文档库 最新最全的文档下载
当前位置:文档库 › 柔性直流输电

柔性直流输电

柔性直流输电
柔性直流输电

柔性直流输电

一、概述

(一)柔性直流输电得定义

高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上得革新,其主要推动力就是组成换流器得基本元件发生了革命性得重大突破。

第一代直流输电技术采用得换流元件就是汞弧阀,所用得换流器拓扑就是6脉动Graetz桥,其主要应用年代就是1970年代以前。

图1、1:汞弧阀图1.2:6脉动Graetz桥

第二代直流输电技术采用得换流元件就是晶闸管,所用得换流器拓扑仍然就是6脉动Graetz桥,因而其换流理论与第

一代直流输电技术相同,其应用年代就是1970年代初直到今后一段时间。

图1.3:电触发晶闸管图1。4:光触发晶闸管

通常我们将基于Graetz桥式换流器得第一代与第二代直流输电技术称为传统直流输电技术,其运行原理就是电网换相换流理论、因此我们也将传统直流输电所采用得Graetz桥式换流器称为“电网换相换流器",英文就是“Linemutated Converter”,缩写就是“LCC"。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这就是不对得。LCC属于CSC,但CSC得范围要比LCC宽广得多,基于IGBT构成得CSC目前也就是业界研究得一个热点。

1990年,基于电压源换流器得直流输电概念首先由加拿大McGill大学得Boon—TeckOoi等提出。在此基础上,ABB公司于1997年3月在瑞典中部得Hellsjon与Grangesberg之间进行了首次工业性试验(3MW,±10kV),标志着第三代直流输电技术得诞生。这种以可关断器件与脉冲宽度调制(PWM)技术为基础得第三代直流输电技术,国际权威学术组

织国际大电网会议(CIGRE)与美国电气与电子工程师协会(IEEE),将其正式命名为“VSC—HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术得直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。

(二)柔性直流与传统直流得优缺点对比

不管就是两电平、三电平或MMC换流器,由于都属于电压源换流器,其基波频率下得外特性就是完全一致得。

图1。5:柔性直流系统外特性图

柔性直流系统外特性公式如下

VSC与LCC相比,具有得根本性优势就是多了一个控制自由度。LCC因为所用得器件就是晶闸管,晶闸管只能控制导通而

不能控制关断,因此LCC得控制自由度只有1个,就就是触发角α,这样LCC实际上只能控制直流电压得大小、而VSC因为所用得器件就是双向可控得,既可以控制导通,也可以控制关断,因而VSC有2个控制自由度,反映在输出电压得基波相量Uvsc上,就表现为Uvsc得幅值与相位都就是可控得。因此从交流系统得角度瞧,VSC可以等效成一个无转动惯量得电动机或发电机,几乎可以瞬时地在PQ平面得4个象限内实现有功功率与无功功率得独立控制,这就就是电压源换流器得基本特性。而柔性直流输电系统得卓越性能在很大程度上就依赖于电压源换流器得基本特性。

1、可以归纳出柔性直流输电相对于传统直流输电得技术优势如下:

(1)没有无功补偿问题:传统直流输电由于存在换流器得触发延时角α(一般为10-15度)与关断角γ(一般为15度或更大)以及波形得非正弦,需要吸收大量得无功功率,其数值约为换流站所通过得直流功率得40%-60%。因而需要大量得无功功率补偿及滤波设备,而且在甩负荷时会出现无功功率过剩,容易导致过电压。而柔性直流输电得VSC不仅不需要交流侧提供无功功率,而且本身能够起到静止同步补偿器得作用,可以动态补偿交流系统无功功率,稳定交流母线电压。这意味着交流系统故障时,如果VSC容量允许,那么柔性直流输电系统既可向交流系统提供有功功率得紧急支援,还可向交流系统提供无功功率得紧急支援,从而既能提高所连接系统得功角稳定性,还能提高所连接得电压稳定

性。

(2)没有换相失败问题:传统直流输电受端换流器(逆变器)在受端交流系统发生故障时,很容易发生换相失败,导致输送功率中断。通常只要逆变站交流母线电压因交流系统故障导致瞬间跌落10%以上幅度,就会引起逆变器换相失败,而在换相失败恢复前,传统直流系统无法输送功率。而柔性直流输电得VSC采用得就是可关断器件,不存在换相失败问题,即使受端交流系统发生严重故障,只要换流站交流母线仍然有电压,就能输送一定得功率,其大小取决于VSC得电流容量、

(3)可以为无源系统供电:传统直流输电需要交流电网提供换相电流,这个电流实际上就是相间短路电流,因此要保证换相得可靠性,受端交流系统必须具有足够得容量,即必须有足够得短路比(SCR),当受端交流电网比较弱时便容易发生换相失败。而柔性直流输电得VSC能够自换相,可以工作在无源逆变方式,不需要外加得换相电压,受端系统可以就是无源网络,克服了传统直流输电受端必须就是有源网络得根本缺陷,使利用直流输电为孤立负荷送电成为可能。

(4)可同时独立调节有功与无功功率:传统直流输电得换流器只有1个控制自由度,不能同时独立调节有功功率与无功功率。而柔性直流输电得VSC具有2个控制自由度,可以同时独立调节有功功率与无功功率。

