文档库 最新最全的文档下载
当前位置:文档库 › 并网逆变器电流控制方法

并网逆变器电流控制方法

并网逆变器电流控制方法
并网逆变器电流控制方法

并网逆变器的电流控制方法陈敬德,1140319060;杨凯,1140319070;指导老师:王志新(上海交通大学电气工程系,上海,200240)

摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。

关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制

0引言

随着现代工业的迅速发展,近年来全球范围内包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让其输出各项性能指标都满足要求的波形。目前所用的逆变器可以分为以下两类:一类是恒压恒频逆变器,这类逆变器在各种电源持续供电的领域应用广泛,它能够输出电压幅值和频率都是特定值的交流正弦波,简称CVCF 逆变器。第二类是变压变频逆变器,这种逆变器主要用在电动机的调速系统中,它能够输出特定的幅值电压和频率,简称VVVF 逆变器[2]。

本文将对并网逆变器的几种常见控制方法进行总结,如传统的PI控制、基于dq 旋转坐标系的控制、重复控制及比例谐振控制。给出了框图和数学模型,并指出了它们各自的优缺点。

1重复控制

1.1重复控制思想

重复控制是基于内模原理的一种控制方法。所谓内模原理,即在一个闭环调节系统中,在其反馈回路中设置一个内部模型,使该内部模型能够很好的描述系统的外部特性,通过该模型的作用可使系统获得理想的指令跟踪特性,具有很强的抗干扰能力

[3-4]

。基于重复控制的算法在逆变器中得到了广泛的应用[5-7]。其基本思想是假设前一个基波周期中出现的波形畸变将会在下一个基波周期的同一时间重复出现,在此假设条件下,控制器根据每个开关周期给定信号与反馈信号的误差来确定所需的校正信号,然后在下一个基波周期的同一时间将此信号叠加到原控制信号上,以消除以后各基波周期中出现的重复畸变[8]。内模所起的作用就相当于是一个任意信号发生器,即使是给定的指令信号趋于0时,其依然能够持续不断地输出控制信号,以维持合适的控制作用。重复控制能够很好的抑制波形中出现的周期扰动,但是对于系统中的非周期性扰动作用不大[9]

。然而,由功率器件的死区以及非线性负载给逆变器系统带来的影响都具有周期性,因此利用重复控制的这个特性能够很好的解决这些问题,提高逆变系统的性能。

根据我们所学的经典控制理论,若系统中含有积分环节,那么它就能够无误差的跟踪阶跃输入,而且对积分环节之前的阶跃干扰也有很好的抑制作用。事实上积分环节可以看成是系统的内模,因闭环系统中的积分环节包含了阶跃输入的模型,从而可以实现精确无误差地跟踪阶跃输入信号。

如果控制系统内模的数学模型所描述的是周期性的信号,那么闭环系统对周期性的扰动具有很好的抑制作用,若给定指令或扰动信号只是单一频率的正弦信号,系统的

内膜中只要包含有正弦的数学模型:

2

2

(S)G S ω

ω=

+ (1-1)

就能够实现精确跟踪指令信号。如果指令信号或扰动信号中还包含其它频率的信号,这种情况下,若要实现精确无误差跟踪,

只能通过在内膜中加入多个描述特定频率信号的数学模型,若信号所包含的频率成分较多,所需要的内模数量就很多,这给系统的控制带来了一定的困难。为此就要寻找一种能够描述频率成分较复杂的信号的内模,分析可知,虽然扰动信号的频率成分复杂,但都具有重复性的特点,而且在每个基波周期都以完全相同的波形出现。针对这种复杂

的信号,可选择式(1-2)作为系统的内模:

(S )1Ts

Ts e G e --=

- (1-2) T 为给定信号的周期,式(1-2)所描述的是一个周期延迟正反馈环节,无论给定信号的形式如何,只要重复的出现,而且频率与基波频率的倍数,那么该内模就会逐周期累加输入信号。即使在给定信号衰减为0时,系统依然能够输出跟前一个周期相同的信号,内模所起的作用和积分环节相似,区别仅在于内模是以基波周期为单位对给定信号进行累加的,所以这种形式的内模能够实现对多种频率信号的跟踪。采用这种特殊形式的内模的闭环控制系统被称为重复控制系统[10]。由于上式中的延时环节采用模拟器件实现起来比较困难,因而在实际应用中都是使用它的离散形式来实现的,如下式(1-3)所示:

(S)1N N

z G z --=-

(1-3)

1.2重复控制器结构

内模控制是重复控制系统的关键部分,它的特点是:能够输出稳定持续的控制信号,当系统中的内模是理想内模时,即使外部给定指令为0,内模也能够重复输出前一周期的信号。但是理想内模存在单位圆上的

极点,这使得系统处于临界稳定状态,在实际中这种临界状态不可取,当被控对象的参数发生变化时就有可能导致系统不稳定,图1所示的为重复信号发生器基本框图:

+

+

U i

U 0

图1 重复信号发生器 因为图1所给出的重复信号发生器存在临界稳定状态,不利于系统的控制,

所以在应用中常对内模进行改进,如图2所示:

+

+

U i

U 0

图2 改进型重复信号发生器

图2中,Q(z)为一阶低通滤波器或者略

小于1的常数。

由图4-2输入和输出之间的关系为:

(z)1

(z)1(z)z O N

i U U Q -=-

(1-4) 若取Q(z)=0.95,则由上式可得:

(z)1

(z)10.95z O N

i U U -=-

(1-5)

将1-5式展开得

()0.95()(k o o i U k U k N U =-+

(1-6) 在图2改进后的内膜上面,加入周期延

时环节N

z

-C(z)就构成重复控

制系统,其基本结构如下图3所示。

C(z)P(z)

R

-

+

++Y

图3 重复控制系统框图 图3中:

