文档库 最新最全的文档下载
当前位置:文档库 › PCB叠层结构知识 多层板设计技巧

PCB叠层结构知识 多层板设计技巧

PCB叠层结构知识 多层板设计技巧
PCB叠层结构知识 多层板设计技巧

PCB叠层结构知识多层板设计技巧

较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。

小资料

对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工

程师都不能回避的话题;

层的排布一般原则:

元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;

所有信号层尽可能与地平面相邻;

尽量避免两信号层直接相邻;

主电源尽可能与其对应地相邻;

兼顾层压结构对称。

对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:

元件面、焊接面为完整的地平面(屏蔽);

无相邻平行布线层;

所有信号层尽可能与地平面相邻;

关键信号与地层相邻,不跨分割区。

注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层

的排布,切忌生搬硬套,或抠住一点不放。

以下为单板层的排布的具体探讨:

*四层板,优选方案1,可用方案3

方案电源层数地层数信号层数 1 2 3 4

1 1 1

2 S G P S

2 1 2 2 G S S P

3 1 1 2 S P G S

方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP

层;至于层厚设置,有以下建议:

满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM

层,即采用方案2:

此方案为了达到想要的屏蔽效果,至少存在以下缺陷:

电源、地相距过远,电源平面阻抗较大

电源、地平面由于元件焊盘等影响,极不完整

由于参考面不完整,信号阻抗不连续

实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。但在个别

单板中,方案2不失为最佳层设置方案。

以下为方案2使用案例;

案例(特例):设计过程中,出现了以下情况:

A、整板无电源平面,只有GND、PGND各占一个平面;

B、整板走线简单,但作为接口滤波板,布线的辐射必须关注;

C、该板贴片元件较少,多数为插件。

分析:

1、由于该板无电源平面,电源平面阻抗问题也就不存在了;

2、由于贴片元件少(单面布局),若表层做平面层,内层走线,参考平面的完整性基本得到保证,而且第二层可铺铜保证少量顶层走线的参考平面;

3、作为接口滤波板,PCB布线的辐射必须关注,若内层走线,表层为GND、PGND,走线得到很好的屏蔽,传输线的辐射得到控制;

鉴于以上原因,在本板的层的排布时,决定采用方案2,即:GND、S1、S2、PGND,由于表层仍有少量短走线,而底层则为完整的地平面,我们在S1布线层铺铜,保证了表层走线的参考平面;五块接口滤波板中,出于以上同样的分析,设计人员决定采用方案2,同样

不失为层的设置经典。

列举以上特例,就是要告诉大家,要领会层的排布原则,而非机械照搬。

方案3:此方案同方案1类似,适用于主要器件在BOTTOM布局或关键信号底层布线的

情况;一般情况下,限制使用此方案;

*六层板,优选方案3,可用方案1,备用方案2、4

方案电源地信号 1 2 3 4 5 6

#1 1 1 4 S1 G S2 S3 P S4

#2 1 1 4 S1 S2 G P S3 S4

#3 1 2 3 S1 G1 S2 G2 P S3

#4 1 2 3 S1 G1 S2 G2 P S3

对于六层板,优先考虑方案3,优选布线层S2(stripline),其次S3、S1。主电源及其对应的地布在4、5层,层厚设置时,增大S2-P之间的间距,缩小P-G2之间的间距(相应缩小G1-S2层之间的间距),以减小电源平面的阻抗,减少电源对S2的影响;

在成本要求较高的时候,可采用方案1,优选布线层S1、S2,其次S3、S4,与方案1相比,方案2保证了电源、地平面相邻,减少电源阻抗,但S1、S2、S3、S4全部裸露在外,

只有S2才有较好的参考平面;

对于局部少量信号要求较高的场合,方案4比方案3更适合,它能提供极佳的布线层S2。

*八层板:优选方案2、3、可用方案1

方案电源地信号 1 2 3 4 5 6 7 8 #1 1 2 5 S1 G1 S2 S3 P S4 G2 S5

#2 1 3 4 S1 G1 S2 G2 P S3 G3 S4

#3 2 2 4 S1 G1 S2 P1 G2 S3 P2 S4

#4 2 2 4 S1 G1 S2 P1 P2 S3 G3 S4

#5 2 2 4 S1 G1 P1 S2 S3 G2 P2 S4

对于单电源的情况下:

方案2比方案1减少了相邻布线层,增加了主电源与对应地相邻,保证了所有信号层与地

平面相邻,代价是:牺牲一布线层;

对于双电源的情况:

推荐采用方案3,方案3兼顾了无相邻布线层、层压结构对称、主电源与地相邻等优点,但

S4应减少关键布线;

方案4:无相邻布线层、层压结构对称,但电源平面阻抗较高;应适当加大3-4、5-6,缩

小2-3、6-7之间层间距;

方案5:与方案4相比,保证了电源、地平面相邻;但S2、S3相邻,S4以P2作参考平面;对于底层关键布线较少以及S2、S3之间的线间窜扰能控制的情况下此方案可以考虑;

