与广东省农科院、山东省农科院共同启动的花生基因组项目已全部完成de novo测序及数据挖掘,同时与中国科学院、北京大学、中国农业大学、中国科学技术大学、上海交通大学、

美科学家完成大豆基因组测序

Animal Reproduction,Prague(C),Blackwell Publishing Inc, November23-25 Ptak G.,Tischer M.,Bernabo N.,and Loi P.,2003,Donor-depen-dent developmental competence of oocytes from lambs sub-jected to repeated hormonal stimulation,Biology of Repro-duction,69:278-285 Revel F.,Mermillod P.,Peynot N.,Renard J.P.,and Heyman Y., 1995,Low developmental capacity of in vitro matured and fertilize oocytes from calves compared with that of cows, Journal of Reproduction and Fertility,103:115-120Salkamone D.F.,Damiani P.,Fissore R.A.,Robl J.M.,and Duby R.T.,2001,Biochemical and developmental evidence that ooplasmic maturation of prepubertal bovine oocytes is com-promised,Biology of Reproduction,64:1761-1768 Taneja M.,Bols P.E.J.,van de Velde A.,Ju J.C.,Schreiber D., Tripp M.W.,Levine H.,Echelard Y.,Riesen J.,and Yang X. Z.,2000,Developmental competence of juvenile calf oocytes in vitro and in vivo:Influence of donor animal varia-tion and repeated gonadotropin stimulation1,Biology of Re-production,62:206-213 幼畜繁殖(JIVET)技术在性成熟前奶牛上的应用 Application of Juvenile in intro Embryo Transfer(JIVET)Technology on Prepubertal Dairy Cattle !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 美科学家完成大豆基因组测序 US Scientists Sequenced the Genome of Soybean 期待已久的大豆基因组序列终于测通。在2010年1月14日的《Nature》杂志上,公布了由美国农业部、美国能源部联合基因组研究所和普渡大学等多家科研机构联合完成的豆科植物最重要的物种大豆的完整基因组序列草图。 科学家门利用全基因组鸟枪测序法对大豆基因组的1.1GB的序列进行了测序,结合物理图谱和高密度遗传图谱,获得了大豆基因组的序列拼接草图。研究结果表明大豆中有46320个编码蛋白的臆测基因,约78%的臆测基因位于染色体末端,这些基因在数量上不到染色体基因组的一半,但几乎全部发生了遗传重组。大豆基因组的编码蛋白比双子叶模式植物拟南芥多70%,与同为“古老的多倍体”的杨树的基因组大小相似。研究人员推测大豆基因组的复制至少发生了两次,一次大约是在5900万年前,另一次则可能发生在1300万年前,由此引起了整个基因组的高度重复,约75%的基因以多拷贝形式出现。两次复制发生后紧接着出现了基因多样化和基因丢失,大量的染色体发生重排。 毫无疑问,精确的大豆基因组序列图谱将为更多的大豆性状遗传基础的鉴定提供便利,并加快大豆品种改良的步伐。大豆是人类最重要的食用油来源作物,研究人员通过对大豆基因组基因序列的分析,发现了约1110个基因与脂代谢有关,这些基因及其相关通路对大豆油含量有重要的影响,通过对某些基因的修饰和调控,或许可增加大豆的油脂产量。 作者:Courtney H.Wilcox,本刊通讯员 本文引用格式:Courtney Wilcox,2010,美科学家完成大豆基因组测序,农业生物技术学报,18(1):191 信息来源:https://www.wendangku.net/doc/c6402233.html,/nature/journal/v463/n7278/full/nature08670.html 191

全基因组从头测序(de novo测序)

