文档库 最新最全的文档下载
当前位置:文档库 › 机械设计基础电子教案)

机械设计基础电子教案)

机械设计基础电子教案)
机械设计基础电子教案)

绪论学时数为2hr.

本章学习后,要使学生能解决三大问题,学什么,为啥学,怎样学三大问题。

01 机器的组成

人们广泛使用过,接触过机器,放一课件(单缸内燃机、颚式破碎机),图01,02所示,但定义如何,为什么称它为机器,学生们是不大清楚的。它要有三个特征,才能称上机器。

1)是一种人为的实物组合。

2)各部分形成运动单元,各单元之间具有确定的相对运动关系。

3)能实现能量转换或完成有用的机械功。

什么叫能量转换,指的是机械能转换成电能,或反之。这样具备三个条件者就称为机器,这样学生就可说出车床是机器吗?电动机是否也是机器,电动机根据三个条件可得出一定为机器。

随着科学技术的发展,创造出各种新型机器,故对机器的定义也有了更广泛的定义,什么叫机器,是一种用来转换或传递能量、物料和信息的,能执行机械运动的装置,那么一台机器由什么组成,从装配角度来看:由零件→构件→机构→机器,因此设计制造一台机器必有零件开始,组装成构件,再由构件组装成机构,加上原动件装置就成为一台机器了。

接下来说说什么叫机构、构件、零件。

什么叫机构:具备前二个条件的称为机构,即为多个实物的组合,又能实现预期的机械运动,例齿轮机构、连杆机构等,放课件(连杆机构、齿轮机构)。

什么叫构件,构件为组成机械的各个相对运动的实物。例连杆,放课件(构件)从中可看连杆为多个零件装配而成的。

什么叫零件,零件是机械中不可拆的制造单元,因此构件可以是一个零件组成也可以由多个零件组成的。

因此可以看出从运动观点来看,机构和机器是无什么差别的,例如缝纫机本身为机构,由多种机构所组合起来的,再加上能量转换就成为机器了,如加上电动机或加上人力都可以成为机器了,在习惯上把机器与机构总称为机械。因此机器,机械这二个名称都可统起作用的。

零件又可分为二大类:

1)通用零件:各种机器中都经常使用,并完成同一功用的零件,例螺钉等。

2)专用零件:只适用于一定类型机器使用的零件,例曲轴等。

02 本课程的内容、性质和任务

本课程研究对象是什么?有二条:

1)机械中常用机构

2)在一般工作条件下,常用参数的通用零件。

这里要说明一下,什么叫一般工作条件,什么叫常用参数?具体地说内容是什么?工作原理→设计计算,设计计算又包括结构设计与设计计算。本课程的内容为

常用机构:在教材中介绍了几种常用机构,例如传动机构(带,齿轮…机构)。

通用零件:连接零件(螺栓、键等)

传动零件(齿轮、链、蜗轮、蜗杆等)

轴系零件(轴、轴承)

其它零件(联轴器、弹簧等)

现在谈一下通用零件的系统性是什么?常用机构也是相似的。

1. 研究对象,工作原理

2. 分析工作情况,包括运动,力,失效形式等。

3. 设计计算,包括设计计算(强度计算,校核计算)和结构设计。

所有通用零件均按此系统来组织教材内容,讲授时均按此系统进行。

本课程的主要任务有三条,教材中有,略加说明一下,总的说来,使学生学习后具有一定设计理论基础和一定设计计算能力。

这门课性质是一门机械设计打基础的课程,是一门主干课程,所以对学机械的学生来讲是一门十分重要的课程,在工程师培养中起到十分重要作用,是一门技术基础课,只要有好的基础,再加上专业知识,就有条件去进行有关机械专业的设计。

03 学习方法

本课程是应用了以前所学到的理论与实际生产知识,并把它们运用到工程实际中,去解决生产实际问题,是一门理论与实践相结合的课程,同学们开始接触此课程时,总有些不习惯,总认为它的理论性不强,系统性差,零零碎碎,不像以前的基础课逻辑推理严格。同学不适应,不习惯,这一点同学一定要赶快适应,如以前课未学好,自己一定要补上,否则会影响到目前的学习。我们说它的系统性是有的,也是很强的,学习它们是有一个总的目的,是如何来满足整台机器的要求设计好机构、各种通用零件。这样目的是很强,一般基础课就无法做到的。一定要改变以前的学习方法,用新学习方法来适应本课程的学习,注意理论联系实际,注意分析比较,注意理论的应用,这样才能学好。

第1章机械设计概述

一、教学要求

本章概括地论述了两大部分:第一部分为关于机械总体设计的概述,第二部分为关于机械零件的设计概述。

具体的教学要求如下:

1)初步理解机械设计和设计机械零件应满足的基本要求。

2)了解机械设计和零件设计的步骤。

3)理解机械零件工作能力的判定方法和设计准则。

4)了解机械设计的标准化、系列化及通用化。

二、重点、难点

重点:机械设计基本要求及机械零件的失效形式及设计计算准则。

难点:从整体上建立起机械设计,尤其是机械零件设计的整体概念。

四、教学思路设计

机械设计概述主要是论述设计基本知识和一些共性问题。本章扼要地阐述机械设计的基本知识,如机械设计的基本要求、内容与过程等。

第1章第1讲

一、讲授时注意几点

1. 1.1、1.2 机械设计的基本要求及内容与过程

这两节内容属于机械(零件)设计中的全局性问题。这里,只能勾画一下概貌,起到开阔视野的作用。

2. 1.3 机械零件的失效形式及设计计算准则

这节内容与先修的力学课程有着密切的联系,是在力学基础之上,结合工程实际所形成的,故比较容易理解。如学生力学基础差的话,必须学前补一下。

3. 1.4 机械零件设计的标准化、系列化及通用化

要了解标准化、系列化及通用化的重要意义,应提高到是否遵守法律的高度来认识,这点学生是不易理解的。

二、讲授程序设计

首先了解设计机械零件的基本要求,然后才能得出机械设计的基本要求、内容与步骤,对于具体的机械零件的设计方法总是根据失效形式得出设计计算准则,应用力学知识,就可设计出零件的大小等。

讲授教案编写如下所述。

第1讲教案

第1章机械设计概述

1.1 机械设计的基本要求

一台机器进行设计包括以下两种设计:

1)应用新技术,新方法开发创造新机器。

2)在原有机器基础以上重新设计或进行局部改造,从而改变或提高原有机器的性能。

设计质量的高低直接关系到机械产品的性能、价格及经济效益。

机械零件是组成机器的基本单元,在讨论机械设计的基本要求之前,我们首先应了解一下设计机械零件的基本要求。

1.1.1 设计机械零件的基本要求

有二条:可靠,成本低。

什么叫可靠,什么叫成本低,说明一下。

为此要注意以下三点:

1)合理选择材料,降低材料费用。

2)保证良好工艺性,减少制造费用。

3)尽量采用标准化,通用化设计零件,简化设计过程,从而降低成本。

1.1.2 机械设计的基本要求

有五条:1.实现预定功能;2.满足可靠性要求;3.满足经济性要求;4.操作方便,工作安全;

5.造型美观,减少污染。

1.2 机械设计的内容与步骤

机械设计是一项复杂、细致和科学性很强的工作,随着科学技术的发展,对设计的理解也在不断深化,设计方法也在不断发展,近年来发展起来的有:“优化设计”,“有限元计算”,“计算机辅助设计”等等。即使如此,常规设计方法仍然是工程技术人员进行机械设计的重要方法,必须要很好掌握,常规设计方法有理论设计、经验设计和模型实验设计等三种。

机械设计的过程通常分为以下四个阶段:

1. 产品规划阶段主要工作为提出设计任务和明确设计要求。

2. 方案设计阶段在满足设计任务书中具体要求的前提下,由设计人员构思出各种可行方案进行分析比较,选出较优者。

3. 技术设计阶段完成机械产品的总体设计、部件设计、零件设计、设计结果以工程图及设计书形式表达出来。

4. 制造与试验阶段进行试运行,发现问题反馈给设计人员,经修改、完善,最后鉴定。

与设计机械一样,设计机械零件也需拟定出几种方案,分析比较、选优,那么设计零件的一般步骤如下几点。教材共有五点,分析之。

对于不同的零件的工作条件,以上这五点可以有所不同,互相交错,反复进行,不能作机械分割。

最后提出一点,什么叫条件性计算,这一点是大家所不大了解的,生疏的,但这是工程实际所需作的。

1.3 机械零件的失效形式及设计计算准则

失效形式在工程力学中已学过,结合到机械零件应该如何,它的理论基础还是一样的,进行机械零件设计必须要根据零件的失效形式分析失效原因,提出防止或减轻失效的措施,根据不同的失效形式提出不同的设计计算准则。

1.3.1 失效形式

1. 断裂常见的有二种:断裂,疲劳断裂,解释一下。

2. 过量变形应力超过屈服极限,发生塑性变形。

3. 表面失效主要有疲劳点蚀、磨损、压溃和腐蚀等形式。

4. 破坏正常工作零件引起的失效,例带传动。

1.3.2 设计计算准则

同一零件对于不同失效形式的承载能力是各不相同的。这个承载能力就是零件的工作能力,它的计算方法就是设计计算准则,下面请对以上失效形式,谈一下设计计算准则。

1. 强度准则是零件必须满足的基本计算准则。可分为整体强度,表面强度二种。

(1)整体强度的准则

σ≤[σ] , τ≤[τ]