*十层板:推荐方案2、3、可用方案1、4

方案3:扩大3-4与7-8各自间距,缩小5-6间距,主电源及其对应地应置于6、7层;优选布线层S2、S3、S4,其次S1、S5;本方案适合信号布线要求相差不大的场合,兼顾了性能、成本;推荐大家使用;但需注意避免S2、S3之间平行、长距离布线;

方案4:EMC效果极佳,但与方案3比,牺牲一布线层;在成本要求不高、EMC指标要求较高、且必须双电源层的关键单板,建议采用此种方案;优选布线层S2、S3,对于单电源层的情况,首先考虑方案2,其次考虑方案1。方案1具有明显的成本优势,但相邻布线过多,

平行长线难以控制;

*十二层板:推荐方案2、3,可用方案1、4、备用方案5

方案2、4具有极好的EMC性能,方案1、3具有较佳的性价比;

以上层排布作为一般原则,仅供参考,具体设计过程中大家可根据需要的电源层数、布线层数、特殊布线要求信号的数量、比例以及电源、地的分割情况,结合以上排布原则灵活

掌握。

EMC问题

在布板的时候还应该注意EMC的抑制!这很不好把握,分布电容随时存在!

如何接地:

PCB设计原本就要考虑很多的因素,不同的环境需要考虑不同的因素。

地的分割与汇接

接地是抑制电磁干扰、提高电子设备EMC性能的重要手段之一。正确的接地既能提高产品抑制电磁干扰的能力,又能减少产品对外的EMI发射。

接地的含义

电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。接地就是指在系统与某个电位基准面之间建立低阻的导电通路。“接大地”就是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基

准点与大地相连接。

把接地平面与大地连接,往往是出于以下考虑:

A、提高设备电路系统工作的稳定性;

B、静电泄放;

C、为工作人员提供安全保障。

接地的目的

A、安全考虑,即保护接地;

B、为信号电压提供一个稳定的零电位参考点(信号地或系统地);

C、屏蔽接地。

基本的接地方式

电子设备中有三种基本的接地方式:单点接地、多点接地、浮地。

单点接地:

单点接地是整个系统中,只有一个物理点被定义为接地参考点,其他各个需要接地的点都连接到这一点上。适用于频率较低的电路中(1MHZ以下)。若系统的工作频率很高,以致工作波长与系统接地引线的长度可比拟时,单点接地方式就有问题了。当地线的长度接近于1/4波长时,它就象一根终端短路的传输线,地线的电流、电压呈驻波分布,地线

变成了辐射天线,而不能起到“地”的作用。

为了减少接地阻抗,避免辐射,地线的长度应小于1/20波长。在电源电路的处理上,一般可以考虑单点接地。对于大量采用的数字电路的PCB,由于其含有丰富的高次谐波,一

般不建议采用单点接地方式。

多点接地:

多点接地是指设备中各个接地点都直接接到距它最近的接地平面上,以使接地引线的

长度最短。

多点接地电路结构简单,接地线上可能出现的高频驻波现象显著减少,适用于工作频率较高的(>10MHZ)场合。但多点接地可能会导致设备内部形成许多接地环路,从而降低设备对外界电磁场的抵御能力。在多点接地的情况下,要注意地环路问题,尤其是不同的模块、设备之间组网时。地线回路导致的电磁干扰:

理想地线应是一个零电位、零阻抗的物理实体。但实际的地线本身既有电阻分量又有电抗分量,当有电流通过该地线时,就要产生电压降。地线会与其他连线(信号、电源线等)构成回路,当时变电磁场耦合到该回路时,就在地回路中产生感应电动势,并由地回路耦

合到负载,构成潜在的EMI威胁。

浮地

浮地是指设备地线系统在电气上与大地绝缘的一种接地方式。

由于浮地自身的一些弱点,不太适合一般的大系统中,其接地方式很少采用

关于接地方式的一般选取原则:

对于给定的设备或系统,在所关心的最高频率(对应波长为)入上,当传输线的长度L〉入,则视为高频电路,反之,则视为低频电路。根据经验法则,对于低于1MHZ的电路,采用单点接地较好;对于高于10MHZ,则采用多点接地为佳。对于介于两者之间的频率而言,只要最长传输线的长度L小于/20 入,则可采用单点接地以避免公共阻抗耦合。

对于接地的一般选取原则如下:

(1)低频电路(<1MHZ),建议采用单点接地;

(2)高频电路(>10MHZ),建议采用多点接地;