(5)谐波水平低:传统直流输电得换流器会产生特征谐波与非特征谐波,必须配置相当容量得交流侧滤波器与直流侧滤波器才能满足将谐波限定在换流站内得要求。柔性直流输电得两电平或三电平VSC,采用PWM技术,开关频率相对较高,谐波落在较高得频段,可以采用较小容量得滤波器解决谐波问题;对于采用MMC 得柔性直流输电系统,通常电平数较高,不需要采用滤波器已能满足谐波要求。

(6)适合构成多端直流系统:传统直流输电电流只能单向流动,潮流反转时,电压极性反转而电流方向不动;因此在构成并联型多端直流系统时,单端潮流难以反转,控制很不灵活、而柔性直流输电得VSC电流可以双向流动,直流电压极性不能改变;因此构成并联型多端直流系统时,在保持多端直流系统电压恒定得前提下,通过改变单端电流得方向,单端潮流可以在正、反两个方向上调节,更能体现出多端直流系统得优势、

(7)占地面积小:柔性直流输电换流站没有大量得无功补偿与滤波装置,交流场设备很少,因此比传统直流输电占地面积少得多。

2、当然,柔性直流输电相对于传统直流输电也存在不足,主要表现在如下几个方面:

(1)损耗较大:传统直流输电得单站损耗已低于0。8%,两电平与三电平VSC得单站损耗在2%左右,MMC得单站损耗可以

低于1、5%。柔性直流输电损耗下降得前景包括两个方面:①现有技术得进一步提高;②采用新得可关断器件。柔性直流输电单站损耗降低到1%以下就是可以预期得。

(2)设备成本较高:就目前得技术水平,柔性直流输电单位容量得设备投资成本高于传统直流输电。同样,柔性直流输电得设备投资成本降低到与传统直流输电相当也就是可以预期得。

(3)容量相对较小:由于目前可关断器件得电压、电流额定值都比晶闸管低,如不采用多个可关断器件并联,VSC得电流额定值就比LCC得低,因此VSC基本单元(单个两电平或三电平换流器或单个MMC)得容量比LLC基本单元(单个6脉动换流器)得容量低、。目前已投运或正在建设得柔性直流输电工程得最大容量在1000MW左右,与传统直流输电得6000MW以上还存在一定得距离。但就是,如果采用VSC基本单元得串、并联组合技术,柔性直流输电达到传统直流输电得容量水平就是没有问题得,技术上并不存在根本性得困难、可以预见,在不远得将来,柔性直流输电也会采用特高压电压等级,其输送容量会与传统特高压直流输电相当。

(4)不太适合长距离架空线路输电:目前柔性直流输电采用得两电平与三电平VSC或多电平MMC,在直流侧发生短路时,即使IGBT全部关断,换流站通过与IGBT反并联得二极管,仍然会向故障点馈入电流,从而无法像传统直流输电那样通过换流器

自身得控制来清除直流侧得故障。所以,目前得柔性直流输电技术在直流侧发生故障时,清除故障得手段就是跳换流站交流侧开关、这样,故障清除与直流系统再恢复得时间就比较长。当直流线路采用电缆时,由于电缆故障率低,且如果发生故障,通常就是永久性故障,本来就应该停电,因此跳交流侧开关并不影响整个系统得可用率。针对此缺陷,目前柔性直流输电技术得一个重要研究方向就就是开发具有直流侧故障自清除能力得VSC、

(三)柔性直流输电应用领域及目前工程列表

1、应用领域

柔性直流输电目前主要得应用领域有异步电网互联、小型发电厂/新能源/分布式能源并网、偏远山区/海上供输电、城市输配电、电能质量改善等方面

2、柔直工程列表

二、柔性直流输电得分类与结构组成

(一)柔性直流输电得分类及优缺点对比

已有柔性直流输电工程采用得VSC主要有三种,即两电平换流器、二极管箝位型三电平换流器与模块化多电平换流器(MM C),模块化多电平换流器在各种特性上都比较优越,所以模块化多电平为现在普遍应用得技术。

两电平换流器得拓扑结构最简单,如图2。1所示、她有六个桥臂,每个桥臂由绝缘栅双极晶体管(IGBT)与与之反并联得二极

管组成、在高压大功率得情况下,为提高换流器容量与系统得电压等级,每个桥臂由多个IGBT及其相并联得二极管相互串联来获得,其串联得个数由换流器得额定功率、电压等级与电力电子开关器件得通流能力与耐压强度决定。相对于接地点,两电平换流器每相可输出两个电平,显然两电平换流器需通过PWM逼近正弦波。

图2。1:两电平拓扑结构与单个桥臂结构

图2。2:两电平换流器得单相输出波形

二极管箝位性三电平换流器如图2。3所示。三相换流器通常公用直流电容器。三电平换流器每相可以输出三个电平,也就是通过PWM逼近正弦波得、

图2、3 二极管箝位型三电平换流器得基本结构

图2、4 三电平换流器得单相输出波形

模块化多电平换流器(MMC)得桥臂不就是由多个开关器件直接串联构成得,而就是采用了子模块(Sub-Module,SM)

级联得方式。

图2.5 模块化多电平换流器(MMC)得基本结构

2。6:MMC单个子模块(SM)得结构

MMC得每个桥臂由N个子模块与一个串联电抗器Lo组成,同相得上下两个桥臂构成一个相单元,如图2、5所示。MMC得子模块一般采用半个H桥结构,如图2.6所示、其中,uc为子模

