文档库 最新最全的文档下载
当前位置:文档库 › 宽场_共振能量转移全内反射荧光的显微技术及其应用_张少华

宽场_共振能量转移全内反射荧光的显微技术及其应用_张少华

宽场_共振能量转移全内反射荧光的显微技术及其应用_张少华
宽场_共振能量转移全内反射荧光的显微技术及其应用_张少华

*[基金项目] 国家自然科学基金重点项目(30430270)

[作者单位] 1华中科技大学同济医学院病理生理学系,邮政编码

武汉430030;

2

湖北省黄石理工学院医学院; 通讯作者:王建枝,

E -mail:W angjz@https://www.wendangku.net/doc/c815038862.html,

本文2004-10-26收到,2005-01-20修回,2005-03-20接受宽场-共振能量转移-全内反射荧光的显微技术及其应用

*

张少华1

曹福元1

胡茂琼2

综述 王建枝1

审校

[中图分类号] Q6-33 [文献标识码] A [文章编号] 1005-1740(2005)02-0067-03

1

590年世界上第一台光学显微镜诞生,在随后的几百

年间,显微科学取得迅猛发展。人们逐渐地改进了成像质量,而且各种新的光学显微镜也应运而生。生命

科学中大量的事实表明细胞的动力学特征是起源于单个蛋白质分子的聚合和相互作用,对它的研究变得尤为重要。但是传统的光学显微镜由于受到光瞳远场衍射效应的影响,存在分辨极限[1]。光学显微镜空间分辨极限约250nm 。从应用的角度,传统的光学显微术无法满足更高的分辨率要求。还都需要破碎细胞或对细胞造成损伤,无法做到在活细胞生理条件下实时地对细胞内蛋白质-蛋白质间相互作用进行动态研究。而基于强度的影像技术例如荧光共振能量转移(FRET )方法(宽场,共聚焦,双光子),使得研究活细胞内的这些相互作用变得容易了[2]。使许多复杂的研究例如蛋白质功能和加工、基因表达和第二信使传递、胞内信号传导等研究成为可能。显微荧光成像技术可在溶液,细胞悬液,多细胞,单细胞,细胞膜,细胞器等不同层次提供示踪、定性、定量等研究,例如对生物大分子间的相互作用、距离、动力学特性等。本文就基于常规宽场荧光显微技术、荧光共振能量转移显微技术和全内反射荧光显微技术的荧光显微光学实验平台分别进行了介绍和对比评估。1 宽场荧光显微技术

1.1 宽场荧光(Wide F ield Fluorescence,WFF )显微原理

宽场荧光显微术,是整个目标被激发光曝光,贯穿整个样本(焦面和焦外)的发射光被高数值孔径(N A)物镜收集。是荧光显微技术中最简单和最广泛应用的荧光光学平台。1.2 WF F 显微的技术要求

激发光源,常见的有汞灯和氙灯,汞氙复合电弧灯。汞灯的光谱中有丰富的紫外成分,并在某些特定的波长激发能

量存在峰值,因此,可以配合特定的荧光染料得到非常好的信噪比。但也正是由于汞灯光谱特性不平坦,限制了其在定量测量方面的应用,而主要用于形态学观察。对于做定量动态测量的应用,一般选择光谱特性相对平坦的氙灯。在双波长测量Ca 2+,M n 2+等离子浓度的应用中,一般选择氙灯做激发光源。而汞氙复合电弧灯结合了汞灯和氙灯的优点,可以用于定性形态学观察和定量测量复合电弧灯。利用光栅或滤镜可以选择性地得到某个特定波长的激发光,激发光通过聚光器光路和显微镜物镜光路照射到样品平面,激发出样品中荧光生色团的荧光。

显微镜和荧光物镜,在荧光显微技术中,对显微镜透射光照明设备的要求并不高。但对于物镜,则要求很高,需要满足两个基本要求:1)物镜的激发光频段通透性尽可能要好,以便让足够多的激发光达到样本平面。2)物镜的数值孔径尽可能高,由于荧光非常微弱,高数值孔径的物镜可以提高收集效率

[3]

检测设备,在宽场荧光显微技术中,一般使用科研级的电荷耦合器件(Charged Coupled Dev ice,CCD)(图像传感器)作为检测设备,要求低暗电流,高光电转换效率(Q E),低读出噪音,高分辨率。在特别弱的荧光检测应用,例如单分子荧光检测中,由于信号极其微弱,需要使用有EM (电子增益)的CCD,将信号在CCD 芯片内部先进行放大,提高信噪比,然后再由读出电路转换出去。这样可以获取极其微弱的荧光信号。在单分子动态成像(曝光时间短)应用中,可以获取有效的动力学信息[3]。1.3 WFF 显微技术的应用

宽场荧光显微技术,在形态学研究、定性鉴定、定量测量等方面都有广泛的应用。利用合适的荧光染料,例如Fura -2,Indo -2,可以研究细胞内钙信号的动力学特性。使用Fura -2染料时,选择双波长(340nm/380nm)激发,单波长(510nm)检测模式;而使用Indo -1染料时,则选择单波长(K )激发,双波长(K )检测模式。可以测量细胞内Ca 2+浓度信号的变化以及细胞间的Ca 2+浓度分布信号,例如与分泌的耦联、钙振荡等等。如果选择荧光蛋白作为荧光标记物,则可以实现宽场荧光共振能量转移(Wide F ield F RET )测量[4]。