(3)高低频混合电路,混合接地。

PCB常用阻抗设计及叠层

PCB阻抗设计及叠层 目录 前言 (4) 第一章阻抗计算工具及常用计算模型 (7) 1.0 阻抗计算工具 (7) 1.1 阻抗计算模型 (7) 1.11. 外层单端阻抗计算模型 (7) 1.12. 外层差分阻抗计算模型 (8) 1.13. 外层单端阻抗共面计算模型 (8) 1.14. 外层差分阻抗共面计算模型 (9) 1.15. 内层单端阻抗计算模型 (9) 1.16. 内层差分阻抗计算模型 (10) 1.17. 内层单端阻抗共面计算模型 (10) 1.18. 内层差分阻抗共面计算模型 (11) 1.19. 嵌入式单端阻抗计算模型 (11) 1.20. 嵌入式单端阻抗共面计算模型 (12) 1.21. 嵌入式差分阻抗计算模型 (12) 1.22. 嵌入式差分阻抗共面计算模型 (13) 第二章双面板设计 (14) 2.0 双面板常见阻抗设计与叠层结构 (14) 2.1. 50 100 || 0.5mm (14) 2.2. 50 || 100 || 0.6mm (14) 2.3. 50 || 100 || 0.8mm (15) 2.4. 50 || 100 || 1.6mm (15) 2.5. 50 70 || 1.6mm (15) 2.6. 50 || 0.9mm || Rogers Er=3.5 (16) 2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 (16) 第三章四层板设计 (17) 3.0. 四层板叠层设计方案 (17) 3.1. 四层板常见阻抗设计与叠层结构 (18) 3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (18) 3.11. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (19) 3.12. SGGS || 50 55 60 || 90 95 100 || 1.6mm (20) 3.13. SGGS || 50 55 60 || 85 90 95 100 || 1.0mm 1.6mm (21) 3.14. SGGS || 50 55 75 || 100 || 1.0mm 2.0mm (22) 3.15. GSSG || 50 || 100 || 1.0mm (22)

多层板PCB设计教程完整版

多层线路板设计-适合于初学者 多层PCB层叠结构 在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB板EMC性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB板层叠结构的相关内容。 11.1.1 层数的选择和叠加原则 确定多层PCB板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。 对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。 确定了电路板的层数后,接下来的工作便是合理地排列各层电路的放置顺序。在这一步骤中,需要考虑的因素主要有以下两点。 (1)特殊信号层的分布。http://www.pcb.shhttp://www.pcb.sh (2)电源层和地层的分布。 如果电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多,如何来确定哪种组合方式最优也越困难,但总的原则有以下几条。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。http://www.pcb.sh (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值,以提高电源层和地层之间的电容,增大谐振频率。内部电源层和地层之间的介质厚度可以在Protel的Layer Stack Manager(层堆栈管理器)中进行设置。选择【Design】/【Layer Stack Manager…】命令,系统弹出层堆栈管理器对话框,用鼠标双击Prepreg文本,弹出如图11-1所示对话框,可在该对话框的Thickness选项中改变绝缘层的厚度。

PCB叠层结构知识

PCB叠层结构知识 PCB叠层结构知识 较多的PCB工程师,他们经常画电脑主板,对ALLEGRO等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。 小资料 对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题; 层的排布一般原则: 元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻; 尽量避免两信号层直接相邻; 主电源尽可能与其对应地相邻; 兼顾层压结构对称。 对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则: 元件面、焊接面为完整的地平面(屏蔽); 无相邻平行布线层; 所有信号层尽可能与地平面相邻; 关键信号与地层相邻,不跨分割区。 注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体探讨: *四层板,优选方案1,可用方案3 方案电源层数地层数信号层数 1 2 3 4 1 1 1 2 S G P S 2 1 2 2 G S S P 3 1 1 2 S P G S 方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP 层;至于层厚设置,有以下建议: 满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2: 此方案为了达到想要的屏蔽效果,至少存在以下缺陷: 电源、地相距过远,电源平面阻抗较大 电源、地平面由于元件焊盘等影响,极不完整 由于参考面不完整,信号阻抗不连续 实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。但在个别单板中,方案2不失为最佳层设置方案。

PCB电路板多层印制电路板技术报告

PCB电路板多层印制电路板技术报告

多层印制板设计综合实训 技术报告 组号: 成员姓名: 班级: 指导教师: 课程名称:多层印制电路板设计综合实训 提交日期: 目录 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 1.1.2基本要求 1.2电路中主要芯片 1.2.1BGA6589芯片 1.2.2BGU2003芯片 1.3电路设计过程 1.4电路图

1.4.1电路原理图 1.4.2电路PCB图 二、基于ISP1521的USB高速转接器印制电路板设计 2.1基于ISP1521的USB高速转接器的原理 2.1.1基本原理 2.1.2基本要求 2.2电路中主要芯片 2.2.1ISP1521芯片 2.2.2NDS9435A芯片 2.2.3PCF8582芯片 2.3电路设计过程 2.4电路图 2.4.1电路原理图 2.4.2电路PCB图 三、实训总结 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 在用户新片的控制下(SPDT-PIN),在TX时隙,基于结型二极管BAP51-02的头端SPDT

