文档库 最新最全的文档下载
当前位置:文档库 › 厌氧氨氧化菌的介绍

厌氧氨氧化菌的介绍

厌氧氨氧化菌的介绍
厌氧氨氧化菌的介绍

厌氧氨氧化菌的介绍

厌氧氨氧化菌

参与厌氧氨氧化过程的细菌称为厌氧氨氧化菌。一般认为厌氧氨氧化菌是自养细菌,以二氧化碳或碳酸盐作为碳源,以铵盐作为电子供体,以亚硝酸盐/硝酸盐作为电子受体

厌氧氨氧化菌(anaerobic ammonium oxidation, Anammox)是一类细菌,属于浮霉菌门,“红菌”是业内对厌氧氨氧化菌的俗称,通过生物化学反应,它们可以将污水中所含有的氨氮转化为氮气去除。它们对全球氮循环具有重要意义,也是污水处理中重要的细菌。

厌氧氨氧化(anaerobic ammonium oxidation, Anammox)菌为自养型细菌,可在缺氧条件下以氨为电子供体,亚硝酸盐为电子受体,产生N2。已发现的厌氧氨氧化菌均属于浮霉状菌目(Planctomycetales)的厌氧氨氧化菌科(Anammoxaceae),共 6 个属,分别为Candidatus Brocadia、Candidatus Kuenenia、Candidatus Anammoxoglobus、CandidatusJettenia、Candidatus Anammoximicrobium moscowii 及Candidatus Scalindua。其中,Candidatus Scalindua 发现于海洋次氧化层区域,称之为海洋厌氧氨氧化菌,其余5 个属均发现于污水处理系统中,称之为淡水厌氧氨氧化菌。厌氧氨氧化细菌对全球氮循环具有重要意义,也是污水处理中重要的细菌。

厌氧氨氧化菌特性

在厌氧氨氧化过程中,羟胺和肼作为代谢过程的中间体。和其它浮霉菌门细菌一样,厌氧氨氧化菌也具有细胞内膜结构,其中进行氨厌氧氧化的囊称作厌氧氨氧化体(anammoxosome),小分子且有毒的肼在此内生成。厌氧氨氧化体的膜脂具有特殊的梯烷(ladderane)结构,可阻止肼外泄,从而充分利用化学能,且避免毒害

1、个体形态特征

厌氧氨氧化菌形态多样,呈球形、卵形等,直径0.8-1.1μm。厌氧氨氧化菌是革兰氏阴性菌。细胞外无荚膜。细胞壁表面有火山口状结构,少数有菌毛。.细胞内分隔成3部分:厌氧氨氧化体(anammoxosome)、核糖细胞质

(riboplasm )及外室细胞质(paryphoplasm ) 。核糖细胞质中含有核糖体和拟核,大部分DNA存在于此。厌氧氨氧化体是厌氧氨氧化菌所特有的结构,占细胞体积的50%-80%,厌氧氨氧化反应在其内进行。厌氧氨氧化体由双层膜包围,该膜深深陷入厌氧氨氧化体内部。

2、细胞壁和细胞膜化学组分特征

厌氧氨氧化菌的细胞壁主要由蛋白质组成,不含肽聚糖。细胞膜中含有特殊的阶梯烷膜脂,由多个环丁烷组合而成,形状类似阶梯。在各种厌氧氨氧化菌中,阶梯烷膜脂的含量基本相似。疏水的阶梯烷膜脂与亲水的胆碱磷酸、乙醇胺磷酸或甘油磷酸结合形成磷脂,构成细胞膜的骨架。细胞膜中的非阶梯烷膜脂由直链脂肪酸、支链脂肪酸、单饱和脂肪酸和三萜系化合物组成。曾一度认为阶梯烷膜脂只存在于厌氧氨氧化体的双层膜上,其功能是限制有毒中间产物的扩散。目前认为阶梯烷膜脂存在于厌氧氨氧化菌的所有膜结构上(包括细胞质膜) ,它们与非阶梯烷膜脂相结合,以确保其他膜结构的穿透性好于厌氧氨氧化体膜。

菌属(分类)

1、Candidatus“Brocadia anammoxidans”

Strous等研究了SBR反应器中厌氧氨氧化污泥(优势菌为B.anammoxidans)的生理学参数。富集培养得到的细菌70%以上是一种优势自养菌。经过pH7.4、20 mmol/L的K2HPO/KH2P04缓冲剂和2.5%的戊二醛混合液处理后,在电子显微镜下表现出不规则的微生物特性。采用改进的Percoll密度梯度离心分离法分离得到了非常纯的细胞悬浮物,在每200~800个细菌中含有不到1个杂细菌。这些纯化的厌氧氨氧化菌活性很高,从中提取的DNA通过PCR扩增和 1 6S rRNA的分析,证明B.anammoxidans是厌氧氨氧化的功能微生物,确认了厌氧氨氧化菌是Planctomycetales序列中自养菌的一个新成员,被命名为CandidatuJ“B.anammoxida”。

2、Candidatus “Kuenenia stuttgartie nsis”

Candidatus“K.stuttgartiensis”菌是从德国和瑞士几个污水处理厂的生物膜反应器中发现的。Egli等的研究结果表明,k.stuttgartiensis 与B.anammoxidans的作用方式类似,电镜显示其细菌结构也类似。但它对磷酸盐有更高耐受性(20 mmol/L),对亚硝酸盐耐受性则为

13 mmol/L,在细胞密度更低的情况下有活性。最大的厌氧氨氧化活性(以单位蛋白质计)为26.5 nmol/(mg·min),比B.anammoxidans低。pH范围是6.5~9.0,最佳为8.0,最佳温度为37℃。研究发现,当温度升至45℃时观察不到厌氧氨氧化活性,并且当温度回降至37℃时厌氧氨氧化活性不恢复;在ll℃时的活性约为37℃的24%,可见它适宜生存于中温偏碱性环境。