全基因组从头测序(de novo测序) https://www.wendangku.net/doc/c6402233.html,/view/351686f19e3143323968936a.html 从头测序即de novo 测序,不需要任何参考序列资料即可对某个物种进行测序,用生物信息学分析方法进行拼接、组装,从而获得该物种的基因组序列图谱。利用全基因组从头测序技术,可以获得动物、植物、细菌、真菌的全基因组序列,从而推进该物种的研究。一个物种基因组序列图谱的完成,意味着这个物种学科和产业的新开端!这也将带动这个物种下游一系列研究的开展。全基因组序列图谱完成后,可以构建该物种的基因组数据库,为该物种的后基因组学研究搭建一个高效的平台;为后续的基因挖掘、功能验证提供DNA序列信息。华大科技利用新一代高通量测序技术,可以高效、低成本地完成所有物种的基因组序列图谱。包括研究内容、案例、技术流程、技术参数等,摘自深圳华大科技网站 https://www.wendangku.net/doc/c6402233.html,/service-solutions/ngs/genomics/de-novo-sequencing/ 技术优势: 高通量测序:效率高,成本低;高深度测序:准确率高;全球领先的基因组组装软件:采用华大基因研究院自主研发的SOAPdenovo软件;经验丰富:华大科技已经成功完成上百个物种的全基因组从头测序。 研究内容: 基因组组装■K-mer分析以及基因组大小估计;■基因组杂合模拟(出现杂合时使用); ■初步组装;■GC-Depth分布分析;■测序深 度分析。基因组注释■Repeat注释; ■基因预测;■基因功能注释;■ ncRNA 注释。动植物进化分析■基因家族鉴定(动物TreeFam;植物OrthoMCL);■物种系统发育树构建; ■物种分歧时间估算(需要标定时间信息);■基因组共线性分析; ■全基因组复制分析(动物WGAC;植物WGD)。微生物高级分析 ■基因组圈图;■共线性分析;■基因家族分析; ■CRISPR预测;■基因岛预测(毒力岛); ■前噬菌体预测;■分泌蛋白预测。 熊猫基因组图谱Nature. 2010.463:311-317. 案例描述 大熊猫有21对染色体,基因组大小2.4 Gb,重复序列含量36%,基因2万多个。熊猫基因组图谱是世界上第一个完全采用新一代测序技术完成的基因组图谱,样品取自北京奥运会吉祥物大熊猫“晶晶”。部分研究成果测序分析结果表明,大熊猫不喜欢吃肉主要是因为T1R1基因失活,无法感觉到肉的鲜味。大熊猫基因组仍然具备很高的杂合率,从而推断具有较高的遗传多态性,不会濒于灭绝。研究人员全面掌握了大熊猫的基因资源,对其在分子水平上的保护具有重要意义。 黄瓜基因组图谱黄三文, 李瑞强, 王俊等. Nature Genetics. 2009. 案例描述国际黄瓜基因组计划是由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,并由深圳华大基因研究院承担基因组测序和组装等技术工作。部分研究成果黄瓜基因组是世界上第一个蔬菜作物的基因组图谱。该项目首次将传