R 为参考输入信号 Y 为输出信号 E 为偏差信号

N 为每个基波周期的采样次数

N z -为周期延迟环节

Q(z) 为常数或一阶低通滤波器 C(z)为补偿器 P(z)为被控对象

上面图3 中,系统检测到参考输入指令信号R 和输出信号Y 之间的偏差信号,然后内模对检测到的偏差信号逐周期进行积分,把以前的偏差储存起来,即使检测到的误差为 0时,系统仍然能够不断输出控制信号,控制信号经过补偿器的校正后,得到幅值和相位正确的控制信号,然后在下一个周期把控制信号加到控制对象上,以消除扰动的影响。

2重复PI 控制

2.1重复PI控制的思想

逆变器作为发电系统中实现直流到交流变换的关键元件,因其输出电压直接并入电网供负载使用,希望它输出的电能质量越高越好。光伏发电系统不仅要具有高精度的稳态响应,同时还希望它具有快速的动态响应速度。对系统的动态要求主要是希望系统能够快速的跟踪给定的电压指令,在其所供的负载发生变化时能够快速的达到新的稳定状态。前面已经介绍,重复控制能够抑制输出波形的畸变,提高系统的稳态精度。重复控制抑制畸变的原理是先把前一个周期检测的误差储存起来,然后在下一个基波周期开始时刻把前一周期的信号累加后输出控制信号对误差产生校正作用。但是从重复控制系统的结构图中我们可以看到在重复

控制系统的前向通道中包含有一个N

z-环节,这个周期延迟环节使得控制信号延迟一个周期输出,导致重复控制在得到误差信号后并不能立即发挥作用,而是延迟到下一个周期的某个时刻才产生作用,这样的话,若控制系统中有扰动存在,在扰动的第一个基波周期时间内,系统对扰动并不产生调节作用,系统处于一种开环状态,而且重复控制对误差的积分是逐周期进行的,所以重复控制系统存在动态性能不佳的缺陷[11-12]。为了使并网逆变系统具有良好的动态性能和稳态性能,本文采用重复PI控制策略,在该控制策略中一种控制的主要作用是致力于提高逆变器的动态特性,另一种控制的主要作用则是提高系统的稳态性能,抑制重复性扰动,两者各司其职,且互为补充,全面提升系统的性能。因为PI控制在对误差进行调节时是以开关周期为单位进行的,而重复控制则是以基波周期为单位进行调节的,这两个控制的调节速度不同步,重复控制和PI控制这两个控制在时间上是相互独立的。当系统运行达到稳定时,输出与给定指令之间的误差相对比较小,PI控制基本不对系统产生调节作用,系统的控制主要由重复控制来完成。当系统中所出现的扰动作用比较大时,输出与给定之间的误差突增,重复控制器由于存在一个基波周期的延迟,其输出不会发生突变,这就使系统无法快速的跟踪给定,此时由PI控制器检测到输出与给定的误差突变并立即输出控制信号对误差进行

控制。

2.2 PI电流控制器的设计

PI 调节在工程上应用非常广泛,也是我们所熟悉的控制中最成熟的一种调节,其简单直观,容易数字化实现,对于逆变器,选择PI调节器对信号误差进行比例和积分控制是一种简单有效的方式。

可以用一个惯性环节来表示逆变器的传递函数如式4-21表示。

1

pwm

pwm

pwm

K

G

T S

=

+

(2-1)其中:

p w m

K

表示逆变器的放大系数

p w m

T

表示延迟时间常数

S 表示复频域因子

其在d 、q旋转坐标系下的控制框图如下所示:

I*d

+G pi

G pwm +

Gf

WL WL

I*q

+

G pi

G pwm

+Gf

Eq

Iq

Id

Ed -

---+-+

图4 旋转坐标下的控制框图

图中*

d I ,*

q I 为d 轴,q 轴的电流指令

d E 、q E 为三相电网电压矢量的d 、q

分量可以看成系统的扰动输入

d I 、q I 为变换到d 轴、q 轴并网电流 pi G 为电流环的PI 控制器 f

G 为滤波器

由上图可以得到的

d I 、q I 的表达式

*

...111pi pwm f f f

d d q d

pi pwm f pi pwm f

pi pwm f

G G G G L G I I I E G G G G G G G G G ω=

-

-

+++ (2-2)

*...111pi pwm f f f

q q d d

pi pwm f

pi pwm f

pi pwm f

G G G G L G I I I E G G G G G G G G G ω=

-

-+++ (2-3)

式(2-2)和(2-3)可以看出不仅电网电压的d 、q 分量

d E 、q E 的对系统的输

出产生作用,同时还有来自d 、q 轴之间的耦合

.q

L I ω和

.d L I ω扰动对系统产生影响。

为了使系统能够输出高质量的波形,需要解决这些不利因素的影响,对于d 、q 轴间电流的耦合干扰可以通过采用反馈的方法解除它们之间耦合作用。而对于电网电压带来的扰动可以通过设计电压前馈补偿,进一步提高系统的性能。由于d 轴与q 轴的并不是完全独立的,由式(2-2)和(2-3)可知d 轴与q 轴之间的相互作用为:

.1f d q

pi pwm f

G L I I G G G ω=-

+

(2-4)

.1f q d

pi pwm f

G L I I G G G ω=

+

(2-5) d 轴与 q 轴电流之间的相互作用对三相并网系统整体性能都产生不利的影响,因此需要利用解耦控制来实现d 轴与q 轴电流之间真正的解耦,使其相互独立,如图5所示。

G pi

+

++

+

--+-

+

+

G n G pwm

+

I d

wl G n

G n

WL

G f

G f

++G pwm

G n

G pi

+I q

--

图5 d 轴与q 轴解耦控制框图

加入前馈补偿后d 轴和q 轴电流的相互影响为:

(G G 1)G .1n p w m f d q

pi pwm f

L I I G G G ω-=

+

(2-6) (G G 1)G .1n p w m f d d

pi pwm f

L I I G G G ω-=-

+

(2-7)