微循环学杂志,2005,15(2):67~69

o

C 2005 C HINES E JOUR NAL OF MIC ROC IR C ULA TION

2荧光共振能量转移显微技术

2.1荧光共振能量转移(Fluorescence Resonance Ener gy T ransfer,FRET)显微原理

FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强的它自已的物征荧光(敏化荧光),也可以不发荧光(荧光淬灭),同时也伴随着它们寿命的相应缩短和延长。作为共振能量转移供、受体对,荧光物质必须满足以下条件:1供、受体的激发光要分得足够开;o供体的发射光谱与受体的激发光谱要重叠;?供、受的发射光谱要足够分得开。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等有关。发生FRET 时,分子间距离小于10nm。如果发生F RET,则供体通路信号将淬灭而受体通路信号将激活或增强[5]。FR ET显微技术高度依赖如何快速高效地捕获来自标定分子间相互作用的短暂微弱的荧光信号的能力。由于能量传递发生在1~ 10nm,一个F RET信号代表了一个显微镜图象中的一个特殊位置。这等效于提供了一个额外的放大倍数,使FRET超越显微镜的分辨率限制而以分子尺度分辨出供体-受体的平均距离,并能显示出受体-供体的相互作用。

2.2FRET显微技术形成

荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现能量向邻近的受体分子转移(即发生能量共振转移)。

2.3FRET显微技术应用

以绿色荧光蛋白分子(GF P)的两个突变体的青色荧光蛋白分子(CFP)和黄色荧光蛋白分子(YFP)为例,CF P的发射光谱与YF P的吸收光谱有相当的重叠,当它们足够接近时,用CFP的吸收波长激发,CF P的发色基团将会把能量高效率地共振转移至YF P的发色基团上,所以CFP的发射荧光将减弱或消失,主要发射将是YFP的荧光。两个发色基团之间的能量转换效率与它们之间的空间距离的6次方成反比,对空间位置的改变非常灵敏。如果将CFP/YF P 分别标定在要研究的两种蛋白质a和b上。当蛋白质a与b 没有发生相互作用时,CF P与Y FP相距很远不能发生F RET,因而检测到的是发射波长476nm的CFP荧光;但当蛋白质a与b发生相互作用时,由于蛋白质b受蛋白质a作用而发生构象变化,使CF P与Y FP充分靠近发生荧光F RET,此时检测到的就是发射波长为527nm的YF P荧光[2]。人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测,蛋白质结构、功能分析,免疫分析,细胞器结构功能检测等诸多方面[6]。

3全内反射荧光显微技术

3.1全内反射荧光显微技术(T otal Inter ior Reflect ion Fluo-rescent,T I RF)显微原理

T I RF是一种特殊的宽场荧光显微技术。当光从光密物质向光疏物质照射,当入射角达到或超过某个临界角度时,将发生全反射,将绝大部分能量反射回光密物质,而小部分能量在交界面上将产生一个隐失场(Ev anescent Field),能量集中在厚度从几十至几百nm之间的范围内,且在垂直方向呈指数衰减[5]。发生全内反射时,在低折射率介质中隐失场的典型渗透深度一般在100nm量级。如果样品紧贴界面放置,则隐失场对样品的垂直照射深度也为~100nm(其它光学成像方法的照射深度比这大得多,以共焦显微技术为例,照射深度~500到800nm)。只有这个极其薄的层面中的荧光分子将被激发,而在这个范围外的整个背景的其他任何深度的荧光基团都不会被激发。所以T IRF显微术具有其它成像方法无法比拟的高的信噪比。细胞的光损伤和光漂白也很小[1,7]。

3.2T IRF技术组成

构造全内反射荧光显微成像系统,主要有棱镜型和物镜型两种[1]。棱镜型系统在实现上更加容易,它只需要激光光源、棱镜和显微镜。在探测上,它也不容易受到入射光信号的干扰,但是放置样品的空间受到棱镜的限制,而且出射到斜上方的激光光束对实验人员的构成一定的辐射威胁。而在物镜型全内反射显微系统中,显微镜的物镜既接收样品荧光信号,同时又作为发生全内反射的关键聚焦光学器件。由于细胞的典型折射率为1.33~1.38,因此要想实现全内反射,物镜的NA必须大于1.38。如果使用为1.4的透镜物镜时,只有很小的一部分物镜孔径范围(1.4-1.38=0.02)可以被利用,这显然增加了光束校准的难度,同时光束的强度也很难提高。如果使用NA1.65的透镜物镜,则有一个大得多的孔径范围(1.65-1.38=0.27)可被利用,即有更多的激发光强可以用来产生全反射[3]。

3.3T IRF显微技术应用

细胞内的很多至关重要的生命活动过程均存在于细胞表面,如果我们可以直接对这些细胞表面的过程进行观测,而不受到来自细胞内深层区域信号的干扰,这对细胞生物学研究来说,将是具有重大意义的突破。全内反射荧光显微术正是凭借其独特的优势,它的荧光激发深度只在100nm的薄层范围内,从而成为研究细胞表面科学如生物化学动力学、单分子动力学的最有前途的光学成像技术。

在前面已经介绍过的宽场荧光显微技术的配置的基础上,引入单波长的或多波长的激光作为激发光源,利用双端口聚光器,使T IRF激发光束与宽场激发光束共用同一光路。使用N A=1.45或1.65的高数值孔径物镜,将激光光束聚焦到样本平面,并且产生全内反射,得到隐失场。物镜型全内反射系统中,发生全内反射时,激光光束被约束在物镜内部,对实验人员的辐射威胁小。而且样品的放置非常方便,并且在对样品的控制上可与多种其它技术相结合,例如和宽场照明,光镊光刀技术操纵样本粒子等等,具有更加灵活广泛的应用范围。由于全内反射荧光成像的独特优势,它