开关(Single-PoleDouble-Throw单刀双掷开关)关闭位于天线和功率放大器之间的通道。PA能够被关闭或打开。输出的信号能够通过天线发射入以太空间。以太是无线RF信号从一个接入点到另一个接入点传输的自然环境媒体。由于TX信号通过BGA6589功率放大器放大,因此可以发射更强的功率并能到达更远的地方。RX时隙段是接收信号。在这种工作模式下,天线在SPDT-PIN的控制下切离PA(功率放大器)并被连接到LNA输入端。LNA能够被打开或关闭。对接收机的性能进行系统分析显示,通过减小RX系统噪声的影响,BGU2003低噪声放大器的确能改善接收机的灵敏度。在噪声输入接收IC前设置非常低噪声、合适的增益时是有可能做到的。这将导致接收机能够在接入点完全接收更远距离的信号。其效果可以通过数学的关系描述如下: 普通的噪声图(NF)定义: 当系统工作于华氏0度以上的时候,噪声比率F大于1(F>1或NF>0dB)。叠加LNA 和RX芯片的作用,整个系统噪声比率将为: 说明系统噪声比率(包括LNA和RX芯片)至少为。等式中还包含RX通道芯片引起的二级噪声。但这个噪声将被LNA增益所衰减。采用合适的LNA的确能减小输入芯片的噪声比率。在这种关系中LNA的噪声比率是主要的。 1.1.2基本要求 ⑴学习PCB的电子兼容设计的相关知识; ⑵通过技术文档了解电路的功能; ⑶查阅资料完成设计资料预审。包括电路原理图功能设计要求、结构图分析,学习相关电子技术资料;

一到八层电路板的叠层设计方式

一到八层电路板的叠层设计方式 电路板的叠层安排是对PCB的整个系统设计的基础。叠层设计如有缺陷,将最终影响到整机的EMC性能。总的来说叠层设计主要要遵从两个规矩: 1. 每个走线层都必须有一个邻近的参考层(电源或地层); 2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容; 下面列出从单层板到八层板的叠层: 一、单面板和双面板的叠层 对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑; 单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。 关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。 单、双层板通常使用在低于10KHz的低频模拟设计中: 1 在同一层的电源走线以辐射状走线,并最小化线的长度总和;

2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线路径。 3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于pcb线路板的厚度乘以信号线的长度。 二、四层板的叠层 推荐叠层方式: 2.1 SIG-GND(PWR)-PWR (GND)-SIG; 2.2 GND-SIG(PWR)-SIG(PWR)-GND; 对于以上两种叠层设计,潜在的问题是对于传统的1.6mm(62mil)板厚。层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。 对于第一种方案,通常应用于板上芯片较多的情况。这种方案可得到较好的SI性能,对于EMI性能来说并不是很好,主要要通过走线及其他细节来控制。主要注意:地层放在信号最密集的信号层的相连层,有利于吸收和抑制辐射;增大板面积,体现20H规则。 对于第二种方案,通常应用于板上芯片密度足够低和芯片周围有足够面积(放置所要求的电源覆铜层)的场合。此种方案PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,

关于PCB叠层理解

关于PCB叠层的理解 设计者可能会设计奇数层印制电路板(PCB)。如果布线不需要额外的层,为什么还要用它呢?难道减少层不会让电路板更薄吗?如果电路板少一层,难道成本不是更低么?但是,在一些情况下,增加一层反而会降低费用。 电路板有两种不同的结构:核芯结构和敷箔结构。 在核芯结构中,电路板中的所有导电层敷在核芯材料上;而在敷箔结构中,只有电路板内部导电层才敷在核芯材料上,外导电层用敷箔介质板。所有的导电层通过介质利用多层层压工艺粘合在一起。 核材料就是工厂中的双面敷箔板。因为每个核有两个面,全面利用时,PCB的导电层数为偶数。为什么不在一边用敷箔而其余用核结构呢?其主要原因是:PCB的成本及PCB的弯曲度。 偶数层电路板的成本优势 因为少一层介质和敷箔,奇数PCB板原材料的成本略低于偶数层PCB。但是奇数层PCB的加工成本明显高于偶数层PCB。内层的加工成本相同;但敷箔/核结构明显的增加外层的处理成本。 奇数层PCB需要在核结构工艺的基础上增加非标准的层叠核层粘合工艺。与核结构相比,在核结构外添加敷箔的工厂生产效率将下降。在层压粘合以前,外面的核需要附加的工艺处理,这增加了外层被划伤和蚀刻错误的风险。 平衡结构避免弯曲 不用奇数层设计PCB的最好的理由是:奇数层电路板容易弯曲。

当PCB在多层电路粘合工艺后冷却时,核结构和敷箔结构冷却时不同的层压张力会引起PCB弯曲。随着电路板厚度的增加,具有两个不同结构的复合PCB弯曲的风险就越大。消除电路板弯曲的关键是采用平衡的层叠。尽管一定程度弯曲的PCB达到规范要求,但后续处理效率将降低,导致成本增加。因为装配时需要特别的设备和工艺,元器件放置准确度降低,故将损害质量。 使用偶数层PCB 当设计中出现奇数层PCB时,用以下几种方法可以达到平衡层叠、降低PCB制作成本、避免PCB弯曲。以下几种方法按优选级排列。 1.一层信号层并利用。如果设计PCB的电源层为偶数而信号层为奇数可采用这种方法。增加的层不增加成本,但却可以缩短交货时间、改善PCB质量。 2.增加一附加电源层。如果设计PCB的电源层为奇数而信号层为偶数可采用这种方法。一个简单的方法是在不改变其他设置的情况下在层叠中间加一地层。先按奇数层PCB种布线,再在中间复制地层,标记剩余的层。这和加厚地层的敷箔的电气特性一样。 3.在接近PCB层叠中央添加一空白信号层。这种方法最小化层叠不平衡性,改善PCB的质量。先按奇数层布线,再添加一层空白信号层,标记其余层。在微波电路和混合介质(介质有不同介电常数)电路种采用。 平衡层叠PCB优点:成本低、不易弯曲、缩短交货时间、保证质量。