由式(2-6)和(2-7)可以得出若取

1n pwm

G G =

,那么耦合就不会对输出的电流

产生影响,也就解除了d 轴和q 轴电流之间

的耦合。 经过解耦后d 轴和q 轴的相互影响就完全消失了,就可以单独地控制d 轴和q 轴

的电流,同时把采样环节和反馈环节的延迟

考虑进去可以写出 d 轴和 q 轴的电流控

制框图如图6所示:

I*d

Id

+-

图6 d 轴控制框图

pwm T 表示变换器时延

f

T 是反馈环节和采样环节时延,取反

馈环节时延

0.5f pwm

T T =

pwm

k 表示变换器放大倍数

合并系统的各种延迟环节,因为功率开关管的频率很高,经过处理后可以用下式

来描述逆变器和延迟环节:

1.51

pwm

pwm k T +则d 轴控制框图就变成如下简化图7所示:

I*d

Id

+

-

图7 d 轴简化控制图

由上面的d 轴简化控制框图可以求得系统的前向通道传函为:

11()(s 1)

(s).

.

(1.5T s 1)(Ls R)

s

(1.5T s 1)(s 1)

p pwm p pwm

pwm pwm K s K K K K R

W L s R ττ++=

=

++++ (2-8)

其中

p I K K τ=

分析可知上式所描述的系统是三阶系统,现阶段还没有很好的方法来分析高阶系统的性能,要想求出其精确的控制参数也有一定的困难。为了方便系统参数的设计,我们可以对系统进行降阶处理,因为它包含有一个位于虚轴左侧的零点,我们可以通过降阶处理使系统变成低阶系统,然后利用我们所熟

=R/L ,即采用零极点对消的方式对系统降阶可以得到:

其中

p pwm

K K K R

τ=

1.5T pwm

T =

要使系统达到二阶“最优“模型的动态性能,系统的阻尼须满足ξ= 0.707,KT =0.5,从而得到:

.1.5T 0.5

p

pwm K R

τ=

(2-9)

进而得到:

3T p pwm pwm

L K K =

(2-10)

3T I pwm pwm

R K K =

(2-11)

把系统的参数带入以上两式就能够求得PI 控制器的参数。

由图7可得内环电流控制系统的闭环传递函数为

21

(s)3T 1

2pwm

p

p

R R

s s K K φττ=

+

+

(2-12) 当PWM 逆变器的开关频率很高时,

T pwm

的值远小于1,可以将2

s 忽略,此时

系统的闭环传递函数变为:

1

(s )1

p

R

s K φτ=

+ (2-13)

式(2-13)所描述的是一个惯性环节,

减小电阻R 或增大比例系数pK ,可以提高

系统的动态特性。

3 dq 控制法

光伏逆变器的拓扑结构图如图2-1所示:

图7 光伏变流器的拓扑结构

在三相静止坐标系中,由基尔霍夫电压定律得光伏逆变器的数学表达式见公式(2-1):

(3-1)

在图2-1中,太阳能电池阵列输出的直流电经过光伏逆变器逆变为交流电输向电网,母线电容是连接电池侧和交流侧的中间环节,用于缓冲电池侧或者是交流侧的波动,同时将能量从电池侧输向电网。当光伏组件工作在稳定的环境条件下,其最大功率点电压是唯一的,如果光伏逆变器实现最大限度的能量转换,就需要母线电压稳定在该最大功率点处,因此保证母线电压的稳定可以减少因功率震荡产生的能量损耗。母线电压稳定是相对的,是跟随着直流侧电压的变化而变化的,如果控制电池侧电压恒定,那么母线电压就是恒定值,这是MPPT 功能实现的基础。MPPT 就是在当前光照强度和环境温度下,电池板电压在某一点处输出功率可以达到最大值,那么系统控制电池板工作于该电压状态下。当外界环境发生变化时,母线电压跟随最大功率点电压值而变化,因此母线电压值的稳定是相对的。

六个IGBT 是功率开关管。通过控制IGBT 的导通与关断,使其逆变的电压为交流电压。电网电压、电流在三相静止坐标系下都

是交流量,幅值和方向都在变化,不利于光伏逆变器的控制,因此需要将这些变量转换到二相旋转坐标系中。坐标转换原理遵循转换过程中功率相等或者幅值不变原则。由三相静止坐标系abc 向两相静止坐标系αβ的转换关系见公式(2-2)所示

:

(3-2) 由两相静止坐标系αβ向两相同步旋

转坐标系dq 的转换关系见公式(3-3)所示

:

(3-3) 由abc 坐标系向dq 坐标系中转换见公式

(2-4):

(3-4) 由dq 坐标系向abc 坐标系中转换见公式

(3-5):

(3-5) 光伏逆变器在两相旋转坐标系下的模

型由公式(3-1)与(3-4)得

:

(3-6) 式中、是网侧电流在d 、q 轴上的分量;、是网侧电压在d 、q 轴量;、是开关函数在d 、q 轴上的分量,是有功电压、无功电压分量。

在同步旋转坐标系下,规定d 轴与电网电动势U 的方向一致,并且与电网矢量同步旋转,这就是电网电压定向控制。

4 比例谐振控制法

4.1 比例谐振控制器

比例谐振(Proportional Resonant ,PR )控制器,理论成熟于20 世纪90 年代,由于其具有易于实现谐波补偿的特点,最先应用于有源滤波器及谐波补偿控制的设计当中。2004 年以后,开始逐渐被应用于单相及三相电流的控制之中。其思想主旨是在控制器传递函数的j ω轴上加入两个固定频率的闭环极点,形成该频率下的谐振,从而增大该频率点的增益(理论上,谐振使得该设计频率下的增益趋近于无穷大),实现对该频率下的正弦指令信号的无差跟踪,克服了PI 控制器无法无静差跟踪正弦信号的不足。如果换一个角度去思考,在三相并网逆变器的电压矢量定向控制中,是将αβ静止坐标系中的正弦量转化为了dq 同步旋转坐标系中的直流量,从而使得可以利用PI 控制器完成对直流量的无静态误差的控制,这里坐标转换的条件是,得到同步旋转的角速度。在比例谐振控制中,同样需要一个谐振频率,从数学本质上讲是一致的,即得到同步旋转的角速度。比例谐振控制利用谐振控制等效省去了坐标系变换的过程,使得这种控制方法可以对特定频率的正弦指令信号进行无差跟踪。