块电容电压,usm与ism分别为单个子模块得输出电压与电流。MMC得单相输出电压波形如图2。7所示。可见,MMC得工作原理与两电平与三电平换流器不同,它不就是采用PWM来逼近正弦波,而就是采用阶梯波得方式来逼近正弦波、

图2、7 MMC得单相输出电压波形

1、相对于两电平与三电平换流器拓扑结构,MMC拓扑结构具有以下几个明显优势:

(1)制造难度下降:不需要采用基于IGBT直接串联而构成得阀,这种阀在制造上有相当得难度,只有离散性非常小得IGBT才能满足静态与动态均压得要求,一般市售得IGBT就是难以满足要求得。因而MMC拓扑结构大大降低了制造商进入柔性直流输电领域得技术门槛。

(2)损耗成倍下降:MMC拓扑结构大大降低了IGBT得开关频率,从而使换流器得损耗成倍下降。因为MMC拓扑结构采

用阶梯波逼近正弦波得调制方式,理想情况下,一个工频周期内开关器件只要开关2次,考虑了电容电压平衡控制与其她控制因素后,开关器件得开关频率通常不超过150Hz,这与两电平与三电平换流器拓扑结构开关器件得开关频率在1kHz以上形成了鲜明得对比、

(3)阶跃电压降低:由于MMC所产生得电压阶梯波得每个阶梯都不大,MMC桥臂上得阶跃电压与阶跃电流都比较小,从而使得开关器件承受得应力大为降低,同时也使产生得高频辐射大为降低,容易满足电磁兼容指标得要求、

(4)波形质量高:由于MMC通常电平数很多,所输出得电压阶梯波已非常接近于正弦波,波形质量高,各次谐波含有率与总谐波畸变率已能满足相关标准得要求,不需要安装交流滤波器。

(5)故障处理能力强:由于MMC得子模块冗余特性,使得故障得子模块可由冗余得子模块替换,并且替换过程不需要停电,提高了换流器得可靠性;另外,MMC得直流侧没有高压电容器组,并且桥臂上得Lo与分布式得储能电容器相串联,从而可以直接限制内部故障或外部故障下得故障电流上升率,使故障得清除更加容易。

2、当然,MMC拓扑结构与两电平或三电平换流器拓扑结构相比,也有不足得地方:

(1)所有器件数量多:对于同样得直流电压,MMC采用得开关

器件数量较大,约为两电平换流器拓扑结构得2倍。

(2)MMC虽然避免了两电平与三电平换流器拓扑结构必须采用IGBT直接串联阀得困难,但却将技术难度转移到了控制方面,主要包括子模块电容电压得均衡控制以及各桥臂之间得环流控制、

(二)MMC得工作原理

MMC子模块具有如下三种工作模式

表中对于表2、1进行分析可得表2。2,表中对于T1、T2、D1与D2,开关状态1对应导通,0对应关断。从表2。2可以瞧出,对应每一个模式,T1、T2、D1与D2中有且仅有1个管子处于导通状态。因此可以认为,SM进入稳态模式后,有且仅有1个管子处于导通状态,其余3个管子都处于关断状态。另一方面,若将T1与D1、T2与D2分别集中起来作为开关S1与S2瞧待,那么对应投入状态,S1就是导通得,电流可以双向流动,而S2就是断开得;对应切除状态,S2就是导通得,电流可以双向流动,而S1就是断开得;而对应闭锁状态,S1与S2中哪个导通、哪个断开就是不确定得。

表2。1 子模块得三种工作状态

根据上述分析可以得出结论,只要对每个SM上下两个IGBT得开关状态进行控制,就可以实现投入或者切除该SM、

表2、2 SM得3个工作状态与6个工作模式

(三)柔性直流换流器系统得构成

1、柔性直流系统结构

柔性直流按照接线方式可分为真双极系统与伪双极系统。

舟山五端柔直工程采用伪双极主接线结构,该主接线结构包括换流器区与极区,无双极区。

图2、8 舟山伪双极柔直系统图

厦门柔直工程为世界上第一个真双极MMC柔性直流工程,直流主接线结构包括换流器区、极区与双极区。

图2。9厦门真双极柔直系统图

图2。10 户内式换流站设备布置

图2。11 敞开式换流站设备布置

图2、12 敞开式换流站设备布置(阀厅透视版)

图2.13柔性直流系统示意图

2、柔性直流系统主要设备

柔性输电-high-voltage direct current 高压直流输电

high-voltage direct current 高压直流输电 目录 high-voltage direct current 高压直流输电............................................ 错误!未定义书签。 一、实验目的; (1) 二、背景及实验原理分析 (1) 三、关键实验参数的设置 (2) 1.三相降压变压后100kv的交流高通滤波器参数,抑制27次、54次谐波 (2) 2.100kv交流成+100 kV直流或+100 kV直流逆变成100kv交流的滤波参数设计: (3) 四、实验过程及实验结果分析 (3) 五、实验相关波形 (3)

一、实验目的; 利用simulink仿真一个高压直流输电系统将230 kV, 50 Hz,2000 MVA交流系统转换为+100 kVDC,输电容量200 MVA,传输距离为75Km,再将直流逆变成230 kV, 50 Hz,2000 MVA 交流。 二、背景及实验原理分析 HVDC(高压直流输电)是ABB 50多年前开发的一项技术,旨在提高远距离输电的效率。高压直流输电(HVDC),是利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。输电过程为直流。常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。 整体实验仿真电路接线图(如下所示): 其中三相高压交流通过变压器将230kv交流变成100kv交流,再通过利用IGBT构成三相桥式可控整流系统整流为+100 kV 直流,通过75km的线路传输之后,再通过spwm逆变系统将+100 kV 直流逆变成100kv交流,再通过三相变压器转换成230kv高压交流,完成传输。 以下部分是通过三相变压器降压以及通过三相桥式IGBT整流/逆变的电路,其中s-pwm 的脉冲信号产生电路如下所示:

柔性直流输电

柔性直流输电 一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流 第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT 构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开

柔性直流输电线路故障分析与保护综述 周森亮

柔性直流输电线路故障分析与保护综述周森亮 发表时间:2019-10-23T10:40:13.657Z 来源:《电力设备》2019年第10期作者:周森亮 [导读] 摘要:为应对不可再生能源不断减少的形势,世界各国制订了相应的政策,随着大功率全控型电力电子器件制造及控制技术的发展,推动了柔性直流输电工程的建设。 (国网内蒙古东部电力有限公司检修分公司内蒙古赤峰 024000) 摘要:为应对不可再生能源不断减少的形势,世界各国制订了相应的政策,随着大功率全控型电力电子器件制造及控制技术的发展,推动了柔性直流输电工程的建设。基于柔性直流输电系统控制方式和拓扑结构的特殊性,在直流侧发生故障时,其故障电流上升速度极快且破坏性极强。针对柔性直流输电系统的故障类型和保护分区进行讨论,结合现阶段的故障隔离技术,介绍了直流断路器、换流器和交流断路器的应用状况。为快速隔离故障,详细介绍了柔性直流线路保护,并对柔性直流输电技术的发展趋势进行了展望。 关键词:柔性直流输电;故障类型;直流线路保护 引言 和传统基础电流源变换系统的直流输电系统相比,电压源变换系统的直流输电系统(VSC-HVDC)属于一类低廉的输电方式。其能够切实弥补直流电力传输存在的问题,尤其在可再生能源发电并网、城市供电以及异步交流互联中适用。但因为拓扑结构与控制模式的特殊性,出现故障之后电流快速上升,非常容易对换流组件产生破坏,所以,直流线路故障保护的作用非常关键。 1柔性直流输电的系统 两端的换流站都是利用柔性直流输电,由换流电和换流变压设备,换流电抗设备等进行组成。其中最为关键的核心部位是VSC,而它则是由流桥和直流电容器共同组成的。系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。这主要是由于浮动数值和相位都可以利用脉宽调制技术来进行智能化调解。因此,VSC的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节。 2柔性直流系统的故障类型 以目前正在建设的张北柔性直流电网为例,该工程采用架空输电线路,与直流电缆相比,其故障概率更高。按照故障区域划分,柔性直流电网故障大致可以分为交流系统故障、换流器内部故障和系统直流侧故障。换流器内部故障又可细分为站内母线故障、阀短路故障、桥臂电抗器故障以及最常见的子模块故障等。柔性直流输电具有输送容量大、电压等级高的特点,故MMC(模块化多电平换流器)每个桥臂串联的子模块数量较多,从而增加了子模块故障的概率。在柔性直流系统的建设中,为确保系统具有足够的容错性和充足的安全裕度,通常都会在每一个桥臂上串联适量的冗余子模块。直流侧故障可细分为直流线路断线故障、直流线路短路故障和换流器闭锁故障。在单个MMC中,因为直流侧采用单级输电,故直流侧线路故障以单极接地故障为主。而在真双极系统中,单级接地故障则相当于伪双极系统中的级间短路故障,通常由树枝接触或雷电引发,多属于暂时性故障,但是因其故障传播速度快、影响范围广、解决难度大,成为阻碍柔性直流电网发展的技术难题。真双极系统的双极短路故障则更为严重,相当于交流系统的三相短路故障。 3柔性直流输电网故障保护的难点 (1)系统故障电流升高速度极快,通常在故障出现之后10ms以内电流已经提高至稳态电流水平。(2)稳态短路存在很高电流值,系统短路电流通常比额定值高出几十倍。(3)系统故障发生时短路电流无极性改变,无过零点,断路系统很难灭弧。(4)对迅速切断故障设定的标准很高,交流输电系统的故障切断时限通常大于50ms,但直流系统故障切断时限要求不到5ms,否则就会对系统组件安全产生很大影响。所以,针对柔性直流线路故障问题,一方面需迅速准确识别故障,另一方面需采取合理处置方案限制故障电流,进而降低对换流器、线路和系统产生的威胁。 4柔性直流输电线路故障保护存在的问题与研究展望 4.1存在的关键问题 虽然国内外学者围绕柔性直流输电线路保护原理开展了大量研究,能够在一定程度上提高现有柔性直流输电工程的线路保护性能,但仍存在一些问题:(1)柔性直流输电系统故障阻尼小,故障蔓延速度快,而柔性直流系统中的电力电子设备耐受故障冲击电流能力差,因此对保护系统的响应时间要求很高,即对速动性要求高。(2)虽然行波保护是目前柔性直流输电系统较为适宜的主保护,但其易受雷击、噪声等因素干扰而发生误动,可靠性降低,并且对采样频率的要求高。(3)正负极线路行波之间存在电磁耦合,并且暂态行波在传播过程中会发生畸变、色散、频散等现象,对保护会产生一定的干扰。 4.2保护与控制协调策略 柔性直流输电线路的故障处理与保护和控制密切相关,为实现故障线路的隔离和系统的稳定,需要针对线路保护、辅助电路以及系统控制的动作时间和投入方式,进行协调策略研究。尤其对于多端柔性直流系统,直流线路故障的处理,更加强调多站之间保护与控制的协调作用。采用保护、控制、通信集成一体化的多端柔性直流系统保护方案,研究保护与保护之间,保护与控制之间的配合策略,实现交直流侧保护与控制相协调,整合并减少分散保护设备的数量,从而降低柔性直流线路故障处理与保护的复杂性、缩短故障处理的时间,提高系统的可用率。 4.3柔性直流输电技术的应用前景展望 (1)在城市电网塔容及直流供电中的应用。近几年来,我国经济的高速发展以及城市化建设的不断推进,促进了城市电网的进一步发展,与此同时大部分的城市电网负荷也一直呈现出不断增长的趋势,人们对于电能的供应及质量要求不断提高。(2)替代交直流联网。结合我国目前的总体趋势西部地区的资源相对较多,同时负荷较少,我国90%的水电几乎都集中在西部,而东部地区的能源与负荷量特点则恰好相反。导致了我国地区能源和负荷的失调,因此,特高压直流输电工程在不断增多,实现电能的大容量和远距离运输。目前关于柔性直流输电技术方面仍然存在着一定的障碍,在进行长距离和大容量的发展过程中,要克服以下几个难点:第一就是用碳化归来替代二氧化硅,从而改变VSC的材料,同时还要增强封装材料的绝缘性和耐热性,达到大容量的电流运输。第二就是要加强电流直流断路器的优化与改良,突破上述所提到的故障。如果能在技术上实现故障的突破,那么柔性直流输电技术在未来可能会完全取代传统输电技术,承担起长距离大容量的输电任务。(3)借鉴传统交流输电和常规高压直流输电的继电保护技术,结合柔性直流输电系统的结构特点,研究先进的