或可用安全系数来表示,s≥[s]

(2)表面强度的准则

接触强度σH≤[σH];挤压强度σp≤[σp]

在进行强度计算时,一般有如下两种计算形式

1)设计计算可求出零件的主要几何尺寸。

2)校核计算判断一下是否符合强度条件;已有零件能否承受如此大的载荷,是否安全。

2. 刚度准则

3. 耐磨性准则

4. 散热性准则

5. 可靠性准则

1.4 机械零件设计的标准化、系列化及通用化

作一般性介绍,说明其重要性。

第2章摩擦、磨损及润滑概述

一、教学要求

本章主要内容为对摩擦、磨损、润滑、密封的基本问题作简单扼要的介绍。

具体的教学要求如下:

1)了解摩擦、磨损、润滑、密封的基本概念和四者之间的联系。

2)了解干摩擦、流体摩擦、边界摩擦、混合摩擦的特点与区别。

3)初步了解磨损的一般规律及各种磨损的机理、物理特征和影响因素。

4)了解润滑的作用及润滑剂的主要质量指标。

5)了解密封的作用及密封装置。

二、重点、难点

重点:1)各类摩擦的机理、物理特征及其影响因素

2)各类磨损的机理、物理特征及其影响因素

3)润滑与密封

难点:如何根据工作情况,合适地选择润滑剂和密封装置。

三、教学安排

四、教学思路设计

本章内容是按照摩擦—磨损—润滑—密封的顺序安排的。过去这部分内容是分散在各章之中,现为了加强系统性和对其共性问题的认识,将这部分内容集中在这一章之中,而针对某个零件的某些具体内容则仍分散于各章之中,故本章内容也是机械设计中的共性问题。

第2章第1讲

一、讲授时注意几点:

1. 2.1 摩擦与磨损

本章着重讨论摩擦的机理及物理本质;对于磨损过程有所了解,目的在于如何采取措施使跑合期缩短,延长稳定磨损期,推迟剧烈磨损阶段。

2. 2.2 润滑

对润滑、润滑剂的种类有一个初步了解;对润滑油、润滑脂的主要物理性质指标有所了解。重点在润滑油、对润滑脂作一般性了解。

3. 2.3 密封方法及装置

要重点地学习密封的作用与密封装置的分类、以及根据不同的工作条件选择合适的密封装置。

二、讲授程序设计

本章是按摩擦→磨损→润滑→密封的顺序来讲授,它也是机械设计中的共性问题。

讲授教案编写如下所述。

第1讲教案

第2章摩擦、磨损及润滑概述

2.1 摩擦与磨损

在人们生活中都存在摩擦与磨损,各种机械零件因磨损失效的占全部失效零件的一半以上。

2.1.1 摩擦及其分类

在法向力作用下,一个物体相对于另一个物体,有相对运动或运动趋势时,两物体接触面间产生的阻碍物体运动的切向阻力称为摩擦力,这种现象称为摩擦,这一对摩擦物体称为摩擦副。

根据二物体接触时润滑状态的不同,可将摩擦状态分为四种情况:

放课件(摩擦副的表面润滑状态),一种一种解释一下。

1. 干摩擦(图

2.1a)

解释后,可得出库仑定律F=f·F N

2. 流体摩擦(图2.1b)

3. 边界摩擦(图2.1c)

4. 混合摩擦(图2.1d)

2.1.2 磨损及其过程

表面物质在摩擦过程中不断损失的现象称为磨损。一般情况下磨损是有害的。

磨损过程,可分为三个阶段,放课件(零件磨损过程),图2.2所示,一个过程,一个过程解释一下。

1. 跑合磨损阶段(oa阶段)

跑合磨损到一定程度后,表面上尖峰逐渐被磨平,磨损速度却逐渐减慢,这阶段对机械零件而言是十分必要的。

2. 稳定磨损阶段(ab阶段)

磨损缓慢,磨损稳定下来,零件进入正常工作阶段。

3. 剧烈磨损阶段(bc阶段)

此阶段的特征为磨损速度及磨损率都急剧增大,直至零件失效。

最后指出一点,在跑合结束后,一定要清洗零件,更换润滑油,这样才能正常地进入稳定磨损阶段。

2.1.3 磨损分类

按照磨损的机理以及零件磨损状态的不同,可分为四种基本类型:粘着磨损、磨粒磨损、表面疲劳磨损(点蚀)、腐蚀磨损,教材中具体说明,略之。

2.2 润滑

首先说明一下润滑的作用

2.2.1 润滑剂的性能与选择

润滑剂有几种:油、脂、固体(石墨、二硫化铜)、气体(空气、氢气、水蒸汽)

1. 润滑油

为目前使用得最多的润滑剂,有矿物油、合成油、动植物油等,矿物油为应用最广的。

物理性能指标为粘度:表示液体流动时其内摩擦阻力的大小,粘度大,内摩擦阻力就越大,液体流动性就越差。粘度有三种表示,解释一下。

(1)动力粘度η

(2)运动粘度ν我国采用的为运动粘度

(3)条件粘度(恩氏粘度)

还有一些性能指标,如凝点、闪点、燃点等,表2.1列出。

要指出一下:压力、温度对粘度有影响的。

2. 润滑脂

在润滑油中加入稠化剂(钙、钠、锂、金属皂)而成的脂状润滑剂,又称为黄油。

主要物理性能指标为滴点、针入度、耐水性。

目前使用最多的为钙基润滑脂,它的耐水性强,耐热性差,还是钠基,锂基的。

使用时要注意使用条件,不要乱用,性能列于表2.2之中。

3. 固体润滑剂

4. 气体润滑剂

润滑剂的选用原则为低速、重载、高温、间隙大,应选用粘度大的润滑油;对脂主要用于速度低、载荷大,不需经常加油,使用要求不高或灰尘较高的场合;气体、固体的主要用于高温、高压,防止污染等一般润滑油不能适用的场合。

对润滑剂选用一定要严肃对待,不能乱用。

2.2.2 润滑方法和润滑装置

为了获得良好的润滑效果外,除了正确选择润滑剂外,还应选择适当的润滑方法和相应的润滑装置,具体情况学生自学教材内容,不作讲解。

2.3 密封方法及装置

学生自学,不作讲解。

第3章平面机构的结构分析

一、教学要求

本章内容是学习机构设计的基础,为各类机构的运动分析和设计打下一定的基础,同时也为机械系统设计和新机构设计提供了一种结构分析的方法。

具体的教学要求如下:

1)了解平面机构的基本概念。

2)掌握平面机构运动简图的绘制方法。

3)熟练掌握平面机构自由度的计算方法,能够准确地识别机构中的局部自由度,复合铰链和虚约束。

二、重点、难点

重点:1)有关机构组成的概念及机构具有确定运动的条件。

2)机构运动简图及其绘制。

3)机构的自由度。

难点:1)机构运动简图的绘制。

2)机构中虚约束的正确判别。

四、教学思路设计

本章是进入整个机械系统设计的开端,它不仅为学习各类机构的运动设计和动力设计打下初步基础,也为机械系统方案设计和新机构的创新设计提供一条途径。由于是高职学生,因此教学要求也与本科生有所区别,故对机构分类、机构组成原理等只作一般性了解,而教学重点放在机构运动简图的绘制及自由度计算上。

第3章第1讲

一、讲授时注意几点:

1. 3.1 机构的组成

主要应该掌握:运动副是由两构件组成的相对可动的连接,是组成机构的又一个基本要求;两构件构成运动副应至少要引入一个约束,也至少要保留一个自由度。

2. 3.2 平面机构的运动简图

平面机构运动简图应能正确地表达机构的组成和机构的运动情况。因此,与运动无关的内容应抛开,如构件的外形、运动副的具体构造等。在画图时应注意以下三点:

(1)注意运动副的位置及表示方法。

(2)注意构件的表达。

(3)注意机构运动简图要真实、简法。

机构运动简图的绘制是把实际机构抽象化的过程。因此,必须搞清机构的组成才能正确地画出机构运动简图。

二、讲授程序设计

首先从运动副的组成开始,分析其分类、类型及其自由度与约束关系,然后讨论其机械运动简图的绘制,这是本章的重点。

讲授教案编写如下所述。

第1讲教案

第3章平面机构的结构分析

放课件,说明一下。机构运行时,除机架外其余所有构件都按照某种运动规律运动,如果机构中的所有构件都在相同或相互平行的平面内运动,这种机构称为平面机构,否则称为空间机构,工程中常见的为平面机构,本章就是研究平面机构。

3.1 机构的组成

3.1.1 运动副

图3.1说明一下。使两个构件直接接触并能产生一定相对运动的连接称为运动副。因此,副一定是一对接触构件,但还要保持相对运动关系,同学以前见到过的,能举例吗?例如螺纹副,导轨副等。