图4-1给出当采用比例谐振控制跟踪正弦并网电流指令的控制框图(该指令可以是

单相并网电流指令,也可以是三相静止坐标系中的αβ正弦指令,或者是三相自然坐标系中,任意一相的电流指令)。Gd(s) 为逆变器传递函数,Gf(s) 为滤波电感传递函数。

图8电流环PR 控制框图

采用比例谐振控制的输出电流如下:

(4-1)

该表达式可分为两部分:第一部分,即跟随电流指令部分,从闭环伯德图9中分析可知,在跟踪正弦指令时,比例谐振控制很好的解决了稳态误差的问题

图9 PR 与PI 控制器闭环伯德图

该式的第二部分为电网作用部分,由于

该部分的存在,电网会对所控并网电流造成影响,也就是说实际上并网电流的误差是由控制器跟踪正弦指令所造成的误差和电网电压造成的误差两部共同组成的。从电网作

用伯德图10分析中可知,比例谐振控制可以消除特定频率下电网的作用(该频率下的衰

减趋近于无穷)。

图10 PT 、PR 控制电压扰动伯德图

该式第二部分也说明了为什么在单相并网电流控制跟随正弦指令电流采用比例积分控制器时,必须加入网压前馈环节(用于消除第二部分误差),而采用比例谐振控制器可以不加入网压前馈。

综上所述,PR 控制器利用所加入的谐振环节,使得PR 控制器在跟随正弦电流指令时,可以消除稳态误差,并且消除网压基频对并网电流的影响,从而可以省去网压前馈环节的使用。

4.2 静止坐标系比例谐振并网控制

比例谐振控制器不仅可以运用于单相并网系统,还可以应用于三相系统电流控制当中。利用比例谐振控制器能够在静止坐标系下对交流信号进行无静差调节,无需dq 坐标旋转变换,不存在耦合项和前馈补偿项,且易于实现低次谐波补偿的特点,可以实现对三相并网逆变器并网电流的良好控制。

以三相电压型PWM 并网变流器为例,电压与电流采样点如图11所示。

图11 网压,并网电流采样点 图12 给出了静止坐标系PR 并网控制

框图,并网控制过程简述如下:

图12逆变器并网电流控制框图 (静止坐标系PR控制)

(1)通过外环控制或是并网功率指令计算得到并网瞬时电流值ia*、ib*、ic*;(2)通过坐标系变换,分别将并网瞬时电流指令值ia*、ib*、ic*及并网瞬时电流采样值ia、ib、ic,由自然坐标系变换到静止坐标系*、* 和、。

(3)*、* 和、的差值通过比例谐振(PR)控制,使实际的并网电流跟踪电流指令。(4)在电流控制器输出端加入不同的网压前馈环节。方式A 为无网压前馈,方式B 加入瞬时网压前馈,方式C 为加入正序网压前馈。

(5)将最终输出量由静止坐标系反变换至自然坐标系后,将所得调制波形输入PWM 比较寄存器进行脉宽调制。

正如前文所述,静止坐标系控制方法在控制理论上从消除静态误差的角度上讲可以不采用网压前馈环节。但是,如果不加入网压前馈环节,在系统启动或网压突变时,其响应速度仍然会受到影响。

5小结

(1)基于PID补偿器的电流控制。PID 控制方法是现代电子电力系统中应用范围最广,实际应用最多的一种控制理论,它具有容易实现、鲁棒性好、可靠性高等优点,缺点是PID 控制器的参数整定较难。在并网逆变系统中,并网电流与参考正弦信号进行比较,得到电流误差信号通过PID 补偿器变换获得输出正弦调制信号,把调制信号与固定频率的三角载波信号进行比较,就可得到逆变器的驱动控制信号,从而实现并网运行[13]。因为并网电流的参考信号是正弦信号,PID 补偿器无法实现无静态误差跟踪,因此实际系统中并网电流存在着幅度和相位上的静态误差。利用PID 补偿器可以对直流分量实现无静态误差跟踪[14],将abc 坐标系中的正弦信号的基波分量通过同步旋转坐标系,变换到dq直流坐标系中就可实现PID补偿器无稳态误差跟踪。但由于该方法在每个控制周期都必须完成一次abc 与dq 坐标的变换,加大了控制运算量。并且基波频率的坐标变换也只能抑制基波电流分量的稳态误差,如果要抑制谐波电流的稳态误差,必须增加相应频率的坐标变换[15]。

随着现代控制理论的发展和数字芯片的更新,一些研究人员尝试将新的控制策略与PID 控制相结合实现复合控制,例如自适应的PID 控制、模糊PID 控制、神经网络PID控制和智能PID控制等[16]。这类先进的PID控制方法加强了并网逆变系统对开关器件死区的补偿,减弱了电网电压和直流输入对控制系统的影响,大大提高了逆变系统的综合控制性能,但控制算法的运算量将大幅提高。

(2)比例谐振电流控制。比例谐振电流控制是在控制系统中加入一个比例谐振环节,控制器在谐振频率处有一个无限大的放大增益,电流稳态误差通过控制器后就可实现零误差的稳态跟踪。传统的比例谐振器G PR 一般是把基波频率处的增益设为无限大,谐波频率处的增益尽量小。如果要消除特定频率的谐波,就需要增加对应频率的比例谐振器G PRi。因受模拟元件精度和数控系统运算精度等因素影响,实际并网逆变系统的比例谐振补偿器的高增益受很大限制。为了降低数控系统中的运算难度,比例谐振控制器中的同步旋转坐标系可以用静止坐标系替换,该方法满足多数的单相或三相并网逆变系统的控制需要。准谐振控制器既能实现高增益又容易在实际系统中实现,目前应用也相当广泛。