应用

厌氧氨氧化工艺

Mulder等在厌氧流化床中发现了厌氧氨氧化。后来,Van de Graaf等和Bock 等发现了以亚硝酸盐为电子受体的厌氧氨氧化过程。郑平等研究了厌氧氨氧化菌混培物的动力学特性[141。Fux Christian等进行中试试验研究,首先在连续搅拌反应器中完成氨氧化,58%的NH4-N转化为NO2;在SBR中完成厌氧氨氧化,除N速率为2.4 kg/(m·d),除N率达90%;Sliekers等在气提式反应器中发现除N速率达8.9 kg/(m·d),这个除N速率是实验室所获得的除N速率的20倍。Dapena-Mora等研究中发现在气提式反应器中N负荷率为2.0 g/(L·d),最大比厌氧氨氧化活性(MSAA)为0.9 g/(g·d);在SBR中N负荷率为0.75 g/(L·d),MSAA为0.4 g/(g·d),除N02率达99%。

SHARON-ANAMMOX联合工艺

Jetten等利用SHARON-ANAMMOX联合工艺对污泥消化出水进行了研究。SHARON反应器总氮负荷为0.8 kg/(m·d),转化53%的总氮(39%NO2,14%N03),用SHARON反应器的出水作为厌氧氨氧化流化床反应器的进水,在限制N02的厌氧氨氧化反应器中N02全部被除去,试验中NH4-N的去除率达83%。Van Dongen等应用SHARON-ANAMMOX联合工艺在工厂中长时间稳定运行。CANON工艺

Dijkman和Strous描述了一个新的生物脱氮工艺CANON,在限氧条件下(<0.5%空气饱和度)得到了好氧和厌氧氨氧化茵的混培物,NH4被需氧氨氧化菌(Nitrosomonas和Nitrososira)氧化为亚硝酸盐,然后被厌氧氨氧化菌转化为氮气,此过程依赖于2种白养微生物菌群(Nitrosomonas需氧菌和Planctomycete厌氧氨氧化菌)的协同作用。CANON在2种不同的反应器(SBR和恒化器)中进行了研究,容积负荷(N)0.1 kg/(m·d),除氮达92%。Sliekers等发现在限氧条件以及

好氧氨氧化菌和厌氧氨氧化菌都有合适的负荷率时,SBR反应器中除N负荷率达0.3 kg/(m·d),NH4主要转化为N2(85%),其余的转化为硝酸盐(15%)。Sliekers 等用气提式反应器,除N负荷率达1.5 kg/(m·d),这个速率是以前实验室获得的速率的20倍。Hao等[181开发了在生物膜反应器中混合硝化(氨氧化+亚硝酸盐氧化)、厌氧氨氧化的数学模型,评价了CANON过程的温度、流速。

甲烷化与厌氧氨氧化耦合

Jetten等通过污泥消化产甲烷除去COD,N部分氧化至NO2,然后以NH4为电子供体反硝化,实现了甲烷化和厌氧氨氧化。Zhang运用EGSB反应器技术,COD的去除率97%,N02去除率100%,容积负荷达6.56 g/(L·d)(COD)和0.99/(L·d)(N),实现了甲烷化、反硝化与厌氧氨氧化的耦合。

浅谈厌氧氨氧化及其工艺的研究

浅谈厌氧氨氧化及其工艺的研究 摘要厌氧氨氧化工艺是生物脱氮领域里不断发展起来的新工艺。由于厌氧氨氧化生物脱氨技术在经济方面的优势,成为近来研究的热点。目前,我国对该技术的研究主要处于实验室小试阶段,缺少中试及以上规模厌氧氨氧化工程的实际应用。综述列举了厌氧氨氧化工艺的应用及出现的一些问题,从而为该技术更深入的研究奠定了基础,同时对该技术的进一步发展提出了展望。 关键词厌氧氨氧化;SHARON/ANAMMOX;OLAND;前景 目前,随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,引起了严重的水体环境污染和水质富营养化问题,许多湖泊水体已不能发挥其正常功能进而影响了工农业和渔业生产。近年来,国内外学者一直在寻找一种低能耗、高效率的新型生物脱氮技术。就目前情况而言,厌氧氨氧化由于是自养的微生物过程、不需要外加碳源以及反硝化、污泥产率低,成为国内外学者研究的热点问题。 1厌氧氨氧化原理 厌氧氨氧化反应是由奥地利理论化学家Engelbert Broda在1977年根据反应的自由能计算而提出的。后来在荷兰Delft技术大学一个中试规模的反硝化流化床中发现了ANAMMOX工艺。厌氧氨氧化是指在厌氧或缺氧条件下,微生物直接以NH4+作为电子供体,以NO3-或NO2-作为电子受体,将NH4+、NO3-或NO2-转变成N2的生物氧化过程。反应方程式如下: NH4++0.85O2→0.435N2+0.13N03-+1.3H2O+1.4H+ (1) ANAMMOX工艺在发生反硝化反应时不需外加碳源。因为反应所产生的吉布斯自由能能够维持自养细菌的生长,这一现象是摩德尔等对使用硫化物作电子供体的流化床反应器中自养菌反硝化运行工况进行仔细观测和研究发现的。 1)存在的问题。厌氧氨氧化工艺启动缓慢,世界上第一座生产性装置的启动时间长达3.5年,过长的启动时间是其工程应用的重大障碍。 厌氧氨氧化菌为自养菌,以CO2为碳源,无需有机物,因此厌氧氨氧化工艺适于处理C/N值较低的含氮废水。在大多数的实际废水中,有机物往往与氨氮共存,不利于厌氧氨氧化菌的生长。厌氧氨氧化的基质为氨和亚硝酸盐,均具毒性,尤以亚硝酸盐毒性更大。厌氧氨氧化工艺的运行稳定性是其工程应用必须解决的重大难题。 2)解决的方法。研究证明,厌氧氨氧化工艺的启动过程依次呈现菌体自溶、活性迟滞、活性提高和活性稳定等4个阶段。为此可采取如下控制对策:①在菌体自溶阶段,消除接种物中的残留有机物,控制反硝化所致的pH过高;②在活