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

科学家完成马铃薯基因组测序

中国科技通讯 中华人民共和国科学技术部 第625期 2011年7月20日 《国家“十二五”科学和技术发展规划》正式发布 科技部会同发改委、财政部、教育部、中科院、工程院、国家自然科学基金会、中国科协、国防科工局等有关部门和单位编制完成的《国家“十二五”科学和技术发展规划》近日正式发布实施。 《规划》提出“十二五”科技发展的总体目标是:自主创新能力大幅提升,科技竞争力和国际影响力显著增强,重点领域核心关键技术取得重大突破,为加快经济发展方式转变提供有力支撑,基本建成功能明确、结构合理、良性互动、运行高效的国家创新体系,国家综合创新能力世界排名由目前第21位上升至前18位,科技进步贡献率力争达到55%,创新型国家建设取得实质性进展。同时,从研发投入强度、原始创新能力、科技与经济结合、科技惠及民生、创新基地建设布局、科技人才队伍建设、体制机制创新等方面提出了具体目标和指标。 《规划》对未来五年我国科技发展和自主创新的战略任务进行了部署,突出以下重点:一是加快实施国家科技重大专项,二是大力培育和发展战略性新兴产业,三是推进重点领域核心关键技术突破,四是前瞻部署基础研究和前沿技术研究,五是加强科技创新基地和平台建设,六是大力培养造就创新型科技人才,七是提升科技开放与合作水平。 科技部发布《关于加快发展民生科技的意见》 7月18日,第四次全国社会发展科技工作会议在京召开,科技部发布了《关于加快发展民生科技的意见》。科技部表示,将根据《关于加快发展民生科技的意见》,组织实施国家民生科技行动,重点围绕人口健康、生态环境、公共安全、防灾减灾四个领域大力推进相关科技工作。 全国政协副主席、科技部长万钢提出了具体要求:全面加强民生科技的领导;切实加大民生科技的投入;加快民生科技创新和能力建设;加强民生科技的国际合作;加强民生相关的科学知识宣传和技术成果的应用普及。 会上,科技部副部长王伟中对“十一五”我国社会发展科技工作的成就进行了全面回顾,对“十二五”社会发展科技工作的重点任务进行了部署。王伟中说,在“十二五”期间,我国社会发展科技工作将把保障和改善民生放在突出位置,重点围绕六个方面开展工作:一是加强科技管理体制机制创新;二是加快组织实施国家科技重大专项;三是加快实施社会发展科技专项规划和计划;四是组织实施国家民生科技行动;五是加强可持续发展实验区建设;六是积极开展社会发展科技领域的国际合作。 “十二五”粮食丰产工程启动 科技部、农业部、财政部和国家粮食局近日在北京分别与湖南等13个粮食主产省(区)签订协议,实施新一轮“国家粮食丰产科技工程”,“十二五”国家粮食丰产科技工程正式启动实施。 科技部在“十一五”期间牵头组织实施了粮食丰产工程。五年来,在国家粮食丰产工程带动下,各相关省市自治区发挥以科技创新为核心,政府引导和市场为主体有机结合,使国家粮食丰产科技工程取得显著成效。工程实施过程中,突出了水稻、小麦和玉米“三大作物”增产,立足东北、华北、长江中下游“三大平原”,强化攻关田、核心区、示范区、辐射区“一田三区”建设。工程的实施为全国粮食大面积高产树立了典范,也为实现粮食增产、保障国家粮食安全提供了强有力的技术支撑。 全国政协副主席、科技部长万钢指出,要促进粮食丰产技术集成和大面积均衡增产;要强化粮食科技服务,鼓励和支持科技人员深入农村基层一线,组织实施好“百千万科技特派员”专项行动,在粮食主产省建立新型科技服务体系;要积极创造条件,强化粮食丰产科技基地、平台、人才队伍建设,稳步推进粮食丰产科技工作;要增加粮食科技投入,逐步完善粮食科技稳定支持的长效机制。