(3)重复电流控制。重复控制是一种内模控制,它的控制环路包含一个有外部输入信

号的动力学数学模型,因此能够稳定的实现指令跟踪和干扰抑制错误!重复控制通过观测出重复性的系统扰动位置,记住每次扰动发生的位置,通过重复控制器有针对性地进行校正,使稳态误差最大限度趋近于零。但理想内模的极点一般分布在虚轴,控制系统刚好处于临界振荡状态。当系统参数发生变化时,系统非常可能变得不稳定[17]。重复控制对周期性强的扰动校正效果好,但一般校正时间较长;对周期性较弱的扰动校正效果差,且系统的稳定性无法保证。所以重复控制一般不能单独用于并网逆变器控制系统中,需要结合其他控制策略,才能保证系统的稳定性。

参考文献

[1]黄天富, 石新春, 魏德冰, 孙玉巍, 王丹. (2012). 基于电流无差拍控制的三相光伏并网逆变器的研究. 电力系统保护与控制, 40(11), 36-41.

[2]丁威. (2013). 基于LCL滤波器的三相并网逆变器的研究. 华中科技大学.

[3]张晋颖. (2006). 基于重复控制和PI双闭环控制的三相四桥臂逆变器. 燕山大学.

[4]孙孝峰, 孟令杰, 杨超. (2009). 三相逆变器采样模型重复控制研究. 中国电机工程学报(15), 36-42.

[5]张凯. (2000). 基于重复控制原理的CVCF-PWM逆变器波形控制技术研究. 华中理工大学.

[6]Oh, W. S., Yong, T. K., & Kim, H. J. (1995). Dead time compensation of current controlled inverter using space vector modulation method.International Journal of Electronics, 1, 374 - 378.

[7]Tomizuka, M., Tsao, T., & Chew, K. (1988). Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers. American Control Conference, 1988 (pp.860 - 866). IEEE.

[8]王进. (2006). PWM逆变器重复控制技术研究. 华中科技大学.

[9]齐乐. (2011). 单相光伏并网逆变器的研究与设计. 西安科技大学.

[10]黄沁. (2004). 中频电源波形控制策略研究. 中国科学院研究生院(电工研究所).

[11]张凯, 康勇, 熊健, 陈坚. (2000). 基于状态反馈控制和重复控制的逆变电源研究. 电力电子技术, 34(5), 9-11.

[12]Yeh, S. C., & Tzou, Y. Y. (1995). Adaptive repetitive control of a pwm inverter for ac voltage regulation with low harmonic distortion. Power Electronics Specialists Conference .pesc Record.annual IEEE, 1, 157 - 163.

[13]陶永华. (1998). 新型pid控制及其应用. 工业仪表与自动化装置(1), 57-62.

[14]Zhang, L., Norman, R., & Shepherd, W. (1996). Long-range predictive control of current regulated pwm for induction motor drives using the synchronous reference frame. IEEE Transactions on Control Systems Technology, 5(1), 119 - 126.

[15]Zargari, N. R., & Joos, G. (1993). Performance investigation of a current-controlled voltage-regulated pwm rectifier in rotating and stationary frames. IEEE Transactions on Industrial Electronics, 2(4), 1193 - 1198.

[16]Rim, C. T., Choi, N. S., Cho, G. C., & Cho, G. H. (1994). A complete dc and ac analysis of three-phase controlled-current pwm rectifier using circuit d-q transformation. IEEE Transactions on Power Electronics, 9(4), 390 - 396.

[17]陈宏. (2003). 基于重复控制理论的逆变电源控制技术研究. 南京航空航天大学.

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

光伏逆变器的隔离需求及实现

光伏逆变器的隔离需求及实现 过去几年,光伏(PV)产业飞速发展,其动力主要来自居高不下的油 价和环境忧虑。不过,成本仍然是妨碍其进一步扩张的最大障碍,要与传统的 煤电相竞争,必须进一步降低成本。在太阳能电池板以外,电子元件(如PV 逆变器)是导致高成本的主要元件。出于安全和可行性考虑,并网PV转换器 把获得的直流与交流网相隔离。隔离的作用通常是满足安全法规的要求,防止 直流注入交流网,因为结果可能会影响配电变压器和传统的瓦特小时电表。诸 如光耦合器一类的传统隔离解决方案无法满足PV电池板25年的典型寿命要求。同时,微逆变器逐渐占据主流,因为这种器件不但可以提高系统可用性,而且 能够大幅提升遮光条件下的性能。在这些情况下,PV逆变器安装在PV电池板的后部,那里的高温可能加速光耦合器的性能下降。本文旨在讨论PV逆变器 中的信号和电源隔离需求,探讨如何利用微变压器集成隔离功能以提高系统性 能和可靠性、降低系统尺寸和成本。 市场上主要有两类PV逆变器,即无变压器逆变器和变压器隔离逆变器。无变压器逆变器可能会受到大的接地漏电流和注入的直流的影响,因为大的电 池板电容以及PV电池板与交流网之间缺少隔离,如 除直流注入以外,并网逆变器还需满足电网的其他要求,比如总谐波失 真和单谐波电流水平、功率因数以及孤网运行情况的检测等。电网电压和注入 电网的电流必须精确监控。如果用于执行MPPT和栅极驱动功能的控制器位于 电池板一端,则必须将这些测量隔离开来。为使PV电池板发挥最大效率,需 要采用最大功率点跟踪(MPPT)算法。为了实现MPTT,还需监控电池板电 压和电流。当人们尝试串联多个PV逆变器以减少所需逆变器的数量时,电池 板电压可能变得非常高。从PV电池板高压侧进行的电流测量也需要隔离。