68张少华,曹福元,胡茂琼

将成为细胞基底接触区域内的丰富的细胞生命活动,如细胞膜内蛋白质的动力学过程,基底附近的细胞骨架,细胞运动等最强有力的探测方法。

4WFF-TIRF-FRET显微技术

在宽场荧光显微技术的基础上,可以很方便的实现(W-F RET)。W-F RET广泛用于研究细胞间相互作用的量化比较和细胞运动特性的动力学研究[8]、胞内机制、分子运动、样本中大区域发生的分子间的相互作用等。但对于研究生物分子间小范围内(例如细胞膜上)的相互作用,由于宽场照明方式,会带来无法逾越的困难。宽场照明光束以沙漏形图案贯穿整个路径,导致沿着激发光束路径的能量吸收,使整个样本都被曝光,产生了大量的焦面外的荧光,这种情况检测到的将是贯穿整个样本(焦面和焦外)的样本发射荧光。对于微弱荧光,例如细胞膜上或轴突上的单分子荧光,将淹没在很强的背景荧光中而无法分辨。因此,对于检测小范围内的单分子荧光,需要提高信噪比,抑制背景荧光。采用单光子共聚焦和双光子技术都可以提高信噪比[8]。但这两种技术都基于扫描方式成像,在生物分子间的快速动力学研究方面,实时性往往不够。

本文介绍的不同光学平台的F RET技术。W-F RET显微术是最简单和最广泛应用的技术,适用于大区域发生的蛋白质相互作用。但由于焦平面外的干扰信号:会严重降低图象质量。T IRF-F RET显微术可以极大的降低背景光,是一种近乎理想的宽场显微技术。但由于要发生全内反射,要求使用高倍物镜(60@/100@),实际的视野对大区域发生的蛋白质相互作用就小了。宽场FRET可用CCD成像,不需要扫描,可同时获得所有像素的信息,时间分辨率高.T IRF-FR ET非常适合研究细胞基底接触区域内的蛋白质相互作用,如细胞内蛋白质的动力学过程,细胞囊泡释放,基底附近的细胞骨架,细胞运动等。

T I RF是观察细胞表面很多至关重要的生命活动过程的最有前途的光学成像技术。如果能结合F RET在研究生物分子间相互作用方面具有独特优势,就可以得到一种复合的T I RF-FRET显微技术。这种技术综合了T IRF在Z轴方向约100nm薄层范围的荧光激发深度和FRET在XY平面上的纳米分辨率精度以及宽场实时成像的速度等在时间和空间上的独特优势,成为研究生物化学动力学、单分子动力学、实时观察单个肌浆球蛋白分子的运动、单个蛋白分子对之间相互作用、A T P酶的构像变换、聚合物内单个分子的结构变化、以及神经分泌腺的颗粒运动等方面最有前途的光学成像技术。

5结语

细胞内的很多至关重要的生命活动过程均存在于细胞表面,如果可以直接对这些细胞表面的过程进行观测,而不受到来自细胞内深层区域信号的干扰,这对细胞生物学研究来说,将是具有重大意义的突破。T I RF-FR ET技术融合了T I RF和F RET技术的优点而得到了时间和空间上的独特优势,成为一种研究细胞表面颗粒运动等方面最有前途的光学成像技术。!

本文第一作者简介:

张少华(1956~),男,汉族,主管技师

参考文献

1王琛,王桂英,徐至展.全内反射荧光显微术.物理学进展,2002, 22(4):406~415.

2谢小燕,夏宁邵.生物学中荧光共振能量转移的研究应用进展.

生物技术通讯,2001,12(3):S31~S37.

3王桂英,王琛,徐至展,等.生物单分子光学探测方法的进展.激光生物学报,2003,12(3):174~1785.

4Elangovan M H,W allrabe Y,Chen RN,et al.Characterization of one-and two-photon excitation fluorescence resonance energy transfer m-i croscopy.M ethods,2003,29:58~73.

5Forster T.Intramolecular energy migration and fluorescence.Ann

Phys,1948,2:55.

6郭尧君.荧光实验技术及其在分子生物学中的应用.北京:科学出版社,1983:147~152.

7吴政星,夏胜.PC12活细胞中单个分泌囊泡的动态成像.生物化学与生物物理学报,2003,35(4):381~386.

8Gerritsen HC,K.de Grauw.One-and tw o-photon confocal fluores-cence lifeti me i m aging an d its applications.In M ethods i n Cel lular Imagi ng.A.Periasamy,editor.Oxford Universi ty Pres s,New York, 2001.309~323.

69

宽场-共振能量转移-全内反射荧光的显微技术及其应用

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

超分辨荧光显微技术原理

超分辨荧光显微技术原 理 Revised as of 23 November 2020

2014年的诺贝尔理综奖颁发给了“超分辨荧光显微技术”。也许接下来的几天,媒体会关注StefanHell、EricBetzig二人的传奇经历,或者另一名华人女科学家与该奖项失之交臂的遗憾。但是八卦之外,这项成果背后的科学本身也非常有意思。 这里面有三个关键词:“超分辨”、“荧光”和“显微技术”,我希望能够解释清楚以下几个问题,尤其是后两个问题: 1.为什么需要(光学)显微技术 2.为什么光学显微镜的分辨率存在理论极限 3.用怎样的方法可以突破这个理论极限以达到“超分辨”为什么这个理论极限可以被突破 5.为什么非得是荧光显微技术,而非普通的明场(透射光)显微技术 1.采样定理与显微镜 我们用肉眼观察或者用相机拍摄一个物体时,物体上的每一个细微的点都会在眼睛的视网膜或是相机的感光芯片上成像。那么我们为什么不能看到细菌等微小的东西,为什么不能把照片无限放大以看清远处树木上面的每一片叶子呢 这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为5微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即10微米。再结合眼球的构造,大致可以推断出,在距离眼睛25厘米的位置,我们能分辨物体上相距为80微米的两个点,换算成点阵密度就是大约320ppi,这也是苹果所谓“视网膜屏”分辨率的来历。