pcb叠层参考

名词定义:SIG:信号层;GND:地层;PWR:电源层; 电路板的叠层安排是对PCB的整个系统设计的基础。叠层设计如有缺 陷,将最终影响到整机的EMC性能。 总的来说叠层设计主要要遵从两个规矩: 1. 每个走线层都必须有一个邻近的参考层(电源或地层); 2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容; 下面列出从两层板到十层板的叠层: 2.1 单面板和双面板的叠层; 对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑;单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。 关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低 的模拟信号。

单、双层板通常使用在低于10KHz的低频模拟设计中: 1 在同一层的电源走线以辐射状走线,并最小化线的长度总和; 2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线 路径。 3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于线 路板的厚度乘以信号线的长度。 2.2 四层板的叠层; 推荐叠层方式: 2.2.1 SIG-GND(PWR)-PWR (GND)-SIG; 2.2.2 GND-SIG(PWR)-SIG(PWR)-GND;

PCB叠层

PCB叠层 1 层叠的定义及添加 对高速多层板来说,默认的两层设计无法满足布线信号质量及走线密度要求,这个时候需要对PCB层叠进行添加,以满足设计的要求。 2 正片层与负片层 正片层就是平常用于走线的信号层(直观上看到的地方就是铜线),可以用“线”“铜皮”等进行大块铺铜与填充操作,如图8-32所示。 图8-32 正片层 负片层则正好相反,即默认铺铜,就是生成一个负片层之后整一层就已经被铺铜了,走线的地方是分割线,没有铜存在。要做的事情就是分割铺铜,再设置分割后的铺铜

的网络即可,如图8-33所示。 图8-33 负片层 3 内电层的分割实现 在Protel版本中,内电压是用“分裂”来分割的,而现在用的版本Altium Designer 19直接用“线条”、快捷键“PL”来分割。分割线不宜太细,可以选择15mil及以上。分割铺铜时,只要用“线条”画一个封闭的多边形框,再双击框内铺铜设置网络即可,如图8-34所示。

图8-34 双击给予网络 正、负片都可以用于内电层,正片通过走线和铺铜也可以实现。负片的好处在于默认大块铺铜填充,再进行添加过孔、改变铺铜大小等操作都不需要重新铺铜,这样省去了重新铺铜计算的时间。中间层用电源层和GND层(也称地层、地线层、接地层)时,层面上大多是大块铺铜,这样用负片的优势就很明显。 4 PCB层叠的认识 随着高速电路的不断涌现,PCB的复杂度也越来越高,为了避免电气因素的干扰,信号层和电源层必须分离,所以就牵涉到多层PCB的设计。在设计多层PCB之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层、6层,还是更多层数的电路板。这就是设计多层板的一个简单概念。 确定层数之后,再确定内电层的放置位置及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB的EMC性能的一个重要因素,一个好的层叠设计方案将会大大减小电磁干扰(EMI)及串扰的影响。 板的层数不是越多越好,也不是越少越好,确定多层PCB的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。

多层电路板添加平衡铜块的方法和技巧

多层电路板添加平衡铜块的方法和技巧 考虑到多层电路板的批量可制造性能和电气性能(SI、EMI、ESD和其它)要求之间的均衡,多层PCB设计应根据铜层分布情况,在多层PCB内外层添加相应的铜平衡块,消除各多层电路板制造厂家自行添加引起的PCB外观不一致和对电气性能要求潜在的可能影响。本文适用于EDA设计部设计多层PCB中添加铜平衡块参考使用。 这里先让我们认识一下什么叫平衡铜块(Copper Balancing):为改善多层电路板内层铜层密度分布不均匀而引起的压合中胶体流动和外层铜层密度分布不均匀造成的电镀厚度不一等相关制造工艺问题,而在PCB各层面上添加相应的孤立铜块。该改善铜层密度均一分布的DFM措施一般由多层PCB制造厂家在制造面板层面上进行或原始OEM厂家在原始PCB中添加。 阻流块(Venting):添加在多层PCB内层避免因空白区域胶体流动的非导电性材料和导电材料。 均流块(Copper Thieving):也称电镀块,指添加在多层PCB外层图形区、PCB装配辅条和制造面板辅条区域的铜平衡块。 基材区(Base Material Area):指PCB中完全为树脂和纤维构成的非导电性基体材料平面区域。基材区为铜平衡块添加目标区。由于没有明确的尺寸定义规定,本规定中基材区指面积尺寸在符合下列要求的情况下,都应视作基体区处理: 1.单个PCB平面层中尺寸超出3000mil X3000mil或1000mil X5000mil的 区域。 2.对于Gnd层半数或以上层数图形内含有1″*2″或0.5″*5″的基材区; 3.对于Gnd层半数或以上层数图形内含有靠近铣槽位(或与铣槽相连),且面积超过1″*1″,凡满足①ML排板结构中含单张P片;②内层含铜≥2OZ;任意一个条件的基材区 平衡铜块添加方法 1.PCB面板上PCB区域(不包PCB装配用工艺边)外铜平衡块由各制造厂家根据自身工艺添加,一般不作规定。 2.对于无特殊要求的PCB装配工艺边Shape的添加可由PCB制造厂家进行添加,但对于由特殊测试或装配要求的工艺边,EDA设计部应当根据规则直接添加在PCB中。 3.考虑到设计的多样性,EDA设计部可采用下列规则范围的形状和尺寸: 1)设计者对外层可以添加铜电镀平衡块,要求采用40mil的方形或圆形,间距60mil,中心距离100mil。保持同普通数字信号200mil以上距离,距离高压电源(12V+)或大电流区域(1A以上)600mil以上.具体边缘500mil以上。 2)内层添加阻流块。采用40mil的方形或圆形,心距离100mil,上下可采用半距离间隔保持同普通数字信号100mil 以上距离,距离电源(12V+)或大电流区域(1A以上)400mil以,距离边缘400mil以上. 4)对于严格不许可厂家添加平衡块的区域应在制造图上单独标注出。 5)对于H方向不对称的PCB,为改善均衡性,对于大面积基材区域可以采用更大尺寸的Shape。 平衡铜块添加的步骤