红菌与厌氧氨氧化菌

红菌与厌氧氨氧化菌 摘要: 红菌为野生珍贵的食用真菌。食用能增强人体免疫力,有补血养元、抗肿瘤之神功。但红菌的菌丝不能分离,故至今无法进行人工栽培,日见珍贵。而平日人们俗称的“红菌”,其实是厌氧氨氧化菌,成熟的厌氧氨氧化污泥呈现美丽的深红色,所以俗称红菌。厌氧氨氧化菌是一类细菌。它们对全球氮循环具有重要意义,也是污水处理中重要的细菌。 关键词: 红菌厌氧氨氧化菌微生物污水处理 引言: 近年来,有关厌氧氨氧化过程这一特殊的生化机制以及微生物类群的研究引起了人们的极大关注,尤其是这类微生物的生态环境可能比人们预想的范围更加广泛。对于这类菌的深入认识将大大促进它们在污水处理工程中的应用。而厌氧氨氧化菌的俗称“红菌”也是一种极其珍贵的食用真菌,其独特疗效使其日渐珍贵。 一、红菌 1、红菌简介 红菌(属名Rhodobium),又名正红菇、真红菇,长于原始森林中的一种珍稀野生食用菌,其生长条件十分讲究,只有在气温高,雨水多的夏秋季节原始森林中才有生长红菌的可能,除此以外的其它山地便无法长出。主要产在广西省容县浪水乡、藤县一带,尤其在浪水乡、象棋等红菌特别出名。 2、野生红菌成分 红菌含高蛋白及丰富的维生素B、D、E,碳水化合物,氨基酸,人体必须的微量元素(铁、锌、硒、锰等)等,红菌的菌丝不能分离,故至今无法进行人工栽培,日见珍贵。红菌身含有5种多糖、16种氨基酸和28种脂肪酸。多糖含量约为2.47%,其中单糖和寡糖占总糖的33.9%,氨基酸含量14.7%,其中人体必需、半必需氨基酸占氨基酸含量的54.4%。 3、红菌个体形态特征 红菌菌盖呈扁半球形,中部下凹,深菜红色、紫红色,菌肉白色,汤色粉红。生长环境无污染,夏秋人工采摘、晒干,数量稀少。 4、野生红菌功能 红菌为野生珍贵的食用真菌,它具有安神补血,特别适合产妇及贫血者食用,其味较之

【CN110029075A】一种利用活性污泥快速富集厌氧氨氧化菌的培养基及其制备方法与应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910207262.8 (22)申请日 2019.03.19 (71)申请人 哈尔滨工业大学 地址 150001 黑龙江省哈尔滨市南岗区西 大直街92号 (72)发明人 邢德峰 房安然 冯堃 李威  (74)专利代理机构 哈尔滨市阳光惠远知识产权 代理有限公司 23211 代理人 田鸿儒 (51)Int.Cl. C12N 1/20(2006.01) C02F 3/34(2006.01) C12R 1/01(2006.01) (54)发明名称 一种利用活性污泥快速富集厌氧氨氧化菌 的培养基及其制备方法与应用 (57)摘要 本发明公开了一种利用活性污泥快速富集 厌氧氨氧化菌的培养基及其制备方法与应用,涉 及水处理技术领域,所述培养基包括氯化铵、亚 硝酸钠、氯化钙、硫酸镁、磷酸二氢钾、碳酸氢钾、 微量元素母液I、微量元素母液II,还包括活性污 泥。本发明改变了传统技术培养基中氨氮和亚硝 酸盐氮的浓度比,用本发明的利用活性污泥快速 富集厌氧氨氧化菌的培养基配方的60天后,属于 厌氧氨氧化细菌的Candidatus Brocadiales的 含量已达到整个群落的5%以上。其丰度比富集 培养之前含量高出50倍。整个富集过程中氨氮和 亚硝酸盐氮去除率均能达到90%以上。权利要求书2页 说明书5页 附图1页CN 110029075 A 2019.07.19 C N 110029075 A