3000W光伏并网逆变器软件总体技术方案V2.0

3000W光伏并网逆变器软件总体技术方案

一、DSP控制方案 1、采用双DSP控制方案: 控制板的核心控制芯片采用美国TI公司的280X系列DSP 芯片TMS320F2808PZS(温度范围为-40°C~+125°C)。 2、主DSP控制板实现的主要功能如下: 主控DSP实现功能:前级BOOST、后级逆变控制、MPPT算法、锁相、模拟量采样、定时器管理、散热管理、输入输出逻辑管理、交直流量的计算、故障管理、IO口管理、I2C管理、开关机管理、485通讯管理、232通讯管理、LCD显示管理、绝缘阻抗检测及相关保护等功能。 (1)模拟量检测: 完成输出滤波电感电流IL、电网电压V_grid、Boost母线电压Vbus、电池电压Vpv、电池电流Ipv、散热器温度V_temp、绝缘阻抗检测V_R、漏电流检测I_leak、逆变器输出电压Vout_inv、1.5V参考电压、2.048V参考电压等11路模拟量的检测。 (2)数字控制: 完成MPPT、BOOST、全桥逆变电路的PWM控制、锁相功能。 (3)IO控制与检测: 完成输出继电器等的控制、绝缘阻抗继电器控制、正常灯与故障灯的控制、LCD显示功能控制、RS485的接收/发送控制功能。 (4)保护功能(待定): 完成母线过欠压、散热器过热,输出过流,电网过欠压、电网过欠频、LN短路、漏电流过大、绝缘阻抗过小、PV过压、PV过流、输入过功率、E2PROM读写错误、绝缘阻抗检测继电器故障、输出继电器故障、直流分量过大、一致性故障、SCI232通讯故障、DC传感器故障、CFCI故障、未连接电网故障、孤岛检测。; (5)LCD显示及驱动控制: IO口驱动 (6)EEPROM读写(存储数据待定): 完成ADC通道校正系数读写、系统配置信息读写、事件记录信息读写功能,I2C通讯。 (7)RS485通讯: 模块与后台通讯。 (8)RS232通讯: DSP之间通讯 3、从DSP控制板实现的主要功能如下: 两路RS232通讯管理、相关保护功能 二、控制板硬件方案 a)电源方案 由辅助电源板(输入为PV电压)给控制板提供正负12V电压。在控制板上将+12V再转换为以下各种电源: 3.3V(开关稳压,L5973); 2.048V(专用芯片稳压,REF3020AIDBZ); 1.8V(LM1117线性稳压)。 注:通讯电路的5V电源经12V由7805芯片完成。

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

逆变器技术要求

逆变器技术要求 1、可靠性指标 逆变器设计正常持续使用寿命应≥12年; 2、外观 逆变器的前后面板、外壳及其他外露部分应具备防护涂层,具备绝缘及三防特性,涂镀层应表面平整光滑、色泽一致和牢固; 3、端口及标志 输入端口正、负极、通信端口、输出端、保护性接地端和告警指示等应有明显的标志;4、产品型号和编码 逆变器产品型号命名和编制方法应遵循YD/T 638.3的规定执行; 5、结构及规格 逆变器应采用立式机柜安装方式,应采用先进工艺制成,体积小、重量轻。 逆变器规格尺寸应不大于:长x宽x高=700(mm)*700(mm)*1200(mm)。 逆变器应能够设置可靠的安装固定装置及减振紧固装置,满足车载要求。 6、环境条件 a)环境温度:-10℃~50℃;相对湿度:≤90%(40℃±2℃); b)贮存温度:-40℃~70℃;贮存相对湿度:≤90%(40℃±2℃); c)大气压力:70~106kPa d)工作环境应无导电爆炸尘埃,应无腐蚀金属和破坏绝缘的气体与蒸汽,应通风良好并远离热源; 7、输入电压额定值 逆变器输入直流电压额定值:51.2V;允许变化范围:43.2V~57.6V;

8、输出电压额定值及稳定精度 交流输出电压额定值:~380VAC;稳定精度<±1%; 9、输入电流额定值 逆变器输入直流电流额定值:195.3A/10KVA;允许变化范围:173.6A~231.5A/10KVA; 10、输出频率 逆变器的输出频率变化范围应不超过额定值50Hz的±1%; 11、输出功率额定值 单机输出功率额定值为10KVA; 12、额定输出效率 当输入额定电压,负载率40%~90%时,单机转换效率应≥90%; 13、产品输出要求 同规格单机逆变器应具备高效滤波同步电路,能够并联冗余输出和管理,负载不均衡度<5%; 14、功率模块要求 宜选用IGBT功率模块的PWM逆变器,正弦波输出; 15、负载等级 在允许工作电流下,逆变器连续可靠工作时间应≥12h,在125%额定电流下,逆变器连续可靠工作时间应大于或等于5min;在150%额定电流下,逆变器连续可靠工作时间应大于或等于60s; 16、空载损耗 在输入电压为额定值,负载为零时,逆变器空载损耗应不超过额定容量的3%,并具备休眠功能; 17、保护功能

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

逆变器的选型

逆变器主要技术指标有:额定容量;输出功率因数;额定输入电压、电流 电压调整率;负载调整率;谐波因数;总谐波畸变率;畸变因数;峰值子数等 通过对逆变器产品的考察,现对250kW、500kW逆变器产品及1000kW逆变器做技术参数比较: 本工程装机容量,10MWp,若选用单台容量大的逆变器,逆变器发生故障时,发电系统损失发电量较大;选用单台容量小的逆变设备,则设备数量较多,会增加投资后期的维护工作量;在投资相同的条件下,应尽量选用容量大的逆变设备,可在一定程度上降低投资,并提高系统可靠性,因此,从工程运行及维护考虑,本工程拟采用高效率、大功率逆变器,选用容量为 500kW,逆变器参数暂按如下参数进行设计

集中型逆变器 主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。目前国内的主流机型以 500kW、630kW 为主,欧洲及北美等地区主流机型单机功率 800kW 甚至更高,功率等级和集成度还在不断提高,德国 SMA 公司今年推出了单机功率 2.5MW 的逆变器。按照逆变器主电路结构,集中型逆变器又可以分为以下 2 种类型 集中型逆变器是目前大部分中大型光伏电站的首选,在全球 5MW 以上的光伏电站中,其选用比例超过 98% 通过对比集中型和组串型主流机型方案在 100MW 电站的运维数据(见表 5),发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。同时,在占地几千亩的百 MW 级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 1.1 并网光伏电站的基本结构 1.2 并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的