PCB EMC设计中的PCB叠层结构

一、电源平面和地平面要满足20H规则 二、当电源层、底层数及信号的走线层数确定后,为使PCB具有良好的EMC性能它们之间的相对排布位置基本要求如下: 元器件层下面(第二层)为地平面,提供器件屏蔽层及为顶层布线提供参考平面。 所有信号层尽可能与地平面相邻 尽量避免两信号层走线相邻。如果无法避免,应加大相邻信号层的走线间距,是两层信号线走线在上下位置呈垂直走线状态 主电源尽可能与其对应地相邻,并尽可能减小电源和地平面之间的距离,以小于5mil为优,最好不要超过10mil 兼顾层压结构的对称叠层还要兼顾PCB制造工艺和控制PCB的翘曲度。通常民用产品采用IPC_II标准,要求PCB的翘曲度要小于0.75%。 采用偶数层结构。 三、常见的PCB叠层结构 1、四层板的叠层结构: TOP、GND02、PWR03、BOTTOM;(TOP层下面有完整的地平面为最优布线层,关键信号应该优先布置在该层。电源平面和地平面的距离不宜过厚最好不超过5mil) TOP、PWR02、GND03、BOTTOM;(此方案和方案a类似) GND01、S02、S03、GND04/PWR04(为达到一定的屏蔽效果,有时采用此方案) 2、六层板的叠层结构 TOP、GND02、S03、PWR04、GND05、BOTTOM(此方案是业界主推的6层PCB的叠层设计方案,有3个布线层,一个电源平面,2个地平面。第4、5层之间的厚度要尽可能小弟3层是最佳布线层,告诉信号和高风险信号优先布置在该层) TOP、GND02、S03、S04、PWR05、BOTTOM (当需要的布线层数多,对成本要求苛刻时可以采用此方案。该方案中S03是最优布线层)

PCB叠层及阻抗计算(精典)

关于PCB叠层及阻抗计算 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异。 表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。 芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜 半固化片: 规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。 阻焊层: 铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。 导线横截面: 以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。 介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数: 板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。 介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。S1141A的典型值为0.015。 能确保加工的最小线宽和线距:4mil/4mil。 阻抗计算的工具简介: 当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。可以使用Allegro来计算,推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。 无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。下图是用Polar SI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图: 由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,我建议差分阻抗减去8欧姆,单端阻抗减去2欧姆