接触情况有三种:点接触,线接触,面接触,这点、线、面称为运动副元素。

根据运动副各构件间的相对运动是平面运动,还是空间运动,这样把运动副可分为平面运动副,空间运动副。

本章讨论的为平面运动副,它又可分为低副、高副二大类型。

3.1.2 自由度和运动副约束

一个空间自由状态的构件,具有6个独立运动的参数,作平面运动的构件就具有三个独立运动参数,放课件(平面运动构件的自由度),这个独立运动参数的数目称为构件的自由度。

两个构件通过运动副连接,这样相对运动必会受到限制,这个限制称为约束,引入一个约束条件将减少一个自由度。

下面分析一下具体的运动副的运动、约束情况:

1. 低副什么叫低副说明一下。构件之间以面接触形成的运动副称为低副,放课件(转动副)说明一下低副定义。

根据形成低副的两个构件之间的可以产生的相对运动的形式不同,低副又可分为转动副与移动副两种。

转动副(转动副)图3.3所示,这运动副只能在某一平面内作相对转动,相对运动形式为转动。

移动副(移动副)只能沿某一方向作相对移动,相对运动形式为移动,图3.4所示。

2. 高副以点或线接触组成的运动副,图

3.5所示,分析一下运动情况。

那么约束如何:分析一下。

对于转动副:引入二个约束,保留了一个自由度。

对于移动副:引入二个约束,保留了一个自由度。

故平面低副的运动副,引入二个约束,保留一个自由度。

对于平面高副,引入一个约束,保留了二个自由度。

3.1.3 运动链和机构

图3.6所示,放课件(运动链),两个以上构件以运动副连接而成的系统称为运动链,如果运动链中有的构件只包括一个运动副元素称为开链(图3.6a)。如每个构件至少包括两个运动副元素,则构件形成了封闭系统称为闭链(图3.6b)。如在闭链中将其中一个构件固定,就成为机架,这运动链就成为机构,当它的一个或几个构件具有独立运动,也就是这构件的运动规律为已知的,这机构的运动和动力由这一个构件输入,这构件称为原动件(主动件),其余构件称为从动件。

3.3 平面机构的运动简图

课件(粉碎机)放一下,我们分析运动,这图就很复杂。为了使问题简单化,在研究机构运动时,可以不考虑那些与运动无关的因素(如具体结构、外形等等),仅用简单的线条和符号来代表构件和运动副,并按一定比例表示出各运动副的相对位置,这种说明机构各构件间的相对运动关系的简单图形称为机构运动简图,课件(运动副简图表示)放一下。

这简图有二个作用:

1)可以简明地表达一部复杂机器的传动原理。

2)可以用图解法求机构上各点的轨迹、位移、速度、加速度等。

3.2.1 运动副及构件的表示方法

1. 构件

2. 转动副图

3.7 课件(转动副)

3. 移动副图3.8 课件(移动副)

4. 平面高副图3.9 课件(平面高副)

3.2.1 绘制机构运动简图的步骤

作图时,因为实物很大,无法按1∶1绘制,只得选用一个比例尺,有位置比例尺,速度、加速度比例尺,下面只谈位置比例尺如何表达

μ=物体实际长度/构件图示长度(m/mm)

L

绘制步骤教材中已谈了,可自学一下。

第3章第2讲

一、讲授时注意几点

应该掌握如下几点:

1)机构的自由度是机构具有确定运动时所需的独立运动参数的数目。

2)机构的自由度计算公式能很熟练地推导出。

3)在计算自由度时,应注意处理好三种情况,才能使计算正确,符合实际情况。

二、讲授程序设计

首先从运动副的约束,自由度的概念开始,推导出机构自由度计算公式,然后得到机构具有确定运动的条件,最后指出在应用自由度计算公式要注意三个问题,这样才能使公式应用正确。

讲授教案编写如下所述。

第二讲 教案

3.3 平面机构的自由度

3.3.1 平面机构的自由度计算

设某一平面运动机构,其中包括N 个构件,P L 个低副,P H 个高副,现以平面四杆机构为例,说明一下N ,P L ,P H 值=?这N 个构件中有一个构件被看作为固定不动的为机架,所以其余均为活动的构件,则活动构件数就为n=N -1,这n 个活动构件,在未用运动副将它们连接起来以前,共具有3n 个自由度。在黑板上写上3n 。

当用P L 个低副,P H 个高副将构件连接起来,便会使构件活动受到影响,也就是3n 个自由度就要被减少。以前已讲过:加入一个低副,就引入二个约束,自由度只有1个。

即 3n -2P L 在黑板上写成 3n -2P L

加一个高副,就引入一个约束,自由度只有2个。 即 3n -P H

最后黑板上就写成 3n -2P L -P H

这式子就可说明为:整个机构相对机架的自由度数就应为活动构件的自由度的总数减去(2P L +P H )个约束

3(2)L H n P P -+ 机构的自由度数为F 则

3(2)L H F n P P =-+

这就是机构的自由度计算公式 3.3.2 机构具有确定运动的条件

一般要求一个机构,当原动件给定一个运动规律运动时,从动件也就得到按某一个运动规律进行运动,不允许从动件乱动,无规律地运动。

图3.1.3所示,课件(曲柄滑块机构)放一下,计算一下机构自由度F=1,也就是这机构能具有独立运动的数目为1,主动件为1,输入运动,从动件就按确定规律运动,这就是机构运动的确定性。

结论为机构自由度 = 原动机数

图3.12所示,课件(五杆铰链机构)放一下,计算出机构自由度为2,如给机构一个独立运动构件,那么其它构件运动如何,从图中可见出运动是不确定的,构件2,3,4位置不确定,当构件1占AB 位置时,构件2,3,4可占位置BC 、CD 、DE 或BC ′、C ′D ′、D ′E 或其它位置。如再给定一个原动件(二个原动件运动规律可以相同,也可以不同)这时其它构件运动就确定了,这时机构自由度数等于原动件数。

结论:1)当F ≤0 这机构不可能产生相对运动,为一刚体

2)F>0 当原动件数小于机构自由度数时,构件间的相对运动就为无规则的。 当原动件数大于机构自由度数时,机构不能运动。 当原动件数等于机构自由度数时,构件间才能确定的相对运动,这就是机械运动的确定条件。

3.3.3 应用公式时注意事项

1. 局部自由度

图3.16所示,放课件(局部自由度)滚子绕其本身轴线作自由转动,丝毫不会影响其它构件的运动,这在进行自由度计算时,要将局部自由度去除,改为图3.16b)。

2. 复合铰链

图3.14所示,放课件(复合铰链)

什么叫复合铰链,如何进行计算

结论:由m个构件汇成的复合铰链应当作为m-1的转动副,如图3—1所示。

一般铰链复合铰链

m=2 m=3

转动副数=m-1=1 转动副数=3-1=2

图3—1 复合铰链计算

3. 虚约束

在运动副所加的约束中,有些约束所起的限制作用是重复的,这种不起独立限制作用的约束称为虚约束,在计算自由度时,虚约束应当除去不计,图3.17所示,放课件(图3.17),说明一下图3.17b)中EF为虚约束,简化成图3.17a)

虚约束是很难找出,一般可从下面二点来找

1)运动状态不改变

2)虚约束去掉前后F不同,图3.17a中F=1,图3.17b中F=0,故EF为虚约束。

接下来放课件(图3.18~3.22)说明一下。

那么虚约束有什么用途?它可提高构件的刚性,改善其受力情况,因此,在现场,还是被广泛地使用。

第4章平面连杆机构

一、教学要求

本章的主要内容为用相对运动图解法作平面连杆机构的运动(速度)分析、力分析;平面四杆机构的基本特性及其演化;铰链四杆机构的曲柄存在条件;平面四杆机构的设计。

具体的教学要求如下:

1)了解平面机构的运动(速度)分析。

2)掌握平面机构的力分析。

3)了解平面四杆机构的基本型式,掌握其演化方法。

4)掌握平面四杆机构的基本特征。

5)掌握平面四杆机构的图解法设计。

二、重点、难点

重点:平面四杆机构的基本型式、演化及其基本特征。

难点:1)平面四杆机构相关的基本概念。

2)平面四杆机构的力分析。

3)平面四杆机构的设计

注:为了照顾编写教案时的系统性,表中列出的学时数只仅供参考,但全章总学时数不变。全教案同。

四、教学思路设计

本章主要介绍平面四杆机构的类型、特性、运动分析、力分析及运动设计等,同时简要讨论机构的效率和自锁问题。学习了这些内容,其最终目的为根据实际需求,确定满足此需求的连杆机构类型,选择合适的设计方法设计出此连杆机构。

第4章第1讲

一、讲授时注意几点:

1. 4.2 平面机构的运动分析

主要讲授用相对运动图解法求解同一构件各点速度的方法,其中提出速度影像原理,求解加速度等不作要求。

2. 4.3 平面机构的力分析

是本章的难点,主要是为了确定各运动副中的反力,进而确定平衡力、平衡力矩。对这部分内容主要应了解运动副的摩擦情况,机构受力分析方法、机械效率及自锁概念。

二、讲授程序设计

平面机构设计必须要进行运动分析及力分析。由于高职学生对设计的理论分析应该要求低些,因此在讲授此内容时,只得以简单、典型情况进行分析,例如只分析同一构件点的速度,不分析加速度和不分析组成移动副的两构件瞬时重合点的速度、加速度求法等。