主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。 ◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c. 直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率

光伏并网逆变器测试规范

深圳市晶福源电子技术有限公司 并网逆变器电性能测试规范 (此文档只适用于金太阳标准) 拟制:彭庆飞/丁川日期:2012.11.19 审核:石绍辉日期:2012.12.01 复审:石绍辉日期:2012.12.07 批准:石绍辉日期:2012.12.07 文件编号:20111219 生效日期:2013.1.1版本号:VA.1

文件修订记录

目录 1目的 (6) 2适用范围 (6) 3定义 (6) 4引用/参考标准 (6) 5测试基本原则及判定准则 (6) 5.1测试基本原则 (6) 5.2 测试问题分类的基本原则和标准 (6) 5.4 质量判定准则 (6) 6测试仪器、测试工具、测试环境 (7) 6.1 测试仪器 (7) 6.2 测试工具 (7) 6.3 测试环境 (7) 7测试项目、测试说明、测试方法、判定标准 (7) 7.1基本性能测试 (7) 7.1.1 直流输入电压范围和过欠压测试 (7) 7.1.2 电网电压响应测试 (8) 7.1.3 电网频率响应测试 (9) 7.1.4 并网电流直流分量 (10) 7.1.5 并网电压的不平衡度测试 (10) 7.1.6 功率因数测试 (10) 7.1.7 效率测试 (11) 7.1.8 最大功率点跟踪(MPPT)测试 (11) 7.1.9 并网电流谐波测试 (13) 7.1.10 噪声测试 (13) 7.1.11 检测和显示精度测试 (14) 7.1.12 母线软启动及浪涌电流测试 (15) 7.1.13 自动开关机测试 (15) 7.1.14 逆变软启动测试 (16) 7.1.16 PV输入限流测试 (16) 7.1.18 输出隔离变压测试 (16) 7.1.19 恢复并网保护测试 (17) 7.1.20 输出过流保护测试 (17) 7.1.21 防反放电保护测试 (18) 7.1.22 极性反接保护测试 (18) 7.1.23 输入过载保护测试 (19) 7.1.24 孤岛保护测试 (19) 7.1.25 逆向功率保护测试 (21) 7.1.26 EPO紧急关机测试 (22) 7.1.29 EPO关机驱动电压测试 (22) 7.1.30 电容放电时间测试 (23) 7.1.31 死区时间测试 (23) 7.1.33 母线电容纹波电流测试 (23) 7.1.34 逆变滤波电容纹波电流测试 (24) 7.1.35 逆变电感纹波电流测试 (24) 7.2 故障模拟测试 (24) 7.2.1 母线软启动失败测试 (24) 7.2.3 输出变压器和电抗器过温模拟测试 (25) 7.2.5 逆变晶闸管/接触器开路故障模拟测试 (25) 7.2.7 风扇故障模拟测试 (26) 7.2.8 输出相序接反保护测试 (26)

单相光伏逆变器

小功率光伏并网逆变器控制的设计 摘要:阐述了一种小功率光伏并网逆变器的控制系统。该光伏并网逆变器由DC/DC变换器与DC/AC变换器两部分组成,其中DC/DC 变换器采用芯片SG3525来控制,DC/AC变换器采用数字信号处理器TMS320F240来控制。由于DSP实时处理能力极强,采用合适的算法能确保逆变电源的输出功率因数非常接近1,输出电流为正弦波形。该控制方案已经在实验室得到验证。 1 引言 21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。 2 系统工作原理及其控制方案 2.1 光伏并网逆变器电路原理

太阳能光伏并网逆变器的主电路原理图如图1所示。在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC 变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。 图1 电路原理框图 2.2 系统控制方案 图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC 变换器和后级的DC/AC逆变器组成。DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

4逆变器主要性能指标

4.1.4逆变器主要性能指标 逆变器的主要性能指标主要有: (1)额定输出电压 逆变器输入的直流电压允许在允许的波动范围内,逆变器应能稳定的输出 额定电压值,其精度要求如下: ①在系统稳定运行时,允许输出电压在一定的范围内波动,比如波动范围 不超过额定值的±3 %或者±5 %。 ②在系统的负载发生突变或存在严重干扰时,输出的电压偏差应小于额定 值的±8%或者±10%。 (2)额定输出容量 光伏并网逆变器的额定输出容量代表着逆变器向负载提供电力的能力,该 值越高,表明逆变器带载能力越强;当逆变器的负载是非阻性时,这时功率因 数小于1,逆变器的负荷能力将小于系统的输出额定容量,因此完善的逆变器需要有足够的额定输出容量以及承受过载能力。 (3)逆变输出交流电压的稳定度 它反映了逆变器输出交流电fE的稳定性,许多逆变装置会提供直流输入电 ffi发生波动与该逆变装置输出电JE的比值,即电应的调整率。同时逆变器还应具有负荷从0%增大到100%时的输出电压偏差百分比,即负载调整率。一个性能良好的逆变器,其电压调整率应不大于±3%,负载调整率应不大于±6%。(4)输出电压失真度 由于系统逆变输出的电压波形是正弦波,一般的会要求小于波形的最大失 真度(或称谐波含量),一般釆用波形总失真度表示。其中,单相并网逆变器的 输出电压失真度应小于10%。 (5)输出的额定频率 通常光伏并网逆变系统输出的交流电额定频率为50Hz的工频,在系统正常 运行时,频率偏差应小于±1%。 (6)负载功率因数 它反映了并网逆变器带非阻性负载的能力,当系统输出电压波形为正弦波 时,该值为0.7-0.9 (滞后),其中0.9为额定值。 (7)额定输出电流 它表示逆变器在规定的负载功率因数变化范围内输出的额定电流。 (8)额定输出效率 额定输出效率反映了逆变器对光伏电池输出功率的利用率,是光伏发电系 统的一项重要技术经济指标。实际中,光伏发电系统采用专门设计的逆变器来减少自身的功率耗损,从而达到提高整机效率的目的。 (9)保护功能 由于过电流或短路故障很容易打断逆变器的正常运行,因此逆变器必须具 有良好的自我保护功能,这是光伏发电系统正常、可靠运行保障。 (10)起动特性 它映了逆变器带载情况下起动的能力以及JH常运行工作状态下的动态性 能,逆变器应保证能够在额定负载下可靠起动。一般的,小型逆变器可采用软 起动的方式或限流起动的方法,这样可以保证逆变器的安全。 (11)噪声容限