权 利 要 求 书1/2页CN 110029075 A 1.一种利用活性污泥快速富集厌氧氨氧化菌的培养基,其特征在于:包括氯化铵、亚硝酸钠、氯化钙、硫酸镁、磷酸二氢钾、碳酸氢钾、微量元素母液I、微量元素母液II,还包括活性污泥。 2.根据权利要求1所述的利用活性污泥快速富集厌氧氨氧化菌的培养基,其特征在于:所述污泥为从污水处理厂中取得的二沉池污泥。 3.根据权利要求1所述的利用活性污泥快速富集厌氧氨氧化菌的培养基,其特征在于:所述各组分在活性污泥中的浓度分别为:氯化铵267.5-1605mg/L、亚硝酸钠345-2070mg/L、氯化钙150mg/L、硫酸镁300mg/L、磷酸二氢钾30mg/L、碳酸氢钾1250mg/L、微量元素母液I1.25ml/L、微量元素母液II1.25ml/L。 4.根据权利要求1-3所述的利用活性污泥快速富集厌氧氨氧化菌的培养基,其特征在于:所述微量元素母液I(EDTA 15g/L、硫酸锌0.4g/L、氯化钴0.25g/L、氯化锰1g/L、硫酸铜0.23g/L、硒酸钠0.23g/L、钼酸钠0.25g/L、氯化镍0.17g/L、H3BO4 0.014g/L、钨酸钠0.05g/ L);微量元素母液II(EDTA6.25g/L、硫酸亚铁6.25g/L)。 5.一种权利要求1-3任一项所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的制备方法,其特征在于:从污水处理厂中取得二沉池污泥,厌氧沉降24-72小时,除去上清液,加入氯化铵、亚硝酸钠、氯化钙、硫酸镁、磷酸二氢钾、碳酸氢钾、微量元素母液I、微量元素母液II,混合均匀。 6.根据权利要求5所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的制备方法,其特征在于:各组分在活性污泥中的浓度分别为:氯化铵26 7.5-1605mg/L、亚硝酸钠345-2070mg/L、氯化钙150mg/L、硫酸镁300mg/L、磷酸二氢钾30mg/L、碳酸氢钾1250mg/L、微量元素母液I1.25ml/L、微量元素母液II1.25ml/L。 7.根据权利要求5或6所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的制备方法,其特征在于:所述微量元素母液I(EDTA 15g/L、硫酸锌0.4g/L、氯化钴0.25g/L、氯化锰1g/L、硫酸铜0.23g/L、硒酸钠0.23g/L、钼酸钠0.25g/L、氯化镍0.17g/L、H3BO40.014g/L、钨酸钠0.05g/L);微量元素母液II(EDTA6.25g/L、硫酸亚铁6.25g/L)。 8.一种权利要求1-3任一项所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的应用,其特征在于:包括以下步骤: 一、将从污水处理厂中取得的活性污泥经过厌氧沉降后,除去上清液后待用; 二、测定污泥的MLSS浓度; 三、依照MLSS浓度来取用活性污泥固体物的总重量为20g的活性污泥放入连续流厌氧氨氧化反应器; 四、配制氯化铵浓度为267.5-1605mg/L、亚硝酸钠浓度为345-2070mg/L的培养基营养液; 五、将培养基营养液配制好之后,倒入连续流厌氧氨氧化反应器的进水箱,曝氮气20分钟之后密闭进水箱; 六、连续进水进行厌氧氨氧化反,保证反应器连续运行。 9.根据权利要求8所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的应用,其特征在于:步骤一所述厌氧沉降,时间为24-72小时;步骤二所述测定方法为国标法。 10.根据权利要求8所述的利用活性污泥快速富集厌氧氨氧化菌的培养基的应用,其特 2

厌氧氨氧化工艺如何处理污水

厌氧氨氧化工艺如何处理污水 1 引言 随着科技的迅速发展,工业化和城市化程度的不断提高,水体富营养化的问题日益严重,使得水资源更加紧张.而氮是引起水体富营养化的主要因素.所以越来越多的国家和地区制定了氮排放标准.因此,研究开发经济、高效的脱氮技术已成为水污染控制工程领域的研究重点. 生物处理法作为19 世纪末废水处理新型技术,与物化处理法相比具有处理费用低,不会对环境造成二次污染等优点.因此,生物处理法至今已成为世界各国污水二、三级处理的主要手段.众所周知氮元素可在相应微生物的作用下转化成各种氧化态和化学形式(目前已知的生物氮循环途径如图 1所示),因此在污水生物脱氮处理中衍生了大量组合工艺.而厌氧氨氧化过程是目前最捷径的生物脱氮过程,因此被誉为最具前景的污水脱氮工艺.为了更好的将厌氧氨氧化工艺应用到实际规模中,本文着重对厌氧氨氧化菌的发现及其与污水处理中常见细菌的协同与竞争关系进行了详细的综述.旨在为厌氧氨氧化工艺在污水生物处理中的应用提供理论依据,并为今后厌氧氨氧化工艺的研究方向提出一些意见. 图 1 氮循环示意图 2 厌氧氨氧化概述 早在1976年,Broda预言在自然界中存在一种以NO-2或NO-3作为电子受体把NH+4氧化成N2的化能自养型细菌.直到1995年,Mulder等处理酵母废水的反硝化流化床反应器内发现了NH+4消失的现象,从而证实了厌氧氨氧化反应的存在. 厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)是在缺氧条件下以亚硝酸盐(NO-2)为电子受体将氨(NH+4)转化成氮气(N2),同时伴随着以亚硝酸盐为电子供体固定CO2并产生硝酸盐(NO-3)的生物过程.执行该过程的微生物称之为厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB),其化学计量学方程式如下: 1NH+4+1.32NO-2+0.066HCO-3+0.13H+→ 1.02N2+0.26NO-3+0.066CH2O0.5N0.15+ 2.03H2O

厌氧氨氧化反应器资料总结

厌氧氨氧化的反应器 一、全球运行的厌氧氨氧化的工程实例 表1-2 全球运行的厌氧氨氧化工程实例 Table 1-2 Application of ANAMMOX in the world SHARON-ANAMMOX工艺由荷兰TU Delft大学研究开发,该工艺流程分成两段,第一段是在好氧反应器中将一半的NH4+转化为NO2-,第二段是在厌氧反应器中将剩余的NH4+和NO2-一起直接转化为N2。

图1-7短程硝化与厌氧氨氧化结合工艺流程 Figure1-7The combined SHARON-ANAMMOX process 二、SHARON-ANNOMMOX工艺反应器资料 AN A MM OX的生化反应式为: 因此AN A MM OX反应器进水要求有氨氮和亚硝氮且比例最好为1:1。而S H AR ON工艺的生化反应式为: SHARON(短程反硝化)反应装置 SHARON常用SBR、CSTR反应装置

SHARON(短程反硝化)反应条件控制 (1)当溶解氧(DO)浓度在1.1-1.5mg/L、氨氮负荷0.029kgNH4+--N/KgVSS.d 和PH 值在7.3-7.8时,可以使亚硝酸盐得到稳定积累,出水亚硝态/总硝态氮大于90%,出水NO2--N/NH4+-N接近1.0,满足厌氧氨氧化的进水要求。(2)实现短程硝化的关键是在硝化阶段实现NO2--N的积累,国内外的研究都是着眼于积累NO2--N的控制条件。根据国内外文献报道,SHARON工艺的操作温度以30~35℃为宜,pH适应控制在7.4~8.3之间,溶解氧浓度己控制在1.0~1.5mg/L范围,供氧方式可采用间歇曝气。基质中游离氨浓度调控在5~10mg/L范围内有利于实现短程硝化,污泥(以VSS计)氨负荷为 0.02~1.67kg/(kg·d),泥龄在1~2.5天。 (3)大量国内外试验表明,在废水温度较高、Do较低条件下,利用亚硝酸菌和硝酸菌的不同生长速度,通过控制水力停留时间,将生长速率较慢的硝酸菌冲走,使亚硝酸菌大量积累,可以使短程反硝化成功运行。 ANNOMMOX反应器