农作物重要品种全基因组de novo测序

首页 科技服务 医学检测 科学与技术 市场与支持 加入我们 关于我们 提供领先的基因组学解决方案Providing Advanced Genomic Solutions 参考文献 [ 1 ] Li Y, Zhou G, Jiang W, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nature biotechnology, 2014, 32(10): 1045-1052. [ 2 ] Da Silva C, Zamperin G, et al. The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome. Plant Cell, 2013, 25(12):4777-88. [ 3 ] Qi XP, Li M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communica- tions, 2014(5). 挖掘特异基因 解析特有性状 重要品种 全基因组 de novo 所研究品种 小片段文库大片段文库 HiSeq测序(>100X) 基因组组装 注释 全基因组序列比对 转录组遗传图谱等辅助验证 重要农艺性状解析 基因家族聚类分析 所研究品种基因组序列 已发表品种 基因组序列 已发表品种基因集合 所研究品种基因集合 变异检测 小的插入 缺失 SNP 倒位 易位大的插入 缺失 基因挖掘 新基因鉴定拷贝数扩增基因基因丢失正选择基因鉴定 物种 品种 发表杂志(年份) 物种 品种发表杂志(年份) 大豆 棉花 番茄 土豆 水稻 葡萄猪栽培大豆7种野生大豆 野生耐盐大豆雷德氏棉 亚洲棉 陆地棉栽培番茄 抗病番茄栽培土豆 耐寒土豆 Nature (2010) Nature Biotechnology (2014) Nature Communications (2014) Nature (2012)Nature Genetics (2014)Nature Biotechnology (2015)Nature (2012) Nature Genetics (2014) Nature (2011) Plant Cell (2015) 栽培水稻(粳稻)栽培水稻(籼稻) 短花药野生稻 非洲栽培稻五种野生稻三种栽培稻葡萄 丹娜葡萄杜洛克猪藏猪 Science (2002)Science (2002) 野生大豆泛基因组 阅读原文>> 诺禾致源的项目经验 诺禾致源在动植物全基因组测序领域一直处于领先地位, 以第一通讯作者发表基因组文章5篇(影响因子累计152.474),其中2篇为杂志封面文章。 近年来,诺禾通过自主研发软件与技术革新,成功地将项目周期压缩至14个月内,费用降低一半以上。 特有基因检测 对7株代表性野生大豆品种进行全基因组de novo 测序及比较基因组分析,发现每个大豆品种中有1,000~3,000个品种特有的基因。 高变区变异检测 在传统测序方法中,将研究物种短reads 比对参考基因组无法检测到变异位点;在全基因组de novo 方法中,将组装后的超长序列比对参考基因组可准确识别高变区域内的所有变异位点。性状解析方案设计 通过对重要品种高深度(>100X)测序,并进行基因组组装注释: 找到传统测序无法鉴定的高度变异位点,找到更多更准确的SNP位点;找到参考基因组中 所不存在的基因——品种特有基因。 2. 耐盐大豆耐盐基因的发现 2014年,研究人员对一株耐盐大豆开展了全基因组de novo 测序,并与栽培大豆基因组进行全基因组比对,通过一条跨过长达388 Kb 的重要功能区的scaffold,发现了巨大的结构变异,从而成功鉴定出耐盐基因。该基因在栽培大豆中被插入了一个长达3.4 Kb 的反转座子,影响了阳离子转运体功能,从而使栽培大豆失去了耐盐能力。 传统的测序手段,采用的是短reads 比对,因而对这类大的结构变异检测精度差、灵敏度低、甚至难以实现检测,而全基因组de novo 测序则能很好的克服该问题。阅读原文>> 案例分享 1. 丹娜葡萄全基因组测序揭示高丹宁含量性状的分子机制 丹娜葡萄被认为是丹宁含量最高的葡萄品种之一,由于富含丹宁等抗氧化分子,被认为有延缓衰老的作用。通过对其基因组测序,研究人员发现与丹宁合成有关的关键酶,几乎都能找到新的基因。很显然,只依赖已有的参考基因组,完全无法了解丹娜葡萄高丹宁含量这一性状的遗传基础,而全基因组de novo 测序则完美回答了该问题。阅读原文>> 重要品种基因组的价值 一些物种,虽然已有参考基因组,但仍然无法找到性状关联基因。 一方面,参考基因组与研究物种差异太大; 另一方面,性状相关基因处于基因组快速进化区域,变异极大,传统测序手段难以鉴定。 目前,de novo测序在有参品种重要性状探究方面的应用愈发广泛, 相关研究结果常见于国际顶级杂志上。

人类全基因组测序

1 技术优势 全基因组测序(Whole Genome Sequencing,WGS)是利用高通量测序平台对人类不同个体或群体进行全基因组测序,并在个体或群体水平上进行生物信息分析。可全面挖掘DNA 水平的遗传变异,为筛选疾病的致病及易感基因,研究发病及遗传机制提供重要信息。 全基因组测序 平台优势 HiSeq X 测序平台 读长:PE150 通量:1.8T/run 测序周期:3 天 专为人全基因组测序准备、测序周期短、通量高

生物信息分析 技术路线 技术参数 样品要求 样本类型:DNA 样品 样本总量:≥1.0 μg DNA (提取自新鲜及冻存样本) ≥1.5 μg DNA (提取自FFPE 样本)样品浓度:≥ 20 ng/μl 测序平台及策略HiSeq X PE150 测序深度 肿瘤:癌组织(50X),癌旁组织/血液样本(30X)遗传病:30~50 X 项目周期37天