如果要观察小于80微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。 按照前面的方法来推算,要区分物体上相距为200纳米的两个点,如果使用科研级相机,比如最近火起来的sCMOS相机(每个感光像素尺寸为微米),只需要使用放大倍率为65倍的物镜就足够了。 那么是否可以通过提高物镜的放大倍率来观察低于200纳米的物体,比如细胞里面微管呢 答案是不可以。 2.光学衍射极限 由于光是一种电磁波,具有衍射和干涉的特性。 图1.光学显微镜简化示意图 如上面的简图所示,紫色箭头表示的物体PQ经过物镜等之后在相机上成像为P'Q'。由于光的衍射,物体上的点如P、Q,在相机上并不是单独的点,而是一个个有一定大小的斑,被称为夫琅禾费衍射斑(或称艾里斑),如右侧的同心圆所示。那么,当P'、Q'相距太近的时候,两个斑会叠加导致难以分辨。这就要求物体上的P、Q要相距一定的距离。 1873年,德国物理学家、卡尔蔡司公司的恩斯特·阿贝(ErnstAbbe)首次推算出衍射导致的分辨率极限。根据瑞利判据——“当一个像斑的中心落到另一个像斑的边缘时,就算这两个像刚好能被分辨”,显微镜能分辨的物体上两点P、Q的最小距离h为: 这个公式就是光学显微镜的分辨率公式,或称为光学衍射极限。(注意此处的分辨率与通常说的显示器分辨率含义不同)

超分辨荧光显微技术原理

2014年的诺贝尔理综奖颁发给了“超分辨荧光显微技术”。也许接下来的几天,媒体会关注StefanHell、EricBetzig二人的传奇经历,或者另一名华人女科学家与该奖项失之交臂的遗憾。但是八卦之外,这项成果背后的科学本身也非常有意思。 这里面有三个关键词:“超分辨”、“荧光”和“显微技术”,我希望能够解释清楚以下几个问题,尤其是后两个问题: 1.为什么需要(光学)显微技术? 2.为什么光学显微镜的分辨率存在理论极限? 3.用怎样的方法可以突破这个理论极限以达到“超分辨”?为什么这个理论极限可以被突破? 5.为什么非得是荧光显微技术,而非普通的明场(透射光)显微技术? 1.采样定理与显微镜 我们用肉眼观察或者用相机拍摄一个物体时,物体上的每一个细微的点都会在眼睛的视网膜或是相机的感光芯片上成像。那么我们为什么不能看到细菌等微小的东西,为什么不能把照片无限放大以看清远处树木上面的每一片叶子呢? 这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为5微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即10微米。再结合眼球的构造,大致可以推断出,在距离眼睛25厘米的位置,我们能分辨物体上相距为80微米的两个点,换算成点阵密度就是大约320ppi,这也是苹果所谓“视网膜屏”分辨率的来历。

如果要观察小于80微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。 按照前面的方法来推算,要区分物体上相距为200纳米的两个点,如果使用科研级相机,比如最近火起来的sCMOS相机(每个感光像素尺寸为6.5微米),只需要使用放大倍率为65倍的物镜就足够了。 那么是否可以通过提高物镜的放大倍率来观察低于200纳米的物体,比如细胞里面微管呢? 答案是不可以。 2.光学衍射极限 由于光是一种电磁波,具有衍射和干涉的特性。 图1.光学显微镜简化示意图 如上面的简图所示,紫色箭头表示的物体PQ经过物镜等之后在相机上成像为 P'Q'。由于光的衍射,物体上的点如P、Q,在相机上并不是单独的点,而是一个个有一定大小的斑,被称为夫琅禾费衍射斑(或称艾里斑),如右侧的同心圆所示。那么,当P'、Q'相距太近的时候,两个斑会叠加导致难以分辨。这就要求物体上的P、Q要相距一定的距离。 1873年,德国物理学家、卡尔蔡司公司的恩斯特·阿贝(ErnstAbbe)首次推算出衍射导致的分辨率极限。根据瑞利判据——“当一个像斑的中心落到另一个像斑的边缘时,就算这两个像刚好能被分辨”,显微镜能分辨的物体上两点P、Q 的最小距离h为:

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

1荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个

1.荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个荧光团的发射光谱与另一个荧光团的吸收光谱有重叠,当供体被入射光激发时,可通过偶极-偶极耦合作用将其能量以非辐射方式传递给受体分子,供体分子衰变到基态而不发射荧光,受体分子由基态跃迁到激发态,再衰变到基态同时发射荧光。这一过程称为荧光共振能量转移(fluorescence resonance energy transfer,FRET)。 优点 1.适用于活细胞和固定细胞的各类分子, 2.灵敏度和分辨率高,并能清晰成像, 3.准确度高,操作简便 4.最直观地提供蛋白质相互作用的定位和定量信息, 缺点 首先,FRET对空间构想改变十分敏感,其测量范围在1~10 nm,但如果待测蛋白原本就相当接近, FRET信号已经达到最大值,此时一些刺激引起的微小的构想改变就可能无法引起FRET信号的很大改变; 其次,存在光漂白作用, FRET需要起始激发光激发D,这时就很难避免对A的间接激发,这样的交叉激发降低了分析的灵敏性; 第三,存在其他一些本底荧光的干扰; 另外,起始激发光可能会破坏一些光敏的组织和细胞,产生光毒性。这些缺点很大程度上限制了FRET的进一步发展。

2.蛋白质双杂交技术 原理 以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转录与表达。这个被激活的、能显示“诱饵”和“猎物”相互作用的基因称之为报道基因(reporter gene)。通过对报道基因表达产物的检测, 反过来可判别作为“诱饵”和“猎物”的两个蛋白质之间是否存在相互作用。 酵母双杂交系统的优点及局限 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基 本原理和应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