厌氧氨氧化菌特性及其在生物脱氮中的应用_祖波

厌氧氨氧化菌特性及其在生物脱氮中的应用 *祖 波1 张代钧1,2** 白玉华1 (重庆大学环境科学系 重庆 400030)1 (重庆大学西南资源开发及环境灾害控制工程教育部重点试验室 重庆 400030)2 *国家自然科学基金资助(No .50378094) 教育部优秀青年教师基金项目(No .教人司[2003]355号) **通讯作者 Tel /Fax :86-023-********,E -mail :dzhang @cqu .edu .cn 收稿日期:2005-05-09,修回日期:2005-07-11 摘要:在无分子氧环境中,同时存在NH +4和NO -2时,NH +4作为反硝化的无机电子供体, NO -2作为电子受体,生成氮气,这一过程称为厌氧氨氧化。目前已经发现了3种厌氧氨氧 化菌(B rocad i a ana mm oxidan s ,K uenenia st u tt gartiensis ,Sca li ndua s or ok i n ii );对厌氧氨氧化 菌的细胞色素、营养物质、抑制物、结构特征和生化反应机理的研究表明,厌氧氨氧化菌 具有多种代谢能力。基于部分硝化至亚硝酸盐,然后与氨一起厌氧氨氧化,以及厌氧氨氧 化菌与好氧氨氧化菌或甲烷菌的协同耦合作用,提出了几种生物脱氮的新工艺(ANAM -M OX 、SHA RON -ANAMM OX 、CANON 和甲烷化与厌氧氨氧化耦合工艺)。 关键词:厌氧氨氧化菌,ANAMM OX ,CANON ,S HARON -ANAMM OX 中图分类号:X 703 文献标识码:A 文章编号:0253-2654(2006)01-0149-05 The Character and App lication of Ana mm ox Bat er i a i n W aste wat er B i ot reat m ent *ZU Bo 1 ZHANG Dai -Jun 1,2** B A IYu -H ua 1 (D e part m en t ofE nvir on m en t a lS cience ,Cho ngq i ng Un iver sity ,Cho ngqi ng 400030) 1(Key Lab or a t or y fo r t he E xp l oit a tio n ofS o u t h wester n R es o urce &the Envi r on men t a lD is asterCon t r o l Eng i neering ,M i n istr y of Educati o n ,Chongqi ng 400030)2Ab stract :An aerob i c amm on i u m oxi dati on i s a ne w p roces s in w h i ch a mm on i u m is oxidized w ith n itrit e as t h e e - l ectron accep t or under anox i c cond iti ons ,prod u ci ng d i n itrogen gas .Th ree ana mm ox b act eria (B r o cad i a ana m - m oxi da n s ,Kuene n i a st u tt gartie n sis ,Sca li ndua s o ro ki n ii )have been f ound recentl y .Th e investigation on cyto -ch ro m e s pectra ,nu triti on ,i nhibit ors ,cell struct u res and b i oche m istry reacti on m echan is m s i n ana mm ox bact eri - a i nd icat ed t hat ana mmox bacteria had t he poten ti a l of d i verse me t abo l ic t ypes .Several novelm i cro b ial n itrogen re m ovalp rocess esh ave been devel op ed (ANA MMOX process 、S HARON -ANAMMOX p rocess 、CANON p rocess an d i n t egrati on ofm ethanogenesisw it h anaer obic a mmon i u m oxi dation ). K ey words :Ana mmox bact eri a ,ANAMMOX ,CANON ,S HAR ON -ANA MMOX 1977年B roda 指出,化能自养细菌能以NO -3、CO 2和NO -2作为氧化剂把NH +4氧化 为N 2。推测自然界可能存在以NO -2为电子受体的厌氧氨氧化反应[1]。后来有研究发现氨氧化菌N itroso m onas europaea 和N itr os omonas e u tropha 能同时硝化与反硝化,利用NH 2OH 还原NO -2或NO 2,或者在缺氧条件下利用NH +4作为电子供体,把NH +4转化为N 2。在利用NO 2为电子受体时,其厌氧氨氧化的最大速率(以单位蛋白质计)约为2nm ol /(m in m g )。然而在反硝化的小试实验中发现了一种特殊自养菌的优势微生物群体,它以NO -2为电子受体,最大比氨氧化速率(以单位蛋白质计)为55nmo l /(m i n m g )。

厌氧氨氧化基础知识累积

一、世界Anammox的工程应用概述 (2016.12.19生物工程学报)厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。 厌氧氨氧化(Anaerobicammonium oxidation,ANAMMOX) 工艺,最初由荷兰Delft工业大学于20 世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。它以20 世纪90 年代发现的ANAMMOX 反应(1) 为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX 工艺具有脱氮效率高、运行费用低、占地空间小等优点,在污水处理中发展潜力巨大。目前该工艺在处理市政污泥液领域已日趋成熟,位于荷兰鹿特丹Dokhaven 污水厂的世界上首个生产性规模的ANAMMOX 装置容积氮去除速率(NRR) 更是高达9.5 kg N/(m3·d)。此外,ANAMMOX 工艺在发酵工业废水、垃圾渗滤液、养殖废水等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。 本文介绍了不同形式的ANAMMOX 工艺,通过比较其运行条件,并结合ANAMMOX 工艺工程应用现状,总结了该工艺工程化应用面临的问题和解决对策,在此基础上对今后的研究和应用方向进行了展望。