3 案例解析 该研究选取3个家系中6个患者和1个正常个体,首先使用基因芯片寻找纯合突变位点,然后对其中无亲缘关系的2例患者采用全基因组测序研究,在2例患者非编码区域均发现相同的变异,10号染色体PTF1A 末端发生一个点突变(chr10:23508437 A>G),且变异在患病人群和细胞试验中均得到了验证。研究解释了生长发育启动子隐性变异是罕见孟德尔遗传病的常见致病原因,同时说明许多疾病的致病突变也可能位于非编码区。 图1 检出的变异信息 智力障碍是影响新生儿心智发育的一类疾病。这项研究选取50个经过基因芯片和全外显子测序未确诊致病因子的trio 家系,全基因组测序检出84个de novo SNVs 和8个de novo CNVs,及一些结构变异(如VPS13B、STAG1、IQSEC2-TENM3),检出率为42%。揭示编码区的de novo SNVs 和de novo CNVs 是导致智力障碍的主要因素,全基因组测序可以作为可靠的遗传性检测应用工具。 案例一 单基因病研究——全基因组测序鉴定PTF1A末端增强子常染色体隐性突变导致胰腺 发育不全[1] 案例二 复杂疾病研究——全基因组测序解析智力障碍的主要致病因素[2] 图2 PTF1A 的家系图谱

全球首次完成杨树全基因组测序

全球首次完成杨树全基因组测序 由美国能源部启动并实施的杨树全基因组测序计划已圆满完成,并于2004年9月21日对公众开放了全序列数据库。南京林业大学科研人员尹佟明副教授参与了此项研究。杨树基因组的新闻发布及庆祝会定于12月6日在美国加州举行。该项研究可望使杨树这一重要树种的品种改良时间大大缩短,用区区几十年跨越千年关。 研究的完成,使杨树成为继拟南芥和水稻之后,第三个测定全序列的植物,并且是第一个测定全基因组序列的多年生木本植物。杨树因此被广泛接受为研究多年生植物基因组的模式物种,这使该项工作具有重大的科学意义。杨树同时又是一种重要的工业用材树种,杨树全基因组计划实施,将为生物能源的开发提供知识贮备,具有重要的实际应用价值。目前,杨树的改良还处在一种半野生的初级改良阶段,在基因组研究的基础上,通过群体和数量遗传学的手段在杨树属不同树种间开发有用等位基因,并通过遗传工程的手段进行基因重组,可望在几十年的时间里完成一般作物几千年的改良历程。 杨树全基因组全序列用“鸟枪法测定”,序列库中共含有7,649,993个序列片段,去除叶绿体基因组的污染,测得的序列大约为8×基因组长度。目前对序列拼接的组装已完成了483Mb,占杨树基因组物理全长的90%以上,基本上覆盖了杨树基因组常染色体的大部分。基于基因芯片和单核苷酸多态性检测技术,对小的序列拼接及序列间隙的填充工作正在进行中,预期这部分工作将于明年完成。南京林业大学尹佟明副教授自2001年以来一直参与此项研究,对杨树基因组的注释工作将于今年12月初完成。 国际杨树基因组计划协作组的总负责人杰瑞先生认为,从世界范围来看,杨树在中国的林业生产中占有的比重是最大的,因此在杨树基因组信息的应用方面,中国在未来的研究中可能会居于世界前列。杨树全基因组计划的完成对我国从事林业及生物技术的科学家而言,提供了前所未有的机遇和挑战。 Science 15 September 2006: Vol. 313. no. 5793, pp. 1596 - 1604 DOI: 10.1126/science.1128691 RESEARCH ARTICLES The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) G. A. Tuskan,1,3* S. DiFazio,1,4S. Jansson,5J. Bohlmann,6I. Grigoriev,9U. Hellsten,9N. Putnam,9S. Ralph,6S. Rombauts,10 A. Salamov,9J. Schein,11L. Sterck,10 A. Aerts,9 R. R. Bhalerao,5 R. P. Bhalerao,12 D. Blaudez,13 W. Boerjan,10 A. Brun,13 A. Brunner,14 V. Busov,15 M. Campbell,16 J. Carlson,17 M. Chalot,13 J. Chapman,9 G.-L. Chen,2 D. Cooper,6 P. M. Coutinho,19 J. Couturier,13 S. Covert,20 Q. Cronk,7 R. Cunningham,1 J. Davis,22 S. Degroeve,10 A. Déjardin,23 C. dePamphilis,18 J. Detter,9 B. Dirks,24 I. Dubchak,9,25 S. Duplessis,13 J. Ehlting,7 B. Ellis,6 K. Gendler,26 D. Goodstein,9 M. Gribskov,27 J. Grimwood,28 A. Groover,29 L. Gunter,1 B. Hamberger,7 B. Heinze,30 Y. Helariutta,12,31,33 B. Henrissat,19 D. Holligan,21 R. Holt,11 W. Huang,9 N. Islam-Faridi,34 S. Jones,11 M. Jones-Rhoades,35 R. Jorgensen,26 C. Joshi,15 J. Kangasj?rvi,32 J. Karlsson,5 C. Kelleher,6 R. Kirkpatrick,11 M. Kirst,22 A.