荧光共振能量转移技术的基本原理和应用荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量

荧光共振能量转移(FRET)技术在生物研究探究中的运用资料精

荧光共振能量转移(FRET)技术在生物研究中的应用 高裕锋分析化学B200425012 摘要:简要综述了荧光共振能量转移(FRET)技术在生物研究中的一些应用。核酸的结构、DNA测序、核酸杂交、蛋白质结构和蛋白质相互作用等的研究是生命科学研究重要组成部分,相关工作一直备受关注,而FRET技术被广泛应用于相关领域研究中,并取得了较突出的结果。 关键词:荧光共振能量转移(FRET),核酸结构,DNA测序,核酸杂交,蛋白质结构,蛋白质相互作用。 生命科学被誉为21世纪的科学,为了揭示生命的奥妙,人们投入了大量的工作。其中对于核酸和蛋白质的研究备受关注,大量的新技术与新方法被用于该领域的研究中。荧光共振能量转移技术是一项经典的荧光技术,但是随着荧光成像技术的发展,二者相互结合,成为了生命科学领域的一个重要研究手段[1,2]。本文简单介绍了基于FRET原理的新技术在生物研究中的一些应用。 一、FRET基本原理[3] FRET现象是Perrin在20世纪初首先发现的,1948年,Foster[4,5]创立了理论原理。FRET 指荧光能量给体与受体间通过偶极-偶极耦合作用以非辐射方式转移能量的过程,又称为长距离能量转移。产生FRET的条件(图1)主要有三个:(1)给体与受体间在合适的距离(1~10 nm);(2)给体的发射光谱与受体的吸收光谱有一定的重叠,这是能量匹配的条件;(3)给体与受体的偶极具一定的空间取向,这是偶极-偶极耦合作用的条件。 图1 产生FRET条件示意图

FRET 的效率用E 表示,E 用式(1)计算:其中R 0为Foster 距离,表示某一给定给体与受 60660R E R R =+ (1) 240D DA R const n J κφ?=???? (2) 体间能量转移效率为50%时的距离;R 为给体与受体的实际距离。R 0可由式(2)计算:其中κ2 是方向因素,n 是溶剂的反射系数,φD 是供体探针结合到蛋白的量子效率, J DA 是供体发射波长和受体吸收波长的交叠系数。 由式(2)可看出R 0对于给定的给-受体是一个特征值,因此,式(1)中E 值与 R 的关系紧密,这也成为了FRET 用于测定分子间或基团间距离的重要理论依据。 E 值可由以下几种方式测定:用荧光强度表征( E=1- I DA / I D ,I DA 表示A 存在时D 的荧光强度);用量子产率表征( E=1-φDA /φD );用荧光寿命表征(E=1-τDA /τD )。这表示研究FRET 可以通过不同的实验设备,既可以用普通光谱仪测定其荧光强度、量子产率,也可以用时间分辨仪测定其荧光寿命。 随着成像技术的发展,用显微成像的方法可更直观地观测FRET 地发生。 二、FRET 探针 FRET 需要两个探针,即荧光给体与荧光受体,要求是给体的发射光谱与受体的吸收光谱有一定交叠,而与受体的发射光谱尽量无交叠。 常用的探针主要有三种:荧光蛋白、传统有机染料和镧系染料。 荧光蛋白[6]是一类能发射荧光的 天然蛋白及其突变体,常见的有绿色荧光蛋白(GFP )、蓝色荧光蛋白(BFP )、 青色荧光蛋白(CFP )和黄色荧光蛋白(YFP )等。不同蛋白的吸收和发射波长不同,可 根据需要组成不同的探针对。荧光蛋白的突出优点是自身为生物分子,可有效地与目标分子融 合,更易于在生物环境中使用,且其种类多,可满足不同光谱需要。其缺陷是分子体积大, 空间分辨率较低,且可能与目标分子作用产生化学发光,需要较长地时间来确定荧光形式, 不利于动力学研究。为克服这些缺陷,常使用荧光蛋白与其他染料联用或用其他染料对来研究。 传统有机染料是指一些具有特征吸收和发射光谱地有机化合物组成地染料对。常见的有荧光素、罗丹明类化合物和 青色染料Cy3、Cy5等。该类染料分子体积较小,种类较多且大部分为商品化的分子探针染料,因此应用较为广泛。 镧系染料[7]一般与有机染料联用分 别作为FRET 的给-受体,其主要优点是:测量量可