讲授教案编写如下所述

第1讲 教案

第4章 平面连杆机构

4.1 概述

放课件(铰链四杆机构)

平面连杆机构是由若干个构件以低副连接形成的平面机构。若干个构件可以是4杆、5杆等,其中平面四杆机构是平面连杆机构中最常用的一种形式。

平面连杆机构的优缺点(教材中有,说明一下) 4.2 用图解法作平面机构的运动分析

一个机构必须要有确定运动及其一定的运动规律,因此必须要进行机构的运动分析。

其任务:根据机构原动件的已知运动规律,分析确定该机构其它构件上的某些点的位移、速度、加速度或角位移、角速度、角加速度等。

研究这些有什么用途:

1)如研究位移,就能看出构件是否能到达这个位置、构件间会不会发生互相碰撞。 2)如知道了机构的速度,就可求出机构的功率等。

分析方法有图解法、解析法,这里只谈图解法,而图解法中又有速度瞬心法、相对运动法、线图法,本章只谈相对运动图解法,现只介绍应用相对运动图解法进行同一构件点的速度分析。

这里就要指出一点:这些运动分析是在不考虑引起机构运动外力的影响下进行的。 放课件(同一构件上各的运动分析),图4.1所示,这种四杆机构构件间用铰链相连的,又称为铰链四杆机构。

已知:1)各构件的尺寸,位置 2)原动件1以等ω转动

求:1. 图示位置时的机构中C 点、E 点的C v 、E v 。

2. 1ω、2ω

分析时理论依据为工程力学,即刚体作平面运动时可分解为随基点的平动和绕基点的转动,因此基点的选择是一个关键问题,一定要选这个点上的速度为已知的,下面分析一下同一构件上各点的速度求法。

放课件,并按图4—1所示的,一边讲,一边徒手在黑板上作图。

图4—1 同一构件上点的速度分析

机械设计基础课教案

4-1解分度圆直径 齿顶高 齿根高 顶隙 中心距 齿顶圆直径 齿根圆直径 基圆直径 齿距 齿厚、齿槽宽 4-2解由可得模数 分度圆直径 4-3解由得

4-4解分度圆半径 分度圆上渐开线齿廓的曲率半径 分度圆上渐开线齿廓的压力角 基圆半径 基圆上渐开线齿廓的曲率半径为0; 压力角为。 齿顶圆半径 齿顶圆上渐开线齿廓的曲率半径 齿顶圆上渐开线齿廓的压力角 4-5解正常齿制渐开线标准直齿圆柱齿轮的齿根圆直径: 基圆直径 假定则解得 故当齿数时,正常齿制渐开线标准直齿圆柱齿轮的基圆大于齿根圆;齿数,基圆小于齿根圆。 4-6解中心距 内齿轮分度圆直径 内齿轮齿顶圆直径 内齿轮齿根圆直径 4-7 证明用齿条刀具加工标准渐开线直齿圆柱齿轮,不发生根切的临界位置是极限点正好在刀具 的顶线上。此时有关系: 正常齿制标准齿轮、,代入上式

短齿制标准齿轮、,代入上式 图 4.7 题4-7解图 4-8证明如图所示,、两点为卡脚与渐开线齿廓的切点,则线段即为渐开线的法线。根据渐开线的特性:渐开线的法线必与基圆相切,切点为。 再根据渐开线的特性:发生线沿基圆滚过的长度,等于基圆上被滚过的弧长,可知: AC 对于任一渐开线齿轮,基圆齿厚与基圆齿距均为定值,卡尺的位置不影响测量结果。 图 4.8 题4-8图图4.9 题4-8解图 4-9解模数相等、压力角相等的两个齿轮,分度圆齿厚相等。但是齿数多的齿轮分度圆直径大,所以基圆直径就大。根据渐开线的性质,渐开线的形状取决于基圆的大小,基圆小,则渐开线曲率大,基圆大,则渐开线越趋于平直。因此,齿数多的齿轮与齿数少的齿轮相比,齿顶圆齿厚和齿根圆齿 厚均为大值。 4-10解切制变位齿轮与切制标准齿轮用同一把刀具,只是刀具的位置不同。因此,它们的模数、压 力角、齿距均分别与刀具相同,从而变位齿轮与标准齿轮的分度圆直径和基圆直径也相同。故参数、 、、不变。 变位齿轮分度圆不变,但正变位齿轮的齿顶圆和齿根圆增大,且齿厚增大、齿槽宽变窄。因此、 、变大,变小。 啮合角与节圆直径是一对齿轮啮合传动的范畴。

最新机械设计基础教案——第6章 间歇运动机构

第6章 间歇运动机构 (一)教学要求 1. 掌握各种常用机构的工作原理 2. 了解各种机构的组成及应用 (二)教学的重点与难点 1. 工作原理 2. 常用机构的应用 (三)教学内容 6.1 槽轮机构 一、组成、工作原理 1.组成:具有径向槽的槽轮,具有圆销的构件,机架 2.工作原理: 构件1→连续转动;构件2(槽轮)→时而转动,时而静止 当构件1的圆销A 尚未进入槽轮的径向槽时,槽轮的内凹锁住弧被构件1的外凸圆弧卡住,槽轮静止不动。 当构件1的圆销A 开始进入槽轮径向槽的位置,锁住弧被松开,圆销驱使槽轮传动。 当圆销开始脱出径向槽时,槽轮的另一内凹锁住弧又被构件1的外凸圆弧卡住,槽轮静止不动。 往复循环。 4个槽的槽轮机构:构件1转一周,槽轮转4 1周。

6个槽的槽轮机构:构件1转一周,槽轮转 6 1周。 二、槽轮机构的基本尺寸和运动系数 1.基本尺寸 )(s r r l b +-≤ r s ——圆销的半径 2sin ?l r = b ——槽轮回转中心到径向槽底的距离 2cos ?l a = a ——槽轮回转中心到径向槽口的距离 r ——圆销中心到构件1中心的距离 l ——两轮回转中心之间的距离 2.运动系数(τ):槽轮每次运动的时间t m 对主动构件回转一周的时间t 之比。 π ?τ221==t t m (构件1等速回转) 12? ——槽轮运动时构件1转过的角度 (通常,为了使槽轮2在开始和终止运动时的瞬时角速度为零。以避免圆销与槽发生撞击,圆销进入、退出径向槽的瞬间使O 1A ⊥O 2A ) ∴Z ππ?π?22221- =-= ∴Z Z Z 12122221-=-==π?τ 讨论:1、τ>0,∴Z ≥3 τ=0,槽轮始终不动。 2、2 1121<-= Z τ:槽轮的运动时间总小于静止时间。 3、要使21>τ,须在构件1上安装多个圆销。 设K 为均匀分布的圆销数, Z Z K 2)2(-=τ 三、槽轮机构的特点和应用 优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求恒定旋转角的分度机构中。 缺点:①对一个已定的槽轮机构来说,其转角不能调节。 ②在转动始、末,加速度变化较大,有冲击。 应用:应用在转速不高,要求间歇转动的装置中。 电影放映机中,用以间歇地移动影片。 自动机中的自动传送链装置。(布图)

《机械设计基础》复习重点、要点总结

《机械设计基础》 第1章机械设计概论 复习重点 1. 机械零件常见的失效形式 2. 机械设计中,主要的设计准则 习题 1-1 机械零件常见的失效形式有哪些? 1-2 在机械设计中,主要的设计准则有哪些? 1-3 在机械设计中,选用材料的依据是什么? 第2章润滑与密封概述 复习重点 1. 摩擦的四种状态 2. 常用润滑剂的性能 习题 2-1 摩擦可分哪几类?各有何特点? 2-2 润滑剂的作用是什麽?常用润滑剂有几类? 第3章平面机构的结构分析 复习重点 1、机构及运动副的概念 2、自由度计算 平面机构:各运动构件均在同一平面内或相互平行平面内运动的机构,称为平面机构。 3.1 运动副及其分类 运动副:构件间的可动联接。(既保持直接接触,又能产生一定的相对运动) 按照接触情况和两构件接触后的相对运动形式的不同,通常把平面运动副分为低副和高副两类。 3.2 平面机构自由度的计算 一个作平面运动的自由构件具有三个自由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个自由度。当用P L个低副和P H个高副连接组成机构后,每个低副引入两个约束,每个高副引入一个约束,共引入2P L+P H个约束,因此整个机构相对机架的自由度数,即机构的自由度为 F=3n-2P L-P H (1-1)下面举例说明此式的应用。 例1-1 试计算下图所示颚式破碎机机构的自由度。 解由其机构运动简图不难看出,该 机构有3个活动构件,n=3;包含4个转 动副,P L=4;没有高副,P H=0。因此, 由式(1-1)得该机构自由度为 F=3n-2P L-P H =3×3-2×4-0=1