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

柔性直流输电

一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。 器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。 (二)柔性直流与传统直流的优缺点对比 不管是两电平、三电平或MMC换流器,由于都属于电压源换流器,其基波频率下的外特性是完全一致的。

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

可控电压源型柔性直流输电换流器拓扑研究

可控电压源型柔性直流输电换流器 拓扑综述 周敏,张劲松,刘宇思 中国能源建设集团广东省电力设计研究院 摘要:为分析不同可控电压源型柔性直流输电换流器拓扑结构的技术特点,围绕模块化多电平换流器(Modular Multilevel Converter,MMC),建立了基于几种可控电压源型换流器拓扑的柔性直流输电系统电磁暂态模型,结合PSCAD/EMTDC 的数字仿真结果,验证了所提出的换流器拓扑结构及其输电方案的可行性。 关键词:柔性直流输电可控电压源型换流器模块化多电平换流器 1引言 柔性直流输电技术是高压大功率电力电子应用领域的制高点,该技术在新能源接入(特别是近海风电接入)、向无源电网供电(如海岛供电,海上钻井平台)、异步电网互联、城市配网等诸多领域有着广阔的应用前景,因此吸引了学术界和工业界越来越多的关注。国内外投入的十几个柔性直流输电工程也都取得了不错的成效,其中绝大部分工程的换流器采用两电平或三电平拓扑结构。 IEC/TR 62543技术报告[1]将电压源型柔性直流输电换流器拓扑分为两种:开关型(“switch” type)拓扑和可控电压源型(“controllable voltage source” type )拓扑。开关型拓扑,即目前绝大多数工程采用的两电平或三电平拓扑,其明显特点为直流储能电容器组并接于直流侧,运行时换流桥臂中电流不连续;而以MMC为代表的可控电压源型拓扑的储能电容器分布在换流桥臂的子模块中,运行时换流桥臂中有连续电流流过。两类拓扑各自的优势在相关文献中已有较详细的总结[2-7]。较晚出现的可控电压源型拓扑以其诸多优势,成为未来柔性直流输电换流器拓扑的发展趋势,这从目前国内外最新投运的工程(2010年的美国 Trans Bay Cable工程、2011年的上海南汇工程)和在建的工程(如大连跨海工程、舟山5端工程、南澳风电场接入3端工程、德国Borwin2工程)中可见一斑。 2MMC换流器基本结构 2002年,德国学者R. Marquart 和A. Lesnicar 最早提出了MMC拓扑结构的概念[2],该拓扑奠定可控电压源型换流器的基础,之后有学者和公司相继提出了许多拓扑,基本结构和运行原理都跟MMC 很类似。MMC的建模、控制、调制、器件参数选择在文献中有详细论述[2-7] ,MMC的拓扑结构如图1所示。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性直流输电系统的改进型相对控制策略