倒置荧光显微镜CCD成像系统

中国医科大学实验技术中心 主要实验仪器及相关技术 倒置荧光显微镜CCD 成像系统仪 器 名 称 Inverted Fluorescence Microscope with Digital CCD Imaging System 型 号 IX71/DP70 生 产 厂 OLYMPUS 国 别 日本 所在科室 实验技术中心三部 综合楼10F 负 责 人 赵蕾 薛晓霞 联系电话 23256666转5104,5100 起用日期 2002.09 主要技术指标及配置: IX71倒置荧光显微镜 调焦:粗调/微调机制,最小微调刻度1μm ,一圈100μm 三目镜筒,目镜:10×/FN22.0;通用长工作距离聚光镜NA0.55 WD27mm ; 配置DIC 相差(10×、20×、40×)、相差(4×、10×、20×、40×、60×)装置 物镜: 4×、10×、20×、40×、60×,适于荧光、DIC 相差、相差观察 透射光照明:12V100W 卤素灯,带TTL 触发控制、光标指示 落射荧光:IX-RFA/U-LH100HGAPO 100W 汞灯;装有视场光阑调节机制 激发/发射滤光片组件:UV (U-MWU2, BP330-385)、IB(U-MWIB2 BP460-490,BA515IF)、IG(U-MWIG2 BP520-550,BA580IF)、BV(U-MWBV2 BP400-440, BA455)、IY(U-MWIY2 BP545-580, BA610IF)、IB GFP/FITC(U-MWIBA/GFP BP460-490, BA510-550); 需用BV 、IY 激发/发射滤光片组件的实验者要提前说明,以便进行实验配置。 DP70数字CCD 成像 2/3”彩色CCD ,有效像素:1.5MP ,经像素转移技术为4080×3072(12.5MP 像素) 最大图像采集速度:3fps (36bit ,最高分辨率),图像预览:1360×1024,15fps 测光/曝光方式:30%平均测光,1%、0.1%点测光;自动、手动和自动超级荧光(SFL)曝光时间控制:1/44,000秒~60秒 灵敏度:相当于胶片ISO200~ISO1600,分档可选;BINNING :最高4×4 动态范围:36-bit ,文件存储格式48-bit Peltier 半导体制冷:低于环境温度10℃ 图像采集分析软件:图像融合、加校准标尺、测量,序列图像记录和回放、基本的图像处理功能等。图像还可在荧光图像工作站做反卷积去模糊等处理。 可连接35mm 胶片自动显微照像装置(30%平均测光,1%、0.1%点测光;自动、手动和自动超级荧光SFL)。 主要技术功能及适用领域: 1. 细胞静态或动态荧光观察、图像采集;DIC 相差观察、图像采集。 2. 其它在培养器皿内荧光标本或需倒置观察的有关标本的观察、图像采集。 申请实验技术有关事项及自备条件: 1.提前4个工作时预约;使用60×物镜、DIC 观察和35mm 自动显微照像要事先说明。 2.自带纱布或纸,观察前,要擦拭净培养器皿表面水迹。 3.完成实验后,带走样品,不得随意丢弃,并清理实验台面。

荧光显微镜在生命科学中的应用

荧光显微镜在生命科学中的应用 摘要: 荧光显微镜是在光镜水平上,对细胞内特异的蛋白质、核酸、糖类、脂质以及某些离子等组分进行定性研究的有力工具。本文综述了结构光照明荧光显微镜、隐失波荧光显微镜在生命科学中的应用。关键词: 荧光显微镜;应用 荧光显微镜具有可特异性标记、可对活体细胞进行实时动态成像的优势,在生命科学研究中获得了广泛的应用[1],利用荧光显微镜观测生物活体和固定的细胞是研究目标蛋白定位和动态的一种重要手段。随着荧光标记和新的显微成像技术,如激光共聚焦显微镜和转盘式共聚焦显微镜的广泛应用,使人们对于细胞中的动态过程有了更深入的了解。 1.结构光照明荧光显微镜突破衍射极限的原理和在生命科学中的应用 结构光照明是一种通过改变照明光空间结构的照明方式,通常照明的结构光是一个载频条纹,这种照明方式可应用于角度、长度、振动等的测量,并广泛应用于三维成像[2-4]。结构光照明荧光显微镜,是在宽场荧光显微镜的基础上,利用特殊调制的结构光照明样品,运用特定算法从调制图像数据中提取焦平面的信息,突破衍射极限的限制,重建出超分辨切层的三维图像。将结构光照明应用于荧光显微镜,具有成像速度快、光路结构简单、对荧光分子无特殊要求、能够应用于活体细胞实时动态三维成像的优势,因而在生物医学成像领域引起

了广泛关注,是应用前景广泛的超分辨荧光显微技术。 荧光显微镜由于其无损、非入侵的观察方式和特异性标记识别的特点,在生命科学研究中应用广泛。但是由于其分辨率受到衍射极限的限制,细胞内许多复杂的精细结构无法观察到。结构光照明荧光显微镜作为一种能够突破衍射极限的荧光显微镜,大大提高了细胞结构成像的分辨率和图像清晰度,有力地促进生命科学研究的发展。 2.隐失波荧光显微镜及其在植物细胞生物学中的应用 应用隐失波荧光显微镜观测细胞膜附近生物学过程的优点是,它只激发生物样品靠近盖玻片附近一薄层区域内的荧光基团。所谓生物学过程包括:追踪单个分子与膜结合以及与膜分离的过程,配体与细胞膜表面受体结合的动力学,胞吞胞吐过程以及其它定位于细胞膜的分子的动态等。 2. 1 细胞膜表面的受体 隐失波荧光显微镜可以用于研究细胞膜表面受体与配体结合的动力学[5],受体的聚集以及它们的横向运动。细胞膜表面的受体可通过荧光基团标记的配体、抗体或其它小分子进行标记,甚至还可用荧光蛋白( 如 GFP、m Cherry 等)对感兴趣的受体进行标记。 2.2 胞吞与胞吐 迄今为止,已有许多研究利用隐失波荧光显微镜对胞吐过程进行观测,其中包括应用 styryl 染料(如 FM4-64 和 FM1-43)或带有荧光基团的货物标记正在胞吐的囊泡,以观测单个胞吐的过程。通常在观测过程中,只有当胞吐的囊泡进入到隐失波范围内,其荧光基团才