海洋氮循环中细菌的厌氧氨氧化_洪义国

Mini -Review 小型综述 微生物学报Acta Micro biologica Sinica 49(3):281-286;4M arch 2009ISSN 0001-6209;CN 11-1995 Q http : journals .im .ac .cn actamicrocn 基金项目:国家自然科学基金(30800032);广东省自然科学基金(84510301001692);中科院院长专项启动基金(07Y Q091001) *通信作者。Tel :+86-20-89023345;E -mai :jdgu @hkucc .hku .hk 作者简介:洪义国(1974-),内蒙赤峰人,博士,主要从事海洋环境与分子微生物学的研究。E -mail :yghong @scsio .ac .cn 收稿日期:2008-09-30;修回日期:2008-12-08 海洋氮循环中细菌的厌氧氨氧化 洪义国1,李猛2,顾继东 1,2* (1中国科学院南海海洋研究所,中国科学院热带海洋环境动力学重点实验室,广州510301) (2香港大学生物科学学院,香港) 摘要:细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应。厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群。而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右。由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响。另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础。关键词:厌氧氨氧化(Ana mmox )细菌;海洋氮循环;厌氧氨氧化体 中图分类号:Q938.1 文献标识码:A 文章编号:0001-6209(2009)03-0281-06 氮是生命活动必需的元素,是组成蛋白质、核酸等生物大分子以及氨基酸、维生素等小分子化合物的重要成分。氮通过在自然界中的不断循环,维持着整个生物圈的生态平衡和物种的不断进化。通过科学家们大量的长期的研究,目前对氮的生物地球化学循环有了基本的了解 [1] 。传统的观点认为,大 气中的氮气主要来源于微生物的硝化(Nitrification )和反硝化作用(Denitrification ),氨(NH 3)只能在有氧条件下才能被氧化成亚硝氮(NO -2)或硝氮(NO - 3),NO -2或NO -3再被还原成氮气(N 2)释放。近年来,微生物家发现了在厌氧条件下微生物能够以NO -2 作为电子受体将NH 3氧化成N 2的过程,而且认识到这一过程在自然界的氮循环中可能发挥极其重要的作用。这一发现改变人们对传统氮的生物地球化学循环的认识,近十年来在这一领域取得了很多突破性进展。 1 厌氧氨氧化的发现缘于偶然 长期以来,NH + 4的氧化一直被认为是在绝对有氧条件下进行的。1977年,Broda 根据热力学反应自由能计算和生物进化关系的分析,推测自然界中可能存在化能自养微生物将NH + 4氧化成N 2,但一直没有找到实验证据 [2] 。在上个世纪90年代,在荷 兰Delft 一个酵母厂的污水脱氮流化床反应器中,工人们发现了一个奇怪的现象,反应器中有NH + 4消失,且随NH + 4和NO - 3的消耗,有N 2生成。这一发现与原来认为的只有在有氧条件下才能去除NH + 4 的认识相违背。Delft 大学的微生物学家Gijs Kuenen 对这一现象进行详细研究,Kuenen 认为这一神秘的现象一定是由一种特殊的微生物作用完成的,而且这种微生物的发现可能为废水处理提供新的方法。如果这种微生物广泛分布在自然界中,那么这种代 DOI :10.13343/j .cn ki .wsxb .2009.03.009

厌氧氨氧化菌的介绍

厌氧氨氧化菌的介绍 厌氧氨氧化菌 参与厌氧氨氧化过程的细菌称为厌氧氨氧化菌。一般认为厌氧氨氧化菌是自养细菌,以二氧化碳或碳酸盐作为碳源,以铵盐作为电子供体,以亚硝酸盐/硝酸盐作为电子受体 厌氧氨氧化菌(anaerobic ammonium oxidation, Anammox)是一类细菌,属于浮霉菌门,“红菌”是业内对厌氧氨氧化菌的俗称,通过生物化学反应,它们可以将污水中所含有的氨氮转化为氮气去除。它们对全球氮循环具有重要意义,也是污水处理中重要的细菌。 厌氧氨氧化(anaerobic ammonium oxidation, Anammox)菌为自养型细菌,可在缺氧条件下以氨为电子供体,亚硝酸盐为电子受体,产生N2。已发现的厌氧氨氧化菌均属于浮霉状菌目(Planctomycetales)的厌氧氨氧化菌科(Anammoxaceae),共 6 个属,分别为Candidatus Brocadia、Candidatus Kuenenia、Candidatus Anammoxoglobus、CandidatusJettenia、Candidatus Anammoximicrobium moscowii 及Candidatus Scalindua。其中,Candidatus Scalindua 发现于海洋次氧化层区域,称之为海洋厌氧氨氧化菌,其余5 个属均发现于污水处理系统中,称之为淡水厌氧氨氧化菌。厌氧氨氧化细菌对全球氮循环具有重要意义,也是污水处理中重要的细菌。 厌氧氨氧化菌特性 在厌氧氨氧化过程中,羟胺和肼作为代谢过程的中间体。和其它浮霉菌门细菌一样,厌氧氨氧化菌也具有细胞内膜结构,其中进行氨厌氧氧化的囊称作厌氧氨氧化体(anammoxosome),小分子且有毒的肼在此内生成。厌氧氨氧化体的膜脂具有特殊的梯烷(ladderane)结构,可阻止肼外泄,从而充分利用化学能,且避免毒害 1、个体形态特征 厌氧氨氧化菌形态多样,呈球形、卵形等,直径0.8-1.1μm。厌氧氨氧化菌是革兰氏阴性菌。细胞外无荚膜。细胞壁表面有火山口状结构,少数有菌毛。.细胞内分隔成3部分:厌氧氨氧化体(anammoxosome)、核糖细胞质

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON) 【格林大讲堂】 厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。 厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。 其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,

NH2OH经N2H4,N2H2被转化为N2。 厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。 全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。 同时通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。