PCB板各层含义大全

solder mask 阻焊剂;焊锡掩膜;绿漆 PCB板各层含义在EDA软件的专门术语中,有很多不是有相同定义的。以下就字面上可能的意义来解释。 Mechnical:一般多指板型机械加工尺寸标注层。 Keepoutlayer:定义走线、打穿孔(via或摆零件的区域。这几个限制可以独立分开定义。 Topoverlay:顶丝印层。Bottomoverlay:底丝印层。 Toppaste:顶层需要露出铜皮上锡膏的部分。Bottompaste:底层需要露出铜皮上锡膏的部分。 Topsolder:应指顶层阻焊层,避免在制造过程中或将来维修时可能不小心的短路 Bottomsolder:应指底层阻焊层。Drillguide:可能是不同孔径大小,对应的符号,个数的一个表。 Drilldrawing:指孔位图,各个不同的孔径会有一个对应的符号。 Multilayer:应该没有单独这一层,能指多层板,针对单面板和双面板而言。 Gerber文件各层对照由Protel2004产生的Gerber文件各层扩展名与PCB原来各层对应关系表: Layer : File extension ------------------------- 顶层Top (copper Layer : .GTL 底层Bottom (copper Layer : .GBL 中间信号层Mid Layer 1, 2, ... , 30 : .G1, .G2, ... , .G30 内电层Internal Plane Layer 1, 2, ... , 16 : .GP1, .GP2, ... , .GP16 顶丝印层Top Overlay : .GTO 底丝印层Bottom Overlay : .GBO 顶掩膜层Top Paste Mask : .GTP 底掩膜层Bottom Paste Mask : .GBP Top Solder Mask : .GTS Bottom Solder Mask : .GBS Keep-Out Layer : .GKO Mechanical Layer 1, 2, ... , 16 : .GM1, .GM2, ... , .GM16 Top Pad Master : .GPT Bottom Pad Master : .GPB Drill Drawing, Top Layer - Bottom Layer (Through Hole : .GD1 Drill Drawing, other Drill (Layer Pairs : .GD2, .GD3, ... Drill Guide, Top Layer - Bottom Layer (Through Hole : .GG1 Drill Guide, other Drill (Layer Pairs : .GG2, .GG3, ... 层PCB板就是在多个板层完成后再采取压制工艺将其压制成一块电路板,而且为了减少成本和过孔干扰,多层PCB板往往并不比双层板和单层板厚多少,这就使得组成多层PCB板的板层相对于普通的双层板和单层板往往厚度更小,机械强度更低,导致对加工的要求更高。所以多层PCB板的制作费用相对于普通的双层板和单层板就要昂贵许多。但由于中间层的存在,多层板的布线变得更加容易,这也是选用多层板的主要目的。然而在实际应用中,多层PCB板对手工布线提出了更高的要求,使得设计人员需要更多地得到EDA软件的帮助;同时中间层的存在使得电源和信号可以在不同的板层中传输,信号的隔离和抗干扰性能会更好,而且大

PCB叠层设计规范 文档

层压设计规则 作者:刘军喜2010/10/20 1.0设计规则: 1.1非客户指定结构设计、非阻抗板压板结构设计 1.1.1底铜厚度≤1OZ板最外层介电层(L1-2,LN-LN-1层)厚度设计为 2.8-14.6MIL,其它层介电 层设计为 3-14.6MIL; 1.1.2无耐高压测试要求的板压板结构设计 a、3oz≥底铜厚度≥2OZ介电层厚度设计至少大于4.5MIL; b、4oz≥底铜厚度≥3OZ介电层厚度设计至少大于6.5MIL; c、底铜厚度≥5oz的板需工程出工程评估给工艺组评估后再确定。 1.1.3有耐高压测试板要求的板,根据客户高压要求设计具体的压合结构,通常高压测试在 2000V-2800V时,介电层设计至少大于6MIL,具体客户要求的板材TG、CTE、CTI、耐CAF 等详细情况需工程出工程评估给工艺组评估后再确定。 备注:介电层指PP层,含core介电层,介电层厚度及core厚度均指中值,不含公差, 当厚度>5MIL时公差按IPC4101三级公差进行控制;当厚度≤5MIL时,公差按±0.5MIL控 制;超IPC4101三级公差的MI备注要求特别控制及备料. 1.2 客户指定结构板、阻抗板压板结构设计 若客户指定结构,工程组在接单时尽量与客户沟通按以上要求设计,当不能满足以上要求时,出工程评估单给工艺评估. 1.3板边尺寸设计制作标准 1.3.1所有板MI设计开料尺寸需比压合后成型尺寸单边大0.1~0.2″,同时预留开料刀具损耗 每刀0.1″。 1.3.2四层板板边一般设计为≥0.5″,特殊情况下可以做到0.4″,但必须满足以下条件: A、非阻抗板; B、介电层厚<8.0MIL; C、内层铜厚<2OZ; 1.3.3六层及以上板按照板边≥0.75″控制,六层板特殊情况下可做0.6″(min),但需满足上 述a、b、c条件。 1.3.4两张及以上芯板压合的四层板板边设计要求同六层板。 1.3.5 OPE系统设计单元边到开料边一般为≥0.9″,最小可生产0.80″。按0.80″设计时需 优先保证OPE系统靶标完整,其他靶标可移位处理。 1.3.6对于内层铜厚≥2OZ底铜板,板边设计≥0.8″,以防止流胶过大导致板厚超公差及板边 白点。 1.3.7对于阻抗板及金手指板板边设计特别要求: a、阻抗TEST COUPON设计在板中,无法设计在板中的,TEST COUPON边距板边须满足≥ 0.4″,金手指位的方向尽量朝板中。 b、设计拼图时,加大板边尺寸,板边尺寸按≥0.8inch设计。 1.4高层板、内层厚铜板无铜区叠加及薄介电层板内层需添加辅助铜皮以避免压合起皱:

4-12多层PCB层叠方案

?四层板的层叠方案 层叠建议:优选方案一(见图1)。 方案一为常见四层PCB的主选层设置方案。 方案二适用于主要元器件在BOTTOM布局或关键信号底层布线的情况;一般情况限制使用。 方案三适用于元器件以插件为主的PCB,常常考虑电源在布线层S2中实现,BOTTOM层为地平面,进而构成屏蔽腔体。 图1四层板的层叠方案 ?六层板的层叠方案 层叠建议:优选方案三,可用方案一,备用方案二、四(见图2)。 图2六层板的层叠方案