荧光共振能量转移

FRET技术研究PEDF和目标蛋白 之间在小鼠神经元(神经胶质细胞)的 相互作用 一、FRET技术基本原理 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开; ②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。最新的一些报道将发光量子点用于共振能量转移研究,克服了有机荧光染料的不足之处。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量子点具有较宽的光谱激发范围,当它作为能量供体时,可以更自由地选择激发波长,可以最大限度地避免对能量受体的直接激发;通过改变量子点的组成或尺寸,可以使其发射可见光区任一波长的光,也就是说它可以为吸收光谱在可见区的任一生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。) 以GFP的两个突变体CFP(cyan fluorescent protein)、YFP(yellow fluorescent protein)为例简要说明其原理:CFP的发射光谱与YFP的吸收光谱有相当的重叠,当它们足够接近时,用CFP的吸收波长激发,CFP的发色基团将会把能量高效率地共振转移至YFP的发色基团上,所以CFP的发射荧光将减弱或消失,主要发射将是YFP的荧光。两个发色基团之间的能量转换效率与它们之间的空间距离的6次方成反比,对空间位置的改变非常灵敏。例如要研究两种蛋白质a和b间的相互作用,可以根据FRET原理构 建融合蛋白,这种融合蛋白由三部分组成:CFP(cyan fluorescent protein)、蛋白 质b、YFP(yellow fluorescent protein)。用CFP吸收波长433nm作为激发波长,实验灵巧设计,使当蛋白质a与b没有发生相互作用时,CFP与YFP相距很远不能发生荧光共振能量转移,因而检测到的是CFP的发射波长为476nm的荧光;但当蛋白质a与b

超分辨荧光显微技术原理

2014 年的诺贝尔理综奖颁发给了“超分辨荧光显微技术”。也许接下来的几天,媒体会关注 Stefan Hell、Eric Betzig 二人的传奇经历,或者另一名华人女科学家与该奖项失之交臂的遗憾。但是八卦之外,这项成果背后的科学本身也非常有意思。 这里面有三个关键词:“超分辨”、“荧光”和“显微技术”,我希望能够解释清楚以下几个问题,尤其是后两个问题: 1. 为什么需要(光学)显微技术? 2. 为什么光学显微镜的分辨率存在理论极限? 3. 用怎样的方法可以突破这个理论极限以达到“超分辨”?为什么这个理论极限可以被突破? 5. 为什么非得是荧光显微技术,而非普通的明场(透射光)显微技术? 1. 采样定理与显微镜 我们用肉眼观察或者用相机拍摄一个物体时,物体上的每一个细微的点都会在眼睛的视网膜或是相机的感光芯片上成像。那么我们为什么不能看到细菌等微小的东西,为什么不能把照片无限放大以看清远处树木上面的每一片叶子呢? 这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米。再结合眼球的构造,大致可以推断出,在距离眼睛 25 厘米的位置,我们能分辨物体上相距为 80 微米的两个点,换算成点阵密度就是大约 320 ppi,这也是苹果所谓“视网膜屏”分辨率的来历。 如果要观察小于 80 微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。 按照前面的方法来推算,要区分物体上相距为 200 纳米的两个点,如果使用科研级相机,比如最近火起来的 sCMOS 相机(每个感光像素尺寸为 6.5 微米),只需要使用放大倍率为 65 倍的物镜就足够了。 那么是否可以通过提高物镜的放大倍率来观察低于 200 纳米的物体,比如细胞里面微管呢? 答案是不可以。 2. 光学衍射极限 由于光是一种电磁波,具有衍射和干涉的特性。

超微型显微成像系统(中英文版)

一、超微型显微成像系统产品介绍如下所示: 1.功能和用途 1.1功能 1.1.1系统组件包括显微镜镜体、固定板、GRIN透镜、CMOS、图像采集卡及采集软件等。 1.1.2在单细胞分辨水平,记录一群神经元的钙信号。 1.1.3适用于自由活动动物的在体实验。 1.1.4通过植入GRIN透镜,可以实现深脑成像。 1.1.5系统体积小、重量轻,不影响小鼠自由运动和行为实验。 2.1用途: 2.1.1用于行为动物在体钙成像的超微型显微成像系统。 2.1.2检测新型可遗传编码的乙酰胆碱和多巴胺等探针的荧光变化,即可实时监测乙酰胆碱、多巴胺等浓度的动态变化情况。 二、产品彩图:

Miniature Fluorescent Microscope 1.1 function 1.1.1 System Components include Miniscope body、Base Plate、GRIN Lens、CMOS、DAQ card and software; 1.1.2 Record the calcium signal of a group of neurons at the single cell resolution level; 1.1.3 experiments for freely moving animals; 1.1.4 Deep brain imaging can be achieved by implanting a GRIN lens; 1.1.5 The system is small in size and light in weight, and does not affect the free movement and behavioral experiments of mice. 2.1 Uses: 2.1.1 Ultra-microscopic microscopic imaging system for in vivo calcium imaging of behavioral animals. 2.1.2 To detect the changes in the fluorescence of new genetically-encoded probes such as acetylcholine and dopamine, the dynamic changes of concentrations of acetylcholine and dopamine can be monitored in real time.

荧光显微镜介绍及使用

荧光显微镜 一.荧光显微镜(Fluorescence microscope) : 荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。 在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。 荧光显微镜是以紫外线为光源,用以照射被检物体,使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

荧光显微镜的光源所起的作用不是直接照明,而是作为一种激发标本的内荧光物质的能源。我们之所以能观察标本,不是由于光源的照明,而是标本内荧光物质吸收激发的光能后所呈现的荧光现象。 荧光显微镜和普通显微镜有以下的区别: 1.照明方式通常为落射式,即光源通过物镜投射于样品上; 2.光源为紫外光,波长较短,分辨力高于普通显微镜; 3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人眼。 荧光显微镜也是光学显微镜的一种,主要的区别是二者的激发波长不同。由此决定了荧光显微镜与普通光学显微镜结构和使用方法上的不同。 荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要部件组成。是利用一定波长的

光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。 二.工作原理 光源 多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发时,可达50~70个标准大气压力,这一过程一般约需5~15m i n。超高压汞灯的发光是电极间放电使水银分子不断解离和还原过程中发射光量子的结果。它发射很强的紫外和蓝紫光,足以激发各类荧光物质,因此,为荧光显微镜普遍采用。 超高压汞灯也散发大量热能。因此,灯室必须有良好的散热条件,工作环境温度不宜太高。 新型超高压汞灯在使用初期不需高电压即可引燃,使用一