已基因组测序物种

已完成植物基因组测序情况(更新至2014年11月) 中文名拉丁名发表时间刊物科、属基因组大小拟南芥Arabidopsis thaliana 2000.12 Nature 十字花科、鼠耳芥属125M 水稻Oryza sativa. ssp. indica 2002.04 Science 禾本科、稻属466M 水稻Oryza sativa. ssp. japonica 2002.04 Science 禾本科、稻属466M 杨树Populus trichocarpa 2006.09 Science 杨柳科、杨属480M 葡萄Vitis vinifera 2007.09 Nature 葡萄科、葡萄属490M 衣藻Chlamydomonas reinhardtii 2007.01 Science 衣藻科、衣藻属130 M 小立碗藓Physcomitrella pattens 2008.01 Science 葫芦藓科、小立碗藓属480M 番木瓜Carica papaya 2008.04 Nature 番木瓜科、番木瓜属370M 百脉根Lotus japonicus 2008.05 DNA Res. 豆科472 Mb 三角褐指藻Phaeodactylum tricornutum 2008.11 Nature 褐指藻属27.4M 高粱Sorghum bicolor 2009.01 Nature 禾本科、高粱属730M 玉米Zea mays ssp. mays 2009.11 Science 禾本科、玉米属2300M 黄瓜Cucumis sativus 2009.11 Nature Genetics 葫芦科、黄瓜属350M 大豆Glycine max 2010.01 Nature 豆科、大豆属1100M 二穗短柄草Brachypodium distachyon 2010.02 Nature 禾本科、短柄草属260M 褐藻Ectocarpus 2010.06 Nature 水云属196M 团藻Volvox carteri 2010.07 Science 团藻属138M 蓖麻Ricinus communis 2010.08 Nature Biotechnology 大戟科、蓖麻属350M 小球藻Chlorella variabilis 2010.09 Plant Cell 小球藻科46M 苹果Malus × domestica 2010.09 Nature Genetics 蔷薇科、苹果属742M 森林草莓Fragaria vesca 2010.12 Nature Genetics 蔷薇科、草莓属240M 可可树Theobroma cacao 2010.12 Nature Genetics 梧桐科、可可属430-Mb 野生大豆Glycine soja 2010.12 PNAS 豆科、大豆属915.4 Mb 褐潮藻类Aureococcus anophagefferens 2011.02 PNAS 57M 麻风树Jatropha curcas 2010.12 DNA Res. 大戟科、麻风树属410M 卷柏Selaginella moellendorffii 2011.05 Science 卷柏属212M 枣椰树Phoenix dactylifera 2011.05 Nature biotechnology 棕榈科685M 琴叶拟南 芥 Arabidopsis lyrata 2011.05 Nature Genetics 十字花科、鼠耳芥属206.7 Mb 马铃薯Solanum tuberosum 2011.07 Nature 茄目、茄科、茄属844M 条叶蓝芥Thellugiella parvula 2011.08 Nature Genetics 盐芥属140M

相关文档
相关文档 最新文档