对于六层板,优先考虑方案三,优先布线S1层。增大S1和PWR1之间的间距,缩小PWR1和GND2之间的间距,以减小电源平面的阻抗。 在数码消费等对成本要求较高的时候,常采用方案一,优先布线S1层。 与方案一相比,方案二保证了电源、地平面相邻,减少电源阻抗,但所有走线全部裸露在外,只有S1才有较好的参考平面;不推荐使用。但在埋盲孔设计时,优先采用此方案。 对于局部、少量信号要求较高的场合,方案四比方案三更适合,它能提供极佳的布线层S1。 十层板的层叠方案 层叠建议:推荐方案一、方案二(见图3)。 图3十层板的层叠方案 对于单一电源层的情况,首先考虑方案一。层叠设置时,加大S1~S2、S3~S4的间距控制串扰。 对于需要两电源层的情况,首先考虑方案二。层叠设置时,加大S1~S2、S3~S4的间距控制串扰。

方案五EMC效果较佳,但与方案四比,牺牲一个布线层;在成本要求不高、EMC指标要求较高且必须双电源层的核心单板,建议采用此种方案;优先布线层S1、S2。 十二层板的层叠方案 层叠建议:推荐方案一、方案三(见图4)。 图4十二层板的层叠方案

PCB叠层规定

Sub:多层板常规叠层规定 为节约成本,规范叠层,特对叠层规定如下:(客户对叠层有要求除外) 压板厚度=内层芯板厚度+内层半固化片厚度+内层所有铜厚+外层铜箔厚度 1、压板厚度=成品厚度+0.05/-0.075mm 2、内层半固化片厚度按阻抗规范要求计算(其取值随相邻两铜面情况不同而变化)。 3、对于铜面情况与规定不一致或非常规铜厚情况,需在该规定基础上调整。 18um 、35 um 、70 um 铜箔厚度 7628(0.185mm),2116(0.105mm)1080(0.075mm)3313(0.095mm) 半固化片厚度 一、 四层板(其中2、3层全部是GND层) (1)成品板厚要求:0.5+/-0.10MM ___________________ 18UM ___________2116*1 ___________________ 0.13mm 35/35um ___________2116*1 ____________________18um 理论压板厚:0.46mm (2)成品板厚要求:0.8mm+/-0.10mm ___________________ 18UM ___________1080*1 ____________2116*1 _______________0.25mm 35/35um ____________2116*1 ____________1080*1 _____________________18um 理论压板厚:0.71mm (3)成品板厚要求:1.0MM+/-0.10MM ____________________ 18UM ___________1080*2 ________________0.51mm 35/35um ____________1080*2 _____________________18um 理论压板厚:0.89mm (4)成品板厚要求:1.6+/-0.15MM _____________________ 18UM ___________1080*1 ____________7628*1 _______________1.0mm 35/35um ____________7628*1 ____________1080*1 _____________________18um 理论压板厚:1.54mm (5)成品板厚要求:2.0+/-0.20MM _____________________ 18UM ___________1080*2

PCB线路板常用阻抗设计及叠层结构

PCB阻抗设计及叠层结构 目录 前言 (4) 第一章阻抗计算工具及常用计算模型 (8) 1.0 阻抗计算工具 (8) 1.1 阻抗计算模型 (8) 1.11. 外层单端阻抗计算模型 (8) 1.12. 外层差分阻抗计算模型 (8) 1.13. 外层单端阻抗共面计算模型 (9) 1.14. 外层差分阻抗共面计算模型 (9) 1.15. 内层单端阻抗计算模型 (9) 1.16. 内层差分阻抗计算模型 (10) 1.17. 内层单端阻抗共面计算模型 (10) 1.18. 内层差分阻抗共面计算模型 (10) 1.19. 嵌入式单端阻抗计算模型 (11) 1.20. 嵌入式单端阻抗共面计算模型 (11) 1.21. 嵌入式差分阻抗计算模型 (11) 1.22. 嵌入式差分阻抗共面计算模型 (12) 第二章双面板设计 (12) 2.0 双面板常见阻抗设计及叠层结构 (12) 2.1. 50 100 || 0.5mm (12) 2.2. 50 || 100 || 0.6mm (13) 2.3. 50 || 100 || 0.8mm (13) 2.4. 50 || 100 || 1.6mm (14) 2.5. 50 70 || 1.6mm (14) 2.6. 50 || 0.9mm || Rogers Er=3.5 (15) 2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 (15) 第三章四层板设计 (16) 3.0. 四层板叠层设计方案 (16) 3.1. 四层板常见阻抗设计及叠层结构 (17) 3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm

PCB叠层及阻抗计算

PCB叠层及阻抗计算 多层板的结构: 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异。 表层铜箔:

可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。 芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜 半固化片: 规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0. 095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。 阻焊层: 铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。 导线横截面: 以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。 介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:

相关文档