机械设计基础教案

授课内容:绪 论 目的要求:了解机械设计基础课程研究对象及学习要求 重点难点:重点:课程学习要求难点:课程学习要求 计划学时:2 绪 论 第一节 本课程研究的对象和内容 本课程研究对象:机 械(机器与机构的总称 机器的定义:执行机械运动的装置 机器的分类 —原动机丨〉将其他形式的能量转化为机械能的机器 机器- —工作机—> 利用机械能去变换或传递能量、 物料、信息的机器 机器主体部分由机构组成 曲柄滑块机构:活塞的往复运动通过连杆 转变为曲轴连续转动 凸轮机构:凸轮和顶杆用来启闭进气阀和排气阀; 齿轮机构:两个齿轮保证进、排气阀与活塞之间形成协调动作; 机器的功能组成 --- 动力部分 传动部分 控制部分 ___ 执行部分

机械是机器和机构的总称

用途广泛,如齿轮机构、连杆机构等 只能用于特定场合,如钟表的发条机构 第二节本课程在教学中的地位 一、本课程的特点 是工程制图、工程材料及机械制造基础、理论力学,材料力学、金工实习 等理论知识和实践技能的综合运用,同 时,为后续课程的学习打下基础 通过本课程的学习,可以培养大家初步具备运用手册设计简单机械设备的 能力,为今后操作、维护、管理、革新工程机械设备创造条件 三、怎样学好本课程 1. 重思考,常想几个问题: A.什么样子 B.怎么运动 C.工作原理、方式 D.现实生活中的实际例子 2. 会查表、会用工具书 3. 不注重公式的记忆一一哪些公式要记忆,会在课堂上和考试前提醒 4. 多看一些设计方面的书,如工业设计、机械优化设计等 5. 一定要会几个设计软件二维的: AUTOCA 三维的:Pro/E 、UG 等 机构 的分一 类 —通用机构 一专用机构

机械设计基础重点总结修订稿

机械设计基础重点总结 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《机械设计基础》课程重点总结 绪论 机器是执行机械运动的装置,用来变换或传递能量、物料、信息。 原动机:将其他形式能量转换为机械能的机器。 工作机:利用机械能去变换或传递能量、物料、信息的机器。 机器主要由动力部分、传动部分、执行部分、控制部分四个基本部分组成,它的主体部分是由机构组成。 机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统。 机构与机器的区别:机构只是一个构件系统,而机器除构件系统外,还含电器、液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量、物料、信息的功能。 零件是制造的单元,构件是运动的单元,一部机器可包含一个或若干个机构,同一个机构可以组成不同的机器。 机械零件可以分为通用零件和专用零件。 机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法。 第一章平面机构的自由度和速度分析 1.平面机构:所有构件都在相互平行的平面内运动的机构;构件相对参考系的独立运动 称为自由度;所以一个作平面运动的自由机构具有三个自由度。 2.运动副:两构件直接接触并能产生一定相对运动的连接。两构件通过面接触组成的运 动副称为低副;平面机构中的低副有移动副和转动副;两构件通过点或线接触组成的运动副称为高副; 3.绘制平面机构运动简图;P8 4.机构自由度计算公式:F=3n-2P l -P H 机构的自由度也是机构相对机架具有的独立运动 的数目。原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;机构具有确定的运动的条件是:机构自由度F > 0,且F等于原动件数 5.计算平面机构自由度的注意事项:(1)复合铰链:两个以上构件同时在一处用转动 副相连接(图1-13)(2)局部自由度:一种与输出构件运动无关的的自由度,如凸轮滚子(3)虚约束:重复而对机构不起限制作用的约束 P13(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束。 6.自由度的计算步骤:1)指出复合铰链、虚约束和局部自由度;2)指出活动构件、低 副、高副;3)计算自由度;4)指出构件有没有确定的运动。 7.发生相对运动的任意两构件间都有一个瞬心。瞬心数计算公式:N=K(K-1)/2 三心定 理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。 第二章平面连杆机构 1.平面连杆机构是由若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面 低副机构;最简单的平面连杆机构由四个构件组成,称为平面四杆机构。按所含移动副数目的不同,可分为:全转动副的铰链四杆机构、含一个移动副的四杆机构和含两个移动副的机构。 2.铰链四杆机构:全部用转动副相连的平面四杆机构;机构的固定构件称为机架,与机 架用转动副相连接的构件称为连架杆,不与机架直接相连的构件称为连杆;整转副:

机械设计基础知识点

第二章平面机构的结构分析 §2.1 基本概念 构件:运动单元体 零件:制造单元体构件可由一个或几个零件组成。 ?构件:由一个或几个零件组成的没有相对运动的刚性系统。机器或机构中最小的运动单元。 ?零件:机器或机构中最小的制造单元。 ?例如:曲轴——单一零件。 ?连杆——多个零件的刚性组合体。 ?注意:构件与零件联系与区别? 一、机构的组成 机架:机构中相对不动的构件 原动件:驱动力(或力矩)所作用的构件。→输入构件 从动件:随着原动构件的运动而运动的构件。→输出构件 在任何一个机构中,只能有一个构件作为机架。在活动构件中至少有一个构件为原动件,其余的活动构件都是从动件。 二、自由度、约束 自由度:构件具有独立运动参数的数目(相对于参考系) 在平面内作自由运动的构件具有3个自由度;在三维空间作自由运动的构件具有6个自由度。约束:运动副对构件间相对运动的限制作用 ?对构件施加的约束个数等于其自由度减少的个数。 三、运动副 使两构件直接接触并能产生一定相对运动的连接成为运动副。运动副的作用是约束构件的自由度。 四、运动副类型及其代表符号 1. 低副——两构件以面接触而形成的运动副。 A.转动副:两构件只能在一个平面内作相对转动,又称作铰链。 自由度数1,只能转动; 约束数2,失去了沿X、Y方向的移动。 B.移动副:两构件只能沿某一轴线作相对移动。 自由度数1,只能X方向移动; 约束数2,失去Y方向移动和转动。

2. 高副—— 两构件以点或线接触而构成的运动副。 自由度数 2, 保持切线方向的移动和转动 约束数 1, 失去法线方向的移动。 五、运动链 运动链:若干个构件通过运动副联接而成的相互间可作相对运动的系统。 闭式运动链简称闭链:运动链的各构件首尾封闭 开式运动链简称开链:未构成首尾封闭的系统 §2.2 机构运动简图 定义:用运动副代表符号和简单线条来反映机构中各构件之间运动关系的简图。 构件均用形象、简洁的直线或小方块等来表示,画有斜线的表示机架。 §2.3 平面机构的自由度计算 机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。(与构件数目,运动副的类型和数目有关) 一、机构自由度计算公式 H L 23P P n F --= 式中,n 为活动构件个数; L P 为低副个数;H P 为高副个数。 (a)双曲线画规机构 F=3n- 2PL-PH=3×5-2×7-0=1 (b) 牛头刨床机构 F=3n- 2PL-PH=3×6-2×8-1=1 二、机构具有确定运动的条件 机构要能运动,它的自由度必须大于零。 F ≤0,构件间无相对运动,不成为机构。

最新机械设计基础教案——第9章链传动

第 9 章链传动 一)教学要求 1、了解套筒滚子链结构、掌握链运动的不均匀性 2、掌握链传动失效形式 3、了解链传动的设计计算方法 二)教学的重点与难点 1、链传动的多边形效应 2、链传动的失效形式 3、链传动的设计方法 三)教学内容 9.1概述 链传动工作原理与特点 1、工作原理:(至少)两轮间以链条为中间挠性元件的啮合来传递动力和运动。但非共轭曲线啮合,靠三段圆弧和一直线啮合。其磨损、接触应力冲击均小,且易加工。 2、组成;主、从动链轮、链条、封闭装置、润滑系统和张紧装置等。 3、特点(与带、齿轮传动比较) 优点:①平均速比i m准确,无滑动;②结构紧凑,轴上压力Q小;③传动效率高η=98%; ④承载能力高P=100KW ;⑤可传递远距离传动a max=8mm ;⑥成本低。 缺点:①瞬时传动比不恒定i;②传动不平衡;③传动时有噪音、冲击;④对安装粗度要求较高。 4、应用:适于两轴相距较远,工作条件恶劣等,如农业机械、建筑机械、石油机械、采矿、起重、金属切削机床、摩托车、自行车等。中低速传动:i≤8(I=2~4),P≤100KW, V≤12-15m/s,无声链V max=40m/s。(不适于在冲击与急促反向等情况下采用) 9.2传动链的结构特点 链传动的主要类型 1)按工作特性分:

起重链——用于提升重物——V ≤0.25m/s;牵(线)引链——运输机械——V ≤ 2~4m/s; 传动链——用于传递运动和动力——V ≤12~15m/s。 优点:结构简单、重量轻、价廉、适于低速、寿命长、噪音小、应用广。 2)传动链接形式分:套筒链; (套筒)滚子链—属标准件选用、合理确定链轮与链条尺寸,—短节距精密滚子链; 齿形链;成型链四种。 ①套筒滚子链(结构与特点)动配合,可 相对运动,相当于活动铰链,承压面积A(投影)——宽×长投影组成: 5 滚子;4 套筒;3 销轴;2 外链板;1 内链板动配合。当链节进入、退出啮合时,滚子沿 齿滚动,实现滚动摩擦,减小磨损。套筒与内链板、销轴与外链板分别用过盈配合(压配)固联,使内、外链板可相对回 转。 为减轻重量、制成“ 8”字形,亦有弯板。这样质量小,惯性小,具有等强度。磨损:——主 要指滚子与销轴截面之间磨损。而内、外板之间留有间隙,保证润滑油进入,此润滑降低磨损。 表9-1,P 越大,承载能力越高。 参数:P—节距,b1—内链板间距,C—板厚,d1—滚子直径,d2—销轴直径,P—排距当低速时也可以不用滚子——称套筒链多排链——单排链用销轴并联——称多排链(或双排链)排数↑→承载能力↑ 但排↑→制造误差↑→受力不均↑一般不超过3~4 列为宜 链接头型式:链节数为偶数(常用)——内链板与外链板相接——弹性锁片(称弹簧卡)或大节距(称开口销)——受力较好 弹性锁片——端外链板与错轴为间隙配合链节数为奇数——用过渡链节固联——(如图9-4b)产生附加弯矩——受力不利, 尽量不用。 固联——内(外)链板与内(外)链板相接 图9-4c —是板链—弹性好、缓冲、吸振在低速、重载、冲击和经常正反转工作情况。安全过渡链节(图9-4c)——弯板与销滚子链标记:链号—排数×链节数标准号套筒滚子链规格与主要参数——表9-1 2、齿形链——如图9-5 各组齿形链板要错排列,通过销轴联接而成。链板两工作侧边为直边, 夹角为60°或70°,由链板工作边与链轮齿啮合实现传动。齿形链轴可以是圆柱销轴,也可以是其它形式(滚 柱式)——图9-6,b——两个链片、c 图为连接两链片的一对棱柱销轴,链节相对转动时,两棱柱可相互滚动。使铰链磨损减少。 齿形链设导板,以防链条轴向窜动:内导板—导向性好;外导板铰链形式:圆销式;轴互式;滚柱式齿形链的齿形特点:传动平稳、承受冲击好、齿多受力均匀、噪音较小、故称无声链。 允许速度V 高,特殊设计齿形链V=40m/s ,但结构较复杂、价格贵、制造较困难、也较重。摩 托车用链应用于高速机运动精度,要求较高的场合,故目前应用较少。 0.95 ~ 0.98 一般 0.98 ~ 0.99 润滑良好 9.3滚子链链轮的结构与材料(套筒滚子链) 要求掌握:1)链轮齿形的设计要求;2)链轮齿形特点;3)链轮的主要参数; 4)链轮的结构型式有哪些;5)对链轮的材料要求及适用情况

机械设计基础题库及答案20969

《机械设计基础》试题及答案 绪论 一、填空(每空1分) T-1-1-01-2-3、构件是机器的运动单元体;零件是机器的制造单元体;部件是机器的装配单元体。 T-2-2-02-2-4、平面运动副可分为低副和高副,低副又可分为转动副和移动副。 T-2-2-03-2-2、运动副是使两构件接触,同时又具有确定相对运动的一种联接。平面运动副可分为低副和高副。 T-2-2-04-2-1、平面运动副的最大约束数为2 。 T-2-2-05-2-1、机构具有确定相对运动的条件是机构的自由度数目等于主动件数目。 T-2-2-06-2-1、在机构中采用虚约束的目的是为了改善机构的工作情况和受力情况。 T-2-2-07-2-1、平面机构中,两构件通过点、线接触而构成的运动副称为高副。 T-3-2-08-2-2、机构处于压力角α=90°时的位置,称机构的死点位置。曲柄摇杆机构,当曲柄为原动件时,机构无死点位置,而当摇杆为原动件时,机构有死点位置。

T-3-2-09-2-2、铰链四杆机构的死点位置发生在从动件与连杆共线位置。 T-3-2-10-2-1、在曲柄摇杆机构中,当曲柄等速转动时,摇杆往复摆动的平均速度不同的运动特性称为:急回特性。 T-3-2-11-2-1、摆动导杆机构的极位夹角与导杆摆角的关系为相等。T-4-2-12-2-3、凸轮机构是由机架、凸轮、从动件三个基本构件组成的。 T-5-1-13-2-1、螺旋机构的工作原理是将螺旋运动转化为直线运动。T-6-2-14-2-1、为保证带传动的工作能力,一般规定小带轮的包角α≥120°。 T-6-7-15-2-3、链传动是由主动链轮、从动链轮、绕链轮上链条所组成。 T-6-7-16-2-3、链传动和带传动都属于挠性件传动。 T-7-2-17-3-6、齿轮啮合时,当主动齿轮的齿根_推动从动齿轮的齿顶,一对轮齿开始进入啮合,所以开始啮合点应为从动轮齿顶圆与啮合线的交点;当主动齿轮的齿顶推动从动齿轮的齿根,两轮齿即将脱离啮合,所以终止啮合点为主动轮齿顶圆与啮合线的交点。 T-7-3-18-2-2、渐开线标准直齿圆柱齿轮正确啮合的条件为模数和

机械设计基础电子教案 正式

(此文档为word格式,下载后您可任意编辑修改!) 第一讲绪论 教学目标 (一)能力目标 1.解本课程的内容、性质和任务 2.掌握学习本课程的方法 (二)知识目标 1.了解机器的组成及其特征 2.熟悉机构、构件、零件、部件的概念及其区别 教学内容 1.机械设计基础研究的对象 2.本课程的作用 3.机械设计的基本要求和一般过程 教学的重点与难点 (一)重点 本课程的研究对象、内容。 (二)难点 机构、构件、零件、部件的概念及其区别。 教学方法与手段 采用动画演示,注重启发引导式教学。 一、机器的组成及特性 (一)机器的组成及其特征 以内燃机为例 1、工作原理

内燃机是将燃气燃烧时的热能转化为机械能的机器。 2、组成 内燃机由三部分组成:连杆机构、齿轮机构、凸轮机构。 3、机器的特性 (二)机构、构件、零件 1、机构 机构是用来传递运动和力,有一个构件为机架,用运动副连接起来的构件系统。 一台机器可以由一个机构,也可以由多个机构组成。 常用机构:连杆机构、凸轮机构、齿轮机构、间歇运动机构等。 2、构件 构件是指机构的运动单元体。如键、齿轮、螺栓等。 构件可能是一个零件,也可能是由若干个零件组合的刚性体。如内燃机连杆就是由连杆体、连杆盖、螺母和螺栓等零件组成的构件,因为组合成连杆的各零件之间没有相对运动。 3、零件及其分类 机械零件是指机器的制造单元体。 机械零件又分通用零件和专用零件。通用零件是指各种机器普遍用到的零件,如螺栓、螺母、键、销等;专用零件是指某种机器才用到的零件,如内燃机的曲轴、活塞等。 二、本课程的内容、性质和任务 1、本课程的性质 专业基础课 2、本课程的研究对象 常用机构和通用零件 3、本课程的研究内容