非隔离式光伏并网逆变器漏电流抑制策略的仿真研究

非隔离式光伏并网逆变器漏电流抑制策略 的仿真研究 高文祥1 王明渝1 王立健1 邓湘鄂1 李翀 2 (1.重庆大学输配电装备及系统安全与新技术国家重点实验室 重庆 400030 2.河北省电力研究院电力计量所 石家庄 050021) 摘要光伏并网系统通常包含隔离变压器,以保障人身安全和抑制光伏系统和地之间的漏电流。但隔离变压器的引入,也增加了系统的损耗、体积以及成本。如果去掉隔离变压器,系统的效率会得到提高,但同时由于光伏阵列和地之间的电容,也会产生很大的漏电流。为了抑制漏电流,本文分析了漏电流产生的共模模型,并研究了基于三相四臂制的抑制策略。其中,前三桥臂采取传统的控制方法,第四桥臂独立控制。仿真结果表明该控制策略可以很好的抑制漏电流。 关键词:隔离变压器 漏电流 共模模型 三相四桥臂 中图分类号: Simulative Research on the Strategy of Restraining the Leakage Current of Non-isolated Photovoltaic Inverter Gao Wenxiang1Wang Ming-yu1 Wang li-jian1 Deng Xiang-e1 Li Chong2 (1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing 400030 China 2. Power Measurement of the Hebei Electric Power Research Institute Shi Jiazhuang 050021 China) Abstract Grid connected PV systems usually include an isolated transformer. The transformer provides personal protection and avoids leakage currents between PV systems and the ground. However, it increases the loss, size and cost. If no transformer is used, there will be an increase of efficiency, and also great leakage current due to capacitance between the PV array and earth. To suppress the leakage current, a common-mode model is introduced, and a strategy based on three-phase four-leg are studyed in this paper. The first three legs is controlled with the traditional methods and the fourth leg is controlled independently. The simulation results show that the strategy can restrain the leakage current well. Key words: isolated transformer, leakage current, common-mode model, three-phase four-leg 随着不可再生资源的枯竭,光伏产业的发展受到世界各国的大力支持。中国的光伏产业发展十分迅速,并计划在2020年实现装机容量达到20GW。为了节省发电成本,光伏系统效率的提高显得越来越为重要。基于太阳能阵列的能量转换效率相对低(约在15%左右)的事实,所以,就以最小的太阳能面板获得最多的输出功率来说,高效逆变器结构具有非常重要的意义。在功

第五章--单相并网逆变器

第5章单相并网逆变器 后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。 光伏并网逆变器拓扑结构 按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。 5.1.1推挽式逆变电路 推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。 U 图5-1 推挽式逆变器电路拓扑 推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。因此适合应用于直流母线电压较低的场合。此外,变压器的利用率较低,驱动感性负载困难。推挽式逆变器拓扑结构如图5-1 所示。 5.1.2半桥式逆变电路 } 半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥

式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。 图5-2 半桥式逆变器电路拓扑 5.1.3全桥式逆变电路 全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。这意味着输出功率相同时,全桥逆变器的输出电流和通过开关元件的电流均为半桥式逆变电路的一半。 本文采用的是单相全桥式逆变器,其拓扑结构如图5-3 所示,它结构简单且易于控制,在大功率场合中广为应用,可以减少所需并联的元件数。其不足是要求较高的直流侧电压值。 图5-3 单相全桥逆变器电路拓扑 光伏并网逆变器的控制 光伏并网逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。以电流源为输入的逆变器,其直流侧需要串联大电感提供稳定的直流电流输入,但由于此大电感往往会导致系统动态响应差,因此当前大部分并网逆变器均采用以电压源输入为主的方式,即电压型逆变器。采用电压型逆变主电路,可以实现有源滤波和无功补偿的控制,在实际中已经得到了广泛的研究和应用,同时可以有效地进行光伏发电、提高供电质

并网逆变器的电流控制方法

并网逆变器的电流控制方法敬德,1140319060;凯,1140319070;指导老师:王志新(交通大学电气工程系,,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球围包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让

并网逆变器电流控制方法

并网逆变器的电流控制方法陈敬德,1140319060;杨凯,1140319070;指导老师:王志新(上海交通大学电气工程系,上海,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球范围内包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让其输出各项性能指标都满足要求的波形。目前所用的逆变器可以分为以下两类:一类是恒压恒频逆变器,这类逆变器在各种电源持续供电的领域应用广泛,它能够输出电压幅值和频率都是特定值的交流正弦波,简称CVCF 逆变器。第二类是变压变频逆变器,这种逆变器主要用在电动机的调速系统中,它能够输出特定的幅值电压和频率,简称VVVF 逆变器[2]。 本文将对并网逆变器的几种常见控制方法进行总结,如传统的PI控制、基于dq 旋转坐标系的控制、重复控制及比例谐振控制。给出了框图和数学模型,并指出了它们各自的优缺点。 1重复控制 1.1重复控制思想 重复控制是基于内模原理的一种控制方法。所谓内模原理,即在一个闭环调节系统中,在其反馈回路中设置一个内部模型,使该内部模型能够很好的描述系统的外部特性,通过该模型的作用可使系统获得理想的指令跟踪特性,具有很强的抗干扰能力

相关文档