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基本原理和应用荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量子点具有较宽的光谱激发范围,当它作为能量供体时,可以更自由地选择激发波长,可以最大限度地避免对能量受体的直接激发;通过改变量子点的组成或尺寸,可以使其发射可见光区任一波长的光,也就是说它可以为吸收光谱在可见区的任一生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。)

荧光漂白恢复_荧光共振能量转移和荧光相关光谱检测的技术特点

ZHONGGUO YIXUEZHUANGBEI 于 淼① 高 建① [文章编号] 1672-8270(2009)06-0008-02 [中图分类号] R 197 [文献标识码] B Characteristics of application and technology on FRAP , FRET and FCS/Yu Miao , Gao Jian//China Medical Equipment,2009,6(6):8-9. [Abstract] Fluorescence recovery after photobleaching (FRAP), fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) are three experimental techniques based on the fluorescence analysis that are commonly used to study molecular interaction. In this article, we will discuss and compare the application and technical specifications for FRAP , FRET and FCS.[Key words] FRAP; FRET; FCS; Fluorescence Analysis [First-author's address] Laboratory Center, China Medical University, Shenyang 110001, China. 荧光漂白恢复、荧光共振能量转移和荧光相关光谱检测的技术特点 [摘要] 荧光漂白恢复(FRAP)、荧光共振能量转移(FRET)和荧光相关光谱(FCS)是三种以荧光为基础的检测技术,常用来研究分子间相互作用。对三种技术的特点做以比较和讨论。 [关键词] 荧光漂白恢复;荧光共振能量转移;荧光相关光谱;荧光检测 作者简介 于淼,女,(1980- ),硕士,助教。现就职于中国医科大学实验技术中心,主要从事激光扫描共聚焦显微镜工作。 FRAP:经荧光素标记的某一区域被光照射后,荧光物质的光化学结构被破坏,荧光强度下降,但随之此处荧光强度会逐渐恢复,荧光强度与恢复强弱及快慢代表周围分子扩散的速率或分子运动速度[1]。 FRET:受激态荧光素(供体)将其能量向另一个荧光素(受体)传递,使后者被激发,这一过程称荧光能量共振转移。测定FRET程度的参数,包括供体淬灭、受体发射、供体荧光寿命、供体荧光去极化等[2]。 FCS:是一种通过检测微区内(共焦体积)分子 的荧光信息(强度、波动、波长等)来分析样品特性的检测 技术,类似于传统的荧光分光光度计,主要用于液态样品的成份分析[3]。 以上三种技术的主要参数有: 扩散率:测量扩散的速率,通常表现在分子和分子络合物的扩散系数。 多组分扩散:用来检测和区别单个和多组分之间扩散的能力。 运动分量:检测能够自由扩散的组分。 ①中国医科大学实验技术中心 辽宁 沈阳 110001

简述全内反射荧光显微术原理与应用

简述全内反射荧光显微术原理与应用 柳正(10589537) 北京大学医学部基础医学院生物物理系 【摘要】全内反射荧光显微术(Total internal reflection fluorescence microscopy TIRFM)是利用全内反射产生的消逝波激发样品,从而使样品表面数百纳米厚的薄层内的荧光团受到激发,荧光成像的信噪比大大提高。可以看到样品表面,单分子的活动情况。近年来,全内反射荧光显微术被生物物理学家们广泛应用于单分子的荧光成像中。文章综述全内反射荧光显微技术的基本知识,介绍几个运用全内反射荧光显微镜技术研究生物单分子的实例。 【关键词】:全内反射荧光显微镜消逝波单分子蛋白相互作用构像变化 1引言 从单分子水平上对生物分子行为(包括构象变化、相互识别、等)的实时﹑动态检测以及在此基础上的操纵等,研究者籍此可以深入理解生物活动的机制与产生生物分子效应过程。生物单分子成像技术在生物系统研究中已经广泛使用。随着生物单分子研究深入,越来越要求发展超高分辨率的成像与高信噪比成像技术。近些年来,发展前景被看好的单分子光学成像技术有全场相衬显微术、共焦荧光显微术,近场光学扫描显微术和全内反射荧光显微术[1]。这些技术在分子生物学、分子化学及纳米材料等领域受到广泛关注。其中,全内反射荧光显微术是利用全内反射产生的消逝波来照射样品,从而致使在样品表面数百纳米级厚度的光学薄层内的荧光团受到激发,使单分子成像。 全内反射荧光显微术发展历程,Hirsch field于1965年完成了第一个全内反射荧光实验,这是首次尝试用全内反射荧光法测液体中的单个分子的荧光。将全反射理论与生物细胞的荧光成像技术相结合是一种全新的突破。虽然它的具体应用还不到10年的时间,但是它在单分子探测中已显示出强大的生命力.1995年,Yanagida小组用TIRFM技术首次在液体溶液中得到了荧光标记的单个蛋白质分子的成像.1996年,Moerner小组又用这项技术实现了限制在丙烯酰胺胶体的纳米孔中的单分子的三维成像。至今该项技术已经应用到许多单分子的研究中,如肌球蛋白酶活性测量[2],肌收缩力的产生,荧光标记驱动蛋白动态研究[3]。另外蛋白的构像的动态变化[4][5],人工膜中膜蛋白的研究等[6][7]。 2. 全内反射的基本原理 全内反射是一种普遍存在的光学现象。一束平面光波从折射率为n1的介质进入到折射率为n2的介质中。入射光在界面上一部分发生反射,另一部分则发生透射见图1。入射角i和透射角r之间满足关系式 n1sini=n2sinr (1)

相关文档
相关文档 最新文档