柔性直流输电系统的改进型相对控制策略 摘要:电压源换流器(VSC)中交流滤波器可滤除交流网络侧谐波,交流侧换流电 抗器或换流变压器有助于交流网络和VSC的能量交换,直流侧电容器可减小换流 桥切换时的冲击电流,同时也可滤除直流网络侧谐波。 关键词:柔性直流输电;控制策略;应用 前言 在柔性直流输电系统(VSC-HVDC)中电压源换流器采用全控型可关断器件,可实现对交流无源网络供电,同时对有功功率、无功功率进行控制。笔者采用外环 电压控制和内环电流控制,外环电压控制中送端VSC系统采用相对控制策略,通 过分别控制输出电压相对发电机端电压的相位角和幅值,进而控制其与送端系统 交换的有功功率和无功功率。受端VSC系统采用定交流电压和定直流电压控制方法,通过调制比和移相角信号产生器件的驱动脉冲,内环控制采用空间矢量控制 策略,PI控制器实现对d、q轴电流的解耦控制,运用PSCAD/EMTDC暂态仿真软 件建立相应的内外环控制模型,验证所设计控制方案的有效性和可靠性。 1柔性直流输电技术的概述 1.1柔性直流输电技术概念 柔性直流输电技术是由加拿大的科学家开发出来的。这是一种由电压源换流器、自关断器和脉宽调制器所共同构成的直流输电技术。作为一种新型的输电技术,该技术不仅可以向无源网络进行供电,还不会在供电的过程中出现换相失败 的现象。在实际使用的过程中,换相站之间不会直接依赖于多端直流系统进行运作。柔性直流输电技术属于一类新型的直流输电技术。虽然在结构上和高压输电 技术相类似。但是整体结构仍然是由换流站和直流输电线路构成的。 1.2柔性直流输电的特点 柔性直流输电是由高压直流输电改造而来的。应该说在技术性和经济性方面 都有很大的改善。具体来说,柔性直流输电技术内部的特点可以表现为如下几个 方面: (1)在运用柔性直流输电技术的过程中,如果能够有效地采用模块化设计的技术,其生产和安装调试的周期都会最大限度地缩短。与换流站有关的设备都能 够在安装和使用的过程中完成各项试验。 (2)柔性直流输电技术内部的VSC换流器是以无源逆变的方式存在的。在使用的过程中可以向容量较小的系统或者不含旋转机电的系统内部进行供电。 (3)柔性直流输电技术在使用的过程中都伴随有有功潮流和无功潮流 (4)整个柔性直流输电系统可以有效地实现自动调节。换流器不需要经常实现通信联络。这也就在很大程度上减少了投资、运行和维护的费用。 (5)整个柔性直流输电技术内部的VSC换流器可以有效地减弱产生的谐波,并减少大家对功率的要求。一般情况下,只需要在交流母线上先安装一组高质量 的滤波器,就可以有效地满足谐波的要求。目前,多数无功补偿装置内部的容量 也不断地减少。即便不装换流变压器,内部的开关也可以更好地被简化。 2柔性直流输电技术的战略意义 目前,柔性直流输电技术在智能电网中一直都发挥着重要的作用。一般来说,柔性直流输电技术可以有效地助力于城市电网的增容改造和交流系统内的互联措施。目前,多数柔性直流输电技术也在大规模风电场建设的过程中发挥出了较好 的技术优势。如果大面积地选择柔性直流输电技术,将会在很大程度上改变电网

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

柔性输电技术

柔性输电之直流输电 内容简介 轻型直流输电技术是20世纪90年代开始发展的一种新型直流输电技术,核心是采用以全控型器件(如GTO和IGBT等)组成的电压源换流器(VSC)进行换流。这种换流器功能强、体积小,可减少换流站的设备、简化换流站的结构,故称之为轻型直流输电,其系统原理如图2-1所示。 图2.1 柔性直流输电系统原理示意图其中两个电压源换流器VSC1和VSC2分别用作整流器和逆变器,主要部件包括全控换流桥、直流侧电容器;全控换流桥的每个桥臂均由多个绝缘栅双极晶体管IGBT或门极可关断晶体管GTO等可关断器件组成,可以满足一定技术条件下的容量需求;直流侧电容为换流器提供电压支撑,直流电压的稳定是整个换

流器可靠工作的保证;交流侧换流变压器和换流电抗器起到VSC与交流系统间能量交换纽带和滤波作用;交流侧滤波器的作用是滤除交流侧谐波。由于柔性直流输电一般采用地下或海底电缆,对周围环境产生的影响很小。 1引言 随着科学技术的发展,到目前为止,电力传输经历了直流、交流和交直流混合输电三个阶段。早期的输电工程是从直流输电系统开始的,但是由于不能直接给直流电升压,使得输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。 19世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展,逐渐形成现代交流电网的雏形。大功率换流器的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到人们的重视。直流输电相比交流输电在某些方面具有一定优势,自从20世纪50年代联接哥特兰岛与瑞典大陆之间的世界第一条高压直流输电(HVDC)线路建成以来,HVDC在很多工程实践中得到了广泛的应用,如远距离大功率输电、海底电缆输电、两个交流系统之间的非同步联络等等。目前,国内已有多个大区之间通过直流输电系统实现非同步联网:未来几年,南方电网将建成世界上最大的多馈入直流系统;东北电网也有多条直流输电线路正在建设或纳入规划。交直流混合输电是现代电网的主要发展趋势。 经过多年来的研究和工程实践工作,HVDC技术有了较大的提高,在降低损耗、控制和保护技术等方面取得了长足的进步。但是HVDC在应用中,仍然存在着一些固有的缺陷:受端网络必须是一个有源系统,不能向无源系统供电;在向短路容量不足的系统供电时易发生换相失败;换流器本身为一谐波源,需要配置专门的滤波装置,增加了设备投资和占地而使费用相对较高;同时,运行过程中吸收较多的无功功率等。尽管人们对传统HVDC输电技术进行了不断的改进,但