机械设计基础知识点总结

n P t P α γ C D A B ω P 12δδt h s = 12ωδt h v = 2=a 21222δδt h s =12 1 24δδωt h v =22 124t h a δω=2122)(2δδδ-- =t t h h s )(4121 2δδδω-=t t h v 22124t h a δ ω-=绪论:机械:机器与机构的总称。机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。机构:是具有确定相对运动的构件的组合。用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。零件:制造的单元。分为:1、通用零件,2、专用零件。 一:自由度:构件所具有的独立运动的数目称为构件的自由度。 约束:对构件独立运动所施加的限制称为约束。运动副:使两构件直接接触并能产生一定相对运动的可动联接。高副:两构件通过点或线接触组成的运动副称为高副。低副:两构件通过面接触而构成的运动副。根据两构件间的相对运动形式,可分为转动副和移动副。F = 3n- 2PL-PH 机构的原动件(主动件)数目必须等于机构的自由度。复合铰链:三个或三个以上个构 件在同一条轴线上形成的转动副。由m 个构件组成的复合铰链包含的转动副数目应 为(m-1)个。虚约束:重复而不起独立限制作用的约束称为虚约束。计算机构的自由度时,虚约束应除去不计。局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。 二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。优点:(1)面接触低副,压强小,便于润滑,磨损轻,寿命长,传力大。(2)低副易于加工,可获得较高精度,成本低。(3)杆可较长,可用作实现远距离的操纵控制。(4)可利用连杆实现较复杂的运动规律和运动轨迹。缺点:(1)低副中存在间隙,精度低。(2)不容易实现精确复杂的运动规律。铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。构成:整转副是由最短杆及其邻边构成。类型判定:(1)如果:lmin+lmax ≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。双曲柄机构:以最短杆为机架。双摇杆机构:以最短杆的对边为机架。(2)如果: lmin+lmax >其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运 动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。 压力角:作用于C 点的力P 与C 点绝对速度方向所夹的锐角α。传动角:压力角的余角γ,死点:无论我们 在原 动件上施加 多大的力都不能使机构运 动,这种位置我们称为死点γ=0。解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。即连杆BC 与摇杆CD 所夹锐角。 三:凸轮: 一个具有曲线轮廓或凹槽的构件。从动件: 被凸轮直接推动的构件。机架: 固定不动的构件(导路)。凸轮类型:(1)盘形回转凸轮(2)移动凸轮 (3)圆柱回转凸轮 从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件 (2)摆动从动件 1基圆:以凸轮最小向径为半径作的圆,用rmin 表示。2推程:从动件远离中心位置的过 程。推程运动角δt ;3远休止:从动件在远离中心位置停留不动。远休止角δs ;4回程:从动件由远离中心位置向中心位置运动的过程。回程运动角δh ;5近休止:从动件靠近中心位置停留不动。近休止角δs ˊ;6行程:从动件在推程或回程中移动的距离,用 h 表示。7从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线称为从动件位移 线图。1.等 速运动规 律: 1、特点:设计简单、匀速进给。始点、末点有刚性冲击。适于低速、轻载、从动杆质量不大,以及要求匀速的情况。 2、等加速等减速运动规律: 推程等加速段运动方程: 推 程 等减速段运动方程: 柔 性冲击:加速度发 生有限值的突变(适用于中速场合) 3、简谐运动规律: 柔性冲击 四:根切根念:用范成法加工齿轮时,有时会发现刀具的顶部切入了轮齿的根部,而把齿根切去了一部分,破坏了渐开线齿廓,如图这种现象称为根切。 根切形成的原因:标准齿轮:刀具的齿顶线超过了极限啮合点N 。 不根切的条件可以表示为: 不根切的最少齿数为: 标准齿轮:指m 、α、ha*、c* 均取标准值,具有标准的齿顶高和齿根高,且分度圆齿厚s 等于齿槽宽e 的齿轮。 成型法:加工原理:成形法是用渐开线齿形的成形铣刀直接切出齿形。加工:(a) 盘形铣刀加工齿轮。(b)指状铣刀加工齿轮。缺点:加工精度低;加工不连续,生产率低;加工成本高。优点:可以用普通铣床加工。 范成法:加工原理:根据共轭曲线原理,利 用一对齿轮互相啮合传动时,两轮的齿廓互为包络线的原理来加工。加工:(a)齿轮插刀:是一个齿廓为刀刃的外齿轮。(b)齿条插刀(梳齿刀):是一个齿廓为刀刃的齿条。原理与用齿轮插刀加工相同,仅是范成运动变为齿条与齿轮的啮合运动。(c)滚刀切齿:原理与用齿条插刀加工基本相同,滚刀转动时,刀刃的螺旋运动代替了齿条插刀的展成运动和切削运动。 九:失效:机械零件由于某种原因不能正常工作时,称为失效。类型:(1)断裂。在机械载荷或应力作用下(有时还兼有各种热、腐蚀等因素作用),使物体分成几个部分的现象,通常定义为固体完全断裂,简称断裂。静力拉断、疲劳断裂。(2)变形。由于作用零件上的应力超过了材料的屈服极限,使零 1 1PN PB ≤2 sin sin * α α mz m h a ≤ α 2* min sin 2a h z = )]cos(1[212δδπt h s -=)sin(2112δδπδωπt t h v =)cos(2122122δδπ δωπt t h a =

《机械设计基础》复习资料 (22)

绪论 1) 机器:(1)都是一种人为的实物组合;(2)各部分形成运动单元;(3)能实现能量转换或完成有用的机械功。 机械的定义:一种用来转换或传递能量、物料和信息的,能执行机械运动的装置。 2 构件——组成机械的各个相对运动的实物,机械运动的单元体; 机构——由构件组成,常用的机构如齿轮机构、凸轮机构等; 零件——机械中不可拆的制造单元,机械中制造的单元体;零件分为通用零件和专用零件; 第1章机械设计概述 1)失效形式有哪些? 答:失效形式包括:(1)断裂;(2)过量变形;(3)表面失效;(4)破坏正常工作条件引起的失效。 第2章摩擦、磨损及润滑概述 1 答:摩擦包括:(1)干摩擦;(2)液体摩擦;(3)边界摩擦;(4)混合摩擦。 2 答:磨损包括:(1)跑合(磨合)磨损阶段;(2)稳定磨损阶段;(3)剧烈磨损阶段。 3 答:(1)磨粒磨损;(2)粘着磨损;(3)疲劳磨损(点蚀);(4)腐蚀磨损。 第3章平面机构的结构分析 1)运动副——使两个构件直接接触并产生一定相对运动的连接; 2)运动副分为平面运动副与空间运动副,其中平面运动副又分为移动副、转动副及平面高副; 3)平面机构具有确定运动的条件是什么? 答:(a)机构自由度数F>0; (b)原动件数目等于机构自由度数F。 4)书中P32—3.4,P33—3.6 C)压缩机的压气机构、f)压床机构。

5) 典型习题: 计算图示机构的自由度(如有局部自由度、复合铰链、虚约束,必须明确指出),说明该机构是否具有确定的相对运动。(共两个小题10分) 解:图中有一处虚约束,一处复合铰链, 一处局部自由度(图中具体说明) (1)自由活动构件数:N=10,n=10-1=9; (2)低副数:移动副2对,转动副10对, 所以P L =12; (3)高副数:一对齿轮高副, 一对凸轮高副,所以P H =2 ∴F=3n-2P L -P H =3×9-2×12-2=1,由于该机 构有一个原动件,故此机构具有确定的相对运动的条件。 第4章 平面连杆机构 1)平面四杆机构包括:①曲柄摇杆机构;②双曲柄机构;③双摇杆机构。 2)平面四杆机构是否存在“死点”,取决于从动件是否与连杆共线。对曲柄摇杆机构而言,当曲柄为原动件时,摇杆与连杆无共线位置,不出现死点;当摇杆为主动件时,曲柄与连杆有共线位置,出现死点。 3)曲柄存在的条件:①最长杆与最短杆的长度之和小于或等于其余俩杆长度之和;②最短杆或其相邻杆应为机架。根据有曲柄的推论:①当最长杆与最短杆的长度之和大于其余两杆长度之和时,只能得到双摇杆机构;②当最长杆与最短杆的长度之和小于或等于其余俩杆长度之和时:ⅰ)最短杆为机架时得到双曲柄机构;ⅱ)最短杆的相邻杆为机架时得到曲柄摇杆机构;ⅲ)最短杆的对面杆为机架时得到双摇杆。 4)典型习题1: 在某铰链四杆机构中,已知两连架杆的长度lAB =80,lCD =120和连杆长度lBC =150。试讨论:当机架lAD 的长度在什么范围时,可以获得曲柄摇杆机构、双曲柄机构或双摇杆机构。 解:1)110≤AD <150时为曲柄摇杆机构; 2)当AD 为最长杆,且150<AD ≤190时为曲柄摇杆机构; 3)AD 为最短杆,即AD ≤50时为双曲柄机构; 4)当AD 为最短杆且AD 满足50<AD <80时有双摇杆机构 5)当AD 为最长杆且满足190<AD <350时为双摇杆机构。

机械设计基础陈立德版教案课程

机械设计基础陈立德版教 案课程 This model paper was revised by the Standardization Office on December 10, 2020

绪论 本章学习后,要使学生能解决三大问题,学什么,为啥学,怎样学三大问题。 01 机器的组成 人们广泛使用过,接触过机器,放一课件(单缸内燃机、颚式破碎机),图01,02所示,但定义如何,为什么称它为机器,学生们是不大清楚的。它要有三个特征,才能称上机器。 1)是一种人为的实物组合。 2)各部分形成运动单元,各单元之间具有确定的相对运动关系。 3)能实现能量转换或完成有用的机械功。 什么叫能量转换,指的是机械能转换成电能,或反之。这样具备三个条件者就称为机器,这样学生就可说出车床是机器吗电动机是否也是机器,电动机根据三个条件可得出一定为机器。 随着科学技术的发展,创造出各种新型机器,故对机器的定义也有了更广泛的定义,什么叫机器,是一种用来转换或传递能量、物料和信息的,能执行机械运动的装置,那么一台机器由什么组成,从装配角度来看:由零件→构件→机构→机器,因此设计制造一台机器必有零件开始,组装成构件,再由构件组装成机构,加上原动件装置就成为一台机器了。 接下来说说什么叫机构、构件、零件。 什么叫机构:具备前二个条件的称为机构,即为多个实物的组合,又能实现预期的机械运动,例齿轮机构、连杆机构等,放课件(连杆机构、齿轮机构)。 什么叫构件,构件为组成机械的各个相对运动的实物。例连杆,放课件(构件)从中可看连杆为多个零件装配而成的。 什么叫零件,零件是机械中不可拆的制造单元,因此构件可以是一个零件组成也可以由多个零件组成的。

机械设计基础习题一

习题部分(第一章至第二章) 一、填空题 (1-1-2)1.从制造角度看,是最小的制造单元。 <1-1m> ﹡(1-1-2)2.从机械实现预期运动和功能角度看,是最小 的运动单元。 <1-1m> ☆(1-1-2)3.机械零件可以分为两大类:一类是在各种机器中都能用到的零件, 叫。 <1-1m> ☆(1-1-2)4. 机械零件可以分为两大类:一类是在特定类型的机器中才能用到 的零件,叫。 <1-1m> ☆(1-1-2)5.机器由动力部分、部分、执行部分、控制部分及辅助部成 <1-1m> ﹡(1-1-2)6.机构是人为的实物组合,各构件间具有。 <1-1m> (2-1-3)7.组成运动副的两构件之间只能绕某一轴线做相对转动的 运动副称______。 <1-1m> (2-1-3)8.两构件以面接触组成的运动副称为。 <1-1m> ☆(2-3-3)9.机构中出现与输出构件运动无关的自由度称为________。<1-1m> ☆(2-3-3)10.两个以上的构件在一处组成的转动副,称为。 <1-1m> ☆(2-3-2)11.机构具有确定运动的条件是机构的____与原动件的数母必须相等。 <1-1m> ﹡(2-1-3)12.两构件以________接触组成的运动副称为高副。<1-1m> 本﹡(2-1-3)13.在平面机构中,引入一个高副就引入____个约束。<1-1m> 本﹡(2-3-3)14.在机构中采用虚约束的目的是为了改善机构的运动状况 和。 <1-1m> 二、单项选择题 ☆(2-3-3)1.计算机构自由度时,若计入虚约束,则计算所得的结果与机构的 实际自由度数目相比。 A. 增多了 B.减少了 C. 相等 D.可能增多也可能减少 <1-1.5m>