论厌氧氨氧化工艺的应用进展

论厌氧氨氧化工艺的应用进展 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 厌氧氨氧化(anaerobic ammonium oxidation,Anammox)工艺因其无需外加有机碳源、脱氮负荷高、运行费用低、占地空间小等优点,已被公认为是目前最经济的生物脱氮工艺之一。近年来,国内外对厌氧氨氧化工艺的研究取得了大量的实验室成果。但是,一方面由于厌氧氨氧化菌(anaerobicammonium oxidizing bacteria,AnAOB)生长缓慢(倍增时间长达11 天)、细胞产率低[m(VSS)/m(NH4+-N)=/g)、对环境条件敏感,另一方面由于实际废水成分复杂,常含有AnAOB 的抑制物质,限制了厌氧氨氧化工艺在实际工程中的大规模应用。因此,有必要对近年来国内外厌氧氨氧化工艺的应用实例和经验进行系统总结,推动该工艺的进一步工业化应用,使之在污水脱氮处理领域发挥更积极的作用。本文介绍了AnAOB 的生物多样性和厌氧氨氧化工艺形式的多样性,重点综述了厌氧氨氧化技术在处理各类废水中的实验室研究和工程应用情况。 1 厌氧氨氧化菌生物多样性

迄今为止,已发现的AnAOB 有6 属18 种,构成了独立的厌氧氨氧化菌科(Anammoxaceae),并且AnAOB 广泛存在于自然生态系统中,如海洋沉积物、淡水沉积物、油田、厌氧海洋盆地、氧极小区、红树林地区、海洋冰块、淡水湖以及海底热泉等。AnAOB 的生态分布多样性是由自身的代谢多样性决定的,也正因如此,厌氧氨氧化在全球氮素循环中扮演重要角色,将其应用于不同水质含氮废水的治理也具有与生俱来的优势和不可估量的潜力。 2 厌氧氨氧化工艺形式多样性 基于厌氧氨氧化原理的工艺形式纷繁多样,包括分体式(两级系统)和一体式(单级系统)两种。一体式有CANON(completely autotrophic nitrogenremoval over nitrite)、OLAND(oxygen limitedautotrophic nitrification and denitrification)、DEAMOX(denitrifying ammonium oxidation)、DEMON(aerobic deammonification)、SNAP(simultaneous partial nitrification,anammox anddenitrification)、SNAD(single-stage nitrogen removalusing anammox and partial nitritation)等工艺;分体式主要有SHARON(single reactor for high activityammonia removal over nitrite)-anammox 工艺。随着工程经验越来越丰富,一体化系统正日益得到青

厌氧氨氧化

厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。 厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。 厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。 厌氧氨氧化反应是一种化能自养的古菌(俗称Anammox)的反应。简单式为:1NH4+ + 1NO2- → N2 + 2H2O。如果在化学方程式里加入微生物本身,则为:1NH4+ + 1.32NO2- + 0.066 HCO3- + 0.13H+ → 1.02N2 + 0.26 NO3- + 0.066 CH2O0.5N0.15 + 2.03H2O 该古菌为自养型,只需无机碳源CO2,并且在全球碳循环过程中发挥着很重要的作用。在目前污水的氨氮处理上被广为看好。但是由于亚硝酸根含量在大部分污水是不够显著的,所以anammox技术要结合其他技术来使用,比如已经在荷兰鹿特丹投产的Sharon+anammox工艺,就是结合了短程硝化和厌氧氨氧化工艺,还是比较成功的。 利用混合污泥培养厌氧氨氧化颗粒污泥

厌氧铵氧化

高效生物脱氮的领跑者

DEMON?厌氧铵氧化技术特点: DEMON?厌氧铵氧化技术是脱氮领域的一个伟大创新,突破了传统硝化反硝化脱氮技术思路,超越了短程硝化反硝化,采用最为高效和经济的快速生物反应进行脱氮,相比传统脱氮工艺容积效率高,供氧能耗省,无需外加碳源,减少了碳排放,是一种低运行成本、高效率、节能减排的创新技术,目前该技术在世界范围内属于领先水平。 DEMON?厌氧铵氧化技术适用于多种高氨氮废水的处理,可用于污泥厌氧消化液、沼气电厂沼液、垃圾渗滤液等高氨氮废水的脱氮处理,还可用于煤化工、合成氨、石油化工和医药化工等行业。能大大提高脱氮效率,有效降低实际运行成本。 DEMON?系统利用独特的专利技术,采用自动化控制,高效培养和富集厌氧铵氧化细菌,从而保障系统稳定运行,一般情况下无需再次添加菌种。 DEMON?系统提供改良的菌种,有效解决了厌氧铵氧化工艺中普遍存在的有机物抑制难题,在高效脱氮的同时可有效去除部分COD,适用于各类高氨氮水质情况,处理效果稳定。 DEMON?的主要技术优势如下: ●大幅度降低脱氮成本 ●最高节约60%能耗 ●无需外加碳源 ●节约CO2排放(?≥5吨CO2/吨N) ●很少的污泥产量 ●低N2O浓度,低N2O排放,保护气候 ●工艺方便灵活 ●为能量自给式污水厂做出巨大贡献 ●8年以上的运行经验保障 ●全球各地的实施案例 ●国际专利技术等

在反硝化和脱氮领域,我们与我们的瑞士合作伙伴DEMON GmbH公司紧密合作。 In the field of deammonification and nitrogen removal, we are working closely together with our Swiss partner DEMON GmbH.

厌氧氨氧化工艺影响因素

厌氧氨氧化工艺的影响因素研究 摘要:在稳定运行的厌氧氨氧化滤池基础上,研究了ph、有机物、溶解氧对厌氧氨氧化反应器运行性能的影响。结果表明:高、低ph会明显影响厌氧氨氧化反应器的脱氮性能,最适ph范围为7.65~8.25;一定浓度范围的有机物可以引起滤池内反硝化菌和厌氧氨氧化菌的协同作用,提高滤池的脱氮效果。溶解氧对厌氧氨氧化菌活性的抑制是可逆的。 关键词:厌氧氨氧化,ph,有机物,溶解氧 the study of the factors affecting on anammox process abstract: in this paper, the impacts of ph, organic compound, dissolved oxygen on the anammox reactor performance in the stable operation of anaerobic ammonium oxidation filter. the results indicated: high or low ph could influence the performance of nitrogen removal of the reactor, the appropriate range of ph is 7.65~8.25; a certain concentration of organic compound could improve the denitrification effect because of synergistic effect of denitrifying bacteria and anaerobic ammonium-oxidizing bacteria in the filter; the inhibition of dissolved oxygen on the activity anammox bacteria is reversible. keywords: anaerobic ammonium oxidation; ph; organic compound; dissolved oxygen.