厦门双极柔性直流输电工程系统设计

研究背景 基于模块化多电平换流器(Modular Multilevel Converter,MMC)的柔性直流系统由于谐波畸变小且开关损耗低,是高电压大容量直流输电的重要发展方向。目前,世界X围内基于MMC的柔性直流工程发展迅猛;国内已有5项MMC工程投运,同时还有多项高压乃至特高压MMC工程处于规划之中,并可能成为我国未来大区域电网互联的重要手段。与交流输变电工程不同,柔性直流工程需要根据送受端交流系统条件、输电距离、投资和占地等条件开展定制化的系统设计。 (来源:电力系统自动化ID:AEPS-1977) ±320kV/1000MWXX柔性直流输电工程(以下简称XX工程)是世界X围内第一个采用双极接线的柔性直流工程,也是额定直流电压和输送容量均达到世界之最的柔性直流工程,两端换流站鸟瞰示意图如图1所示。与以往对称单极柔性直流工程相比,首次采用的双极接线和大传输容量对工程的系统设计提出了新的要求。本文对双极高压大容量柔性直流工程的系统设计展开研究,研究结论在XX工程得到成功应用,验证了设计方案和技术参数的正确性。 (a) 彭厝换流站 (b) 湖边换流站 图1 XX工程换流站鸟瞰示意图 1 主接线及运行方式 当高压大容量柔性直流工程采用对称单极接线,存在如下问题: 1)与同容量双极柔性系统相比,可靠性较低。 2)换流单元采用三台单相双绕组变压器,导致变压器容量大,运输困难。 3)换流站设备的绝缘水平要求较高。考虑到上述因素,XX工程采用双极带金属回线的主接线,主接线设计如图2所示。

图2 双极柔性直流换流站接线示意图 根据主接线设计特点和转换开关配置方案,XX工程存在以下3种运行方式: 方式1:双极带金属回线单端接地运行(见图3(a))。其中,接地点仅起钳制电位的作用,不提供直流电流通路。双极不平衡电流通过金属回线返回。 方式2:单极带金属回线单端接地运行(见图3(b))。接地点的作用同方式1,且单极极线电流通过金属回线返回。 方式3:双极不带金属回线双端接地运行(见图3(c))。双极不平衡电流通过大地回路返回。该方式为运行方式转换过程中出现的临时方式,且必须保证直流系统处于双极对称状态。

柔性直流输电系统拓扑结构

·12· NO.14 2019 ( Cumulativety NO.50 ) 中国高新科技 China High-tech 2019年第14期(总第50期) 0 引言 随着电子技术的发展和绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)的出现,电压源型换流站(Voltage Source Converter,VSC)技术应运而生,为柔性直流输电奠定了技术基础。柔性直流输电不需要传统交流输电系统的换相容量,并且对无源载荷提供电力,并广泛适用于城市供电、偏远地区供电、新能源发电并网等供电新领域。此外,柔性直流输电系统还具有较高的可控性,较低的成本,较小的电力损耗,可实现动态无功补偿等,因此成为当前输电领域研究的热点之一。 柔性直流输电技术中,输电系统的拓扑结构是关键环节之一。合理的拓扑结构能够有效提高直流输电系统的输电效率和可靠性,因此是目前柔性直流输电系统研究的重点。本文将分析柔性直流输电系统的技术原理,并对柔性直流输电系统的拓扑结构进行研究,从而为我国柔性直流输电系统的设计与建设提供理论参考。 1 柔性直流输电系统的技术原理 目前工程领域常用的柔性直流输电系统主要采用3种方式:两电平电压源换流器、多电平电压源换流器和模块化多电平电压源换流器(MMC)。1.1 两电平电压源换流器的技术原理 两电平电压源换流器的每一相都有2个桥臂,因此共有6个桥臂构成,每个桥臂都是由二极管和 IGBT通过并联方式组成,如图1所示。在工程应用中,为了提高柔性直流输电系统的供电电压和供电容量,一般可将多个二极管和IGBT并联再串联。并联的二极管与IGBT所串联的个数直接决定VSC的额定功率和耐压强度。在两电平电压源换流器的设计中,每一相的2个桥臂上的IGBT均可以单独导通,并单独输出2个电平,最后通过PWM对输出电平进 行调制,最终得到柔性直流输电波形。 图1 两电平电压源换流器示意图 两电平电压源换流器通过增加串联的二极管和GBIT提高供电电压和电流,因此在大容量直流输电方面存在较大技术缺陷。随着串联的二极管和GBIT 个数的增加,将增加动态电压的不稳定性,而且串联的二极管和GBIT也会增加输电系统输电波形的谐波含量,进而降低柔性直流输电系统的功率和效率。1.2 多电平电压源换流器的技术原理 多电平电压源换流器技术在两电平电压源换流 柔性直流输电系统拓扑结构 叶 林 (中国南方电网有限责任公司超高压输电公司广州局,广东 广州 510000) 摘要:柔性直流输电系统具有线路损耗低、可控性强等优势,成为当前电力网大力发展的输电方案。柔性直流输电系统的拓扑结构则是输电工程中的关键技术之一,决定输电网络的性能。文章分析了柔性直流输电系统的技术原理,重点对柔性直流输电系统的拓扑结构进行了研究,为柔性直流输电系统的拓扑结构方案设计与应用提供理论参考。 关键词:柔性直流;输电系统;拓扑结构;输电方案 文献标识码:A 中图分类号:TM131文章编号:2096-4137(2019)14-012-03 DOI:10.13535/https://www.wendangku.net/doc/c912528484.html,ki.10-1507/n.2019.14.04 收稿日期:2019-04-30 作者简介:叶林(1987-),男,河南信阳人,供职于中国南方电网有限责任公司超高压输电公司广州局,研究方向:超(特)高压输电运维柔性直流输电系统拓扑结构。