机械设计基础电子教案第六章要点

第六章轴测图 第六章轴测图 §6-1轴测图的基本知识§6-2正等轴测图§6-3斜二轴测图 §6-1 轴测图的基本知识 一、轴测图的形成 轴测图的投影特性: 1、平行直线段的轴测投影仍保持平行 2、平行于坐标轴的直线段的轴测图,仍与相应的轴测轴平行 3、平行于坐标轴的直线段的轴测图与原线段的长度比,就是该轴测轴的轴向伸缩系数或简化系数 轴测图是将物体连同其直角坐标系,沿不平行于任一坐标平面的方向,用平行投影法将其投射在单一投影面上所得到的图形,也称轴测投影。P平面称为轴测投影面 §6-1 轴测图的基本知识二、轴向伸缩系数和轴间角 轴测轴:坐标轴O0X0、O0Y0、O0Z0的轴测图OX、OY 、OZ 轴向伸缩系数: 轴测轴的单位长度与相应直角坐标轴上的单位长度的比值,分别称为X、Y 、Z 轴的轴向伸缩系数,分别用p1、q1、r1表示;简化伸缩系数(简化系数)分别用p、q、r表示轴间角: 两根轴测轴之间的夹角∠XOY 、∠XOZ 、∠YOZ §6-1 轴测图的基本知识二、轴向伸缩系数和轴间角 轴测图的投影特性:1、平行直线段的轴测投影仍保持平行2、平行于坐标轴的直线段的轴测图,仍与相应的轴测轴平行 3、平行于坐标轴的直线段的轴测图与原线段的长度比,就是该轴测轴的轴向伸缩系数或简化系数 §6-1 轴测图的基本知识 三、轴测图的分类 轴测图正轴测图斜轴测图投射方向垂直于轴测投影面,由正投影法得到投射方向倾斜于轴测投影面,由斜投影法得到正等轴测图三个轴向伸缩系数均相等两个轴向伸缩系数相等三个轴向伸缩系数均不相等 三个轴向伸缩系数均相等轴测投影面平行于一个坐标平面,且平行于坐标平面的两个轴的轴向伸缩系数相等三个轴向伸缩系数均不相等正轴测图正二轴测图正三轴测图斜等轴测图斜轴测图斜二轴测图正三轴测图 §6-2 正等轴测图一、轴间角和各轴向的简化系数 1、正等轴测图的轴间角:

机械设计基础复习资料(综合整理)..

机械设计基础复习资料 一、基础知识 0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副) 0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。 连架杆和机架中必有一杆是最短杆。 0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构 0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。 0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。 0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低 1.按照工作条件,齿轮传动可分为开式传动两种。 1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】 1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。 1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑 1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。 2.开式齿轮传动主要的失效形式是『磨损』开式齿轮磨损较快,一般不会点蚀 2.1. 轮齿疲劳点蚀通常首先出现在齿廓的节线靠近齿根处部位。 在确定大、小齿轮硬度时应注意使小齿轮的齿面硬度比大齿轮的齿面硬度高30一50HBS,这是因为小齿轮受载荷次数比大齿轮多,且小齿轮齿根较薄.为使两齿轮的轮齿接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些 2.12. 根据齿轮设计准则,软齿面闭式齿轮传动一般按接触强度设计,按弯曲强度校核;硬齿面闭式齿轮传动一般按弯曲强度设计,按接触强度校核。 2.13在变速齿轮传动中,若大、小齿轮材料相同,但硬度不同,则两齿轮工作中产生的齿面接触应力相同,材料的许用接触应力不同,工作中产生的齿根弯曲应力不同,材料的许用弯曲应力不同。 标准模数和压力角在齿轮大端;受力分析和强度计算用平均分度圆直径。 2.15、在齿轮传动中,大小齿轮的接触应力是相等的,大小齿轮的弯曲应力是不相等的。 2.16、直齿圆柱齿轮作接触强度计算时取节点处的接触应力为计算依据,其载荷由一对轮齿承担。

机械设计基础试题及答案

A卷 一、简答与名词解释(每题5分,共70分) 1. 简述机构与机器的异同与其相互关系 答. 共同点:①人为的实物组合体;②各组成部分之间具有确定的相对运动;不同点:机器的主要功能是做有用功、变换能量或传递能量、物料、信息等;机构的主要功能是传递运动和力、或变换运动形式。相互关系:机器一般由一个或若干个机构组合而成。 2. 简述“机械运动”的基本含义 答. 所谓“机械运动”是指宏观的、有确定规律的刚体运动。 3. 机构中的运动副具有哪些必要条件? 答. 三个条件:①两个构件;②直接接触;③相对运动。 4. 机构自由度的定义是什么?一个平面自由构件的自由度为多少?答. 使机构具有确定运动所需输入的独立运动参数的数目称机构自由度。平面自由构件的自由度为3。 5. 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况? 答. 机构具有确定运动条件:自由度=原动件数目。原动件数目<自由度,构件运动不确定;原动件数目>自由度,机构无法运动甚至构

件破坏。 6. 铰链四杆机构有哪几种基本型式? 答. 三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。7. 何谓连杆机构的压力角、传动角?它们的大小对连杆机构的工作有何影响?以曲柄为原动件的偏置曲柄滑块机构的最小传动角minγ发生在什么位置? 答. 压力角α:机构输出构件(从动件)上作用力方向与力作用点速度方向所夹之锐角;传动角γ:压力角的余角。α+γ≡900。压力角(传动角)越小(越大),机构传力性能越好。偏置曲柄滑块机构的最小传动角γmin发生在曲柄与滑块移动导路垂直的位置 8. 什么是凸轮实际轮廓的变尖现象和从动件(推杆)运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 答. 对于盘形凸轮,当外凸部分的理论轮廓曲率半径ρ与滚子半径 r T 相等时:ρ=r T ,凸轮实际轮廓变尖(实际轮廓曲率半径ρ’=0)。 在机构运动过程中,该处轮廓易磨损变形,导致从动件运动规律失真。增大凸轮轮廓半径或限制滚子半径均有利于避免实际轮廓变尖现象的发生。 9. 渐开线齿廓啮合有哪些主要特点? 答. ①传动比恒定;②实际中心距略有改变时,传动比仍保持不变(中

《机械设计基础》教案

《机械设计基础》教案绪论 学时分配:1学时 教学目的与要求: 1. 了解机械的组成及机器、机构、构件和零件; 2. 了解本课程的性质、任务、内容和学习方法。 教学重点与难点: 1. 掌握机械的基本组成。 2. 掌握机器、机械、机构、零件等概念。 3. 机器与机构的区别。 教学手段与方式: 课堂讲授 教学内容:

第1章平面机构的结构分析 学时分配:5学时 教学目的与要求: 1. 熟悉运动副及其分类,明确运动链和机构的区别。 2. 掌握平面机构运动简图的绘制方法。 3. 掌握平面机构自由度的计算方法,明确平面机构具有确定运动的条件。 教学重点与难点: 1. 机构及运动副的概念、绘制机构运动简图。 2. 自由度计算,虚约束。 教学手段与方式: 课堂讲授 教学内容:

第2章平面连杆机构 学时分配:6学时 教学目的与要求: 1. 了解铰链四杆机构的基本类型及其演化。 2. 明确四杆机构的曲柄存在条件。 3. 熟悉铰链四杆机构压力角、传动角、行程速度变化系数和死点位置等基本概念。 4. 掌握平面四杆机构设计的图解法(按给定的连杆长度和连杆的两个位置设计四杆机构、按给定的行程速度变化系数设计四杆机构)。 教学重点与难点: 1. 四杆机构的曲柄存在条件。 2. 压力角、传动角、行程速度变化系数和死点位置。 3. 平面四杆机构设计的图解法 教学手段与方式: 课堂讲授 教学内容: 作业布置

第3章凸轮机构 学时分配:6学时 教学目的与要求: 1. 了解凸轮机构的特点,能按运动规律绘制S-ф曲线 2. 掌握图解法设计凸轮轮廓,了解凸轮机构的自锁、压力角与基圆半径的关系教学重点与难点: 1. 常用从动件运动规律的特点,刚性冲击,柔性冲击,S-ф曲线绘制 2. 凸轮轮廓设计原理—反转法,自锁、压力角与基圆半径的概念 教学手段与方式: 课堂讲授 教学内容:

相关文档
相关文档 最新文档