厌氧氨氧化

厌氧氨氧化 厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH 值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。 厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。 厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。 厌氧氨氧化(Anammox) 厌氧氨氧化的发现 Broda的预言 1977年,奥地利理论化学家Broda根据化学反应热力学,预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应,因为与以氧为氧化剂的氨氧化反应相比,它们释放出的自由能一点也不逊色。 序号电子受体化学反 应ΔG/(KJ/mol) 1 氧2NH4++3O2→ 2NO2-+2H2O+4H+ -241 2 亚硝酸盐 NH4++NO2-→ N2+2H2O -335 3 硝酸盐 5NH4++3NO3-→ 4N2+9H2O+2H+ -278 既然自然界存在自养型亚硝化细菌,能够催化反应1,那么理论上也应该存在另

一种自养型细菌,能够催化反应2和反应3。由于当时这种细菌还没有被发现,所以,Broda 认为它们是隐藏于自然界的自养型细菌。 Mulder的发现 20世纪80年代末,荷兰Delft工业大学开始研究三级生物处理系统。在试运期间,Mulder等人发现,生物脱氮流化床反应器除了进行人们所熟知的反硝化外,还进行着人们未知的某个反应使氨消失了。进一步观察发现,除了氨不明去向外,硝酸盐和亚硝酸盐也有一半以上不明去向。 而且伴随着氨与硝酸盐(亚硝酸盐)的消失,产气率大幅度提高,气体中的最主要的成分为N2。 对生物脱氮流化床反应器所做的氮素和氧化还原平衡发现,氨与硝酸盐之间的反应基本上按照反应3所预期方式进行。理论值与实测值非常接近。 为了对这一反应结果进行确认,Mulder等人进一步做了分批培养实验。实验证明,氨确实与硝酸盐同步转化;硝酸盐耗尽时,氨转化也停止;添加硝酸盐后,氨转化继续进行。伴随氨和硝酸盐的转化,累计产气量增加;转化停止时,累计产气量不变。气体的主要成分是N2。 至此,Mulder等人认为,生物脱氮流化床反应器中的氨和硝酸盐转化是按Broda 所预言的方式进行的,并将其称为厌氧氨氧化。 厌氧氨氧化的反应机理 Graff等采用15N的示踪实验研究表明,Anammox是通过生物氧化的途径实现的,过程中最可能的电子受体是羟胺(NH2OH),并推测出其代谢途径: 厌氧氨氧化菌首先将NO2-转化成NH2OH,再以NH2OH为电子受体将NH4+氧化生成N2H4;N2H4转化成N2,并为NO2-还原成NH2OH提供电子;实验中有少量NO2-被氧化成NO3-。 厌氧氨氧化涉及的化学反应为: NH2OH + NH3 → N2H4 + H2O N2H4 → N2 + 4[H] HNO2 + 4[H] → NH2OH + H2O 厌氧氨氧化工艺的技术要点 Anammox工艺的关键是获得足量的厌氧氨氧化菌,并将其有效地保持在装置内,

兼氧FMBR工艺介绍-1

兼氧FMBR工艺介绍 1.1 兼氧FMBR工艺原理介绍 兼氧FMBR处理工艺是一种将膜分离技术与生物处理单元相结合的污水处理工艺,近年来倍受关注。兼氧FMBR工艺对生活污水、高浓度有机污水、难降解有机污水具有非常高的处理效率,本项目是生活污水,污水污染物含量高、可生化性好,非常适宜采用本处理工艺。兼氧FMBR系统示意见下图: 图1 兼氧FMBR系统示意图 兼氧FMBR工艺实现菌体共生,同步处理不同污染物,大幅提高系统适应能力、处理效率。 C----有机污泥“零”排放(低能耗) P----气化除磷降解(低能耗) N----厌氧氨氧化脱氮(低能耗) 突破好氧MBR工艺(能耗高、易堵膜)的瓶颈 兼氧FMBR的主要特点: 兼氧FMBR污泥以兼性厌氧菌为主,有机物的降解主要是通过形

成较高浓度的污泥在兼性厌氧性菌作用下完成的。大分子有机污染物是被逐步降解为小分子有机物,最终氧化分解为二氧化碳和水等稳定的无机物质。 由于兼性厌氧菌的生成不需要溶解氧的保证,所以降低了动力消耗。曝气的主要作用是对膜丝进行冲刷、震荡,同时产生的溶解氧正好被用来氧化部分小分子有机物和维持出水的溶解氧值。 a)兼氧FMBR工艺对CODcr的去除 兼性厌氧微生物在有氧的条件下,将污水中的一部分有机物用于合成新的细胞,将另一部分有机物进行分解代谢以便获得细胞合成所需的能量,其最终产物是CO2和H2O等稳定物质。在合成代谢与分解代谢过程中,溶解性有机物(如低分子有机酸等)直接进入细胞内部被利用,而非溶解有机物则首先被吸附在微生物表面,然后被胞外酶水解后进入细胞内部被利用。 b)兼氧FMBR工艺对氮的去除 在兼氧FMBR处理工艺系统中,兼有通过以下三种途径完成对氮的去除: I硝化-反硝化 膜区曝气气提作用,反应器内形成循环流动,使水在好氧区和缺氧区循环交替流动,形成好氧、缺氧连续交替不断的生物降解作用,在好氧条件下利用污水中硝化细菌将氮化物转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。在同一个反应器内实现了硝化反硝化。

相关文档