多端柔性直流输电(VSC—HVD)系统直流电压下垂控制

多端柔性直流输电(VSC—HVD)系统直流 电压下垂控制 学院: 姓名: 学号: 组员: 指导老师: 日期: 摘要: 多端柔性直流输电系统(voltage sourcedconverter based multi-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。 关键词:VSC-MTDC 下垂控制模块化多电平换流器 一、引言 基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。 多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。单点直流

柔性直流输电技术概述

电力电子技术专题大作业 ——柔性直流输电技术概述0.前言 学习电力电子技术专题一学期以来,我感觉受益良多,我收获的不仅仅是各位老师讲座上所教授的内容,更有他们对于电网行业的深入分析以及未来发展方向的预测。在诸多讲座中,我对宋强老师所讲的柔性直流输电技术最感兴趣,下面我就以此为主题,对柔输技术进行一些简要的概括与探究。 1.背景介绍 我们都知道历史上交直流输电之争由来已久,电机系的许多老师都经常提到这个话题,而目前普遍的输电方式仍是交流输电。交流输电线路中,除了有导线的电阻损耗外还有交流感抗的损耗,为了解决交流输电电阻的损耗,还可以采用高压和超高压输电来减小电流来减小损耗,但是交流电感损耗不能减小,因此交流输电不能做太远距离输电。如果线路过长输送的电能就会全部消耗在输电线路上。交流输电并网还要考虑相位的一致。如果相位不一致两组发电机并网会互相抵消。这时人们又想起了直流输电的方式。 一直以来,直流输电的发展与换流技术(特别是高电压、大功率换流设备)的发展有密切的关系。但是近年来,除了有电力电子技术的进步推动外,由于大量直流工程的投入运行,直流输电的控制、保护、故障、可靠性等多种问题也越发显得重要。因此多种新技术的综合应用使得直流输电技术有了新进展。 输电技术的发展经历了从直流到交流,再到交直流共存的技术演变。随着电力电子技术的进步,柔性直流作为新一代直流输电技术,可使当前交直流输电技术面临的诸多问题迎刃而解,为输电方式变革和构建未来电网提供了崭新的解决方案。 基于电压源型换流器的高压直流输电概念最早是由加拿大McGill大学Boon-Teck等学者于1990年提出的。通过控制电压源换流器中全控型电力电子器件的开通和关断,改变输出电压的相角和幅值,可实现对交流侧有功功率和无功功率的控制,达到功率输送和稳定电网等目的,从而有效地克服了此前输电技术

浅析柔性直流输电工程发展

浅析柔性直流输电工程发展 文章介绍了柔性直流输电工程国内外应用领域及应用现状,对柔性直流输电在相关工程技术领域、工程应用情况等进行了总结和分析,分析了柔性直流输电工程发展的前景,进而说明了其对未来电网模式发展是一种必然趋势。 标签:柔性直流输电;优势;工程应用 1 概述 柔性直流输电技术概念于20世纪80年代提出,特别是在伴随着包括电力电子技术、自动控制技术以及计算机微处理技术等多方面的发展,经过三十多年的发展进化,柔性直流输电技术在当前形势下,演变发展以来产生的诸多关键性问题逐渐得到一一解决,此技术(柔性直流输电技术)在HVDC以及HV AC系统中得到了越来越多的相关人员及专业的重视。 2 柔性直流输电相关技术介绍 2.1 柔性直流输电工程中的换流器技术 柔性直流输电的换流器根据换流器桥臂的等效特性,可分为:可控电源型和可控开关型两类。可控电源型交流器其换流桥臂等效为可控电压源,其储能电容分散于各桥臂中,并且通过改变某桥臂的等效电压,就能间接改变交流侧输出的电压。可控开关型换流器通过适当的脉宽调制技术控制桥臂的开通与关断,其换流桥臂可以等效为可控开关,从而将直流侧电压传递到交流侧。 无论是两电平还是半桥型模块化多电平换流器,于目前投入工程应用的换流器技术中,同时全桥式和钳位双子模块型模块化多电平换流器,均存有不可在直流故障下实现交直流系统隔离的问题。在直流电压急剧降低时,仍然可以支撑交流电压,究其原因可以使桥臂等效输出电压为负值,从而实现抑制交流侧短路电流的目的。 2.2 柔性直流输电系统中的主接线设计 电力系统中的变电站主接线设计是电力系统规划设计中的重中之重。柔性直流输电换流站中采用两电平、三电平换流器,其站址一般采用在直流侧中性点接地的方式,原因在于电压等级过高,而我国交流电网110kV及以上的电力系统大多都采用中性点直接接地的方式。与此同时采用模块化多电平的柔性直流输电系统则一般采用交流侧接地的方式,和国家电网公司设计规程吻合。而上述这些接地特点及方式都是单极对称系统,当换流器或直流线路发生故障后,整个系统将瘫痪,进而无法正常运行,虽然正常情况下不需要单独设置专门接地,但在系统参数配置相同情况下,直流侧的不对称还将造成换流器所连接的交流侧电压水平的大幅度提升。单极不对称系统换流阀所耐受电压是单极对称系统的两倍,水

相关文档
相关文档 最新文档