文档库 最新最全的文档下载
当前位置:文档库 › 目前应用的温度场的数学模型

目前应用的温度场的数学模型

目前应用的温度场的数学模型
目前应用的温度场的数学模型

目前应用的温度场的数学模型:

1、冶金过程温度场建模,采用瞬态温度场有限单元法。通过曲线拟合方法, 获得了温度与

各物性间的关系, 建立了变物性熔渣冷却温度场数学模型, 分析了各种工艺参数对富硼渣温度场分布的影响。

有限元法的应用例:

1)动态分析:计算结构的固有属性,以及动态载荷下的结构的各种响应和动应力,动

应变等;

2)热分析:计算在热环境下,结构或区域部的温度分布和热流,以及由热引起的热应力

和热变形;

3)其他

离散:

数学上,有限元法的基本思想是通过离散化的手段把微分方程或者变分方程变成袋鼠方程进行求解。

。。适合处理形状复杂的结构

。。复杂的边界条件

2、高炉炉衬砌体结构温度场的数学模型:根据几何对称性,基于三维结构图,数学模型主

体为描述控制体三维变物性稳态热传导方程

3、沥青路面温度场模型应用的是统计回归法。以镇漓试验路连续2a实测的气候数据和路面温度场数据为基础,建立了精度更高的路面温度场模型,尤其提高了较深处路面温度的预测效果。

1)测试方案

2)影响因素分析:采用分布回归法分析不同环境因素对路面温度影响的显著程度。本文温度沿深度的衰减因子采用乘幂函数

采用分段函数建立了温度场模型,预测值与实测温度数据相关系数R2达到0.92,能预测0~38cm任何深度的路面温度,改善了以往模型在较深处预测精度差的问题;( 2) 气温太阳辐射等环境因素对路面温度影响有明显的延后性,层位越深则延后时间越长,就此提出了不同路面层位气温和太阳辐射影响的延后时长;( 3) 路面温度受气温太阳辐射的影响而产生波动,波动的幅度随深度增加而衰减,采用乘幂函数H-i作为温度衰减因子,表征不同深度路面温度波动幅度的差异更为合适。

3、GA和BP 网络模型的建立:基于GA (遗传算法)结合BP网络的智能算法建立了钢坯表

面温度模型, 并且提出了利用BP 算法进行在线补偿的机制, 使模型预报精度进一步提高。

本文在BP 网络的基础上把输出端信号通过延时环节反馈到输入端, 从而形成动态BP 网络。

利用G A 进行BP 网络的权阈值优化, 即上述4 个矩阵w , v , 的优化。转换成方便G A 操作的染色体串。在遗传算法的进化过程中, 对染色体的评价由适应度函数完成, 将适应度函数的函数值作为选择运算的依据。遗传算法的搜索目标是所有进化代中使误差平方和最小的网络权重, 而遗传算法只能朝着使适应度函数值增大的方向进化。GA遗传算法:遗传算法主要通过选择、交叉和变异来实现,其本质是一种求解问题的高效并行全局搜索方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法是一个迭代的过程,在每次迭代过程中都保留一组候选解,按解的好坏进行排序,按照约束条件从中选取一组解,利用遗传算法中的三个算子对其进行计算,产生新一代的候选解,重复此过程直到满足某种收敛条件为止。

遗传算法求解步骤(1)选择问题解的一个编码,给出一个有N个染色体的初始群体pop(1),t=1。(2)对群体中的每一个染色体,计算它的适应函数值f()。(3)若停止规则满足,则算法停止,否则计算概率=,并以此概率分布,从pop(t)中随机选取N个染色体构成一个新的种群newpop(t)。(4) 通过交叉(交叉概率为),得到N个染色体的crosspop(t+1)。(5) 以较小的变异概率,使得某染色体的一个基因发生变异,形成新的群体mutpop(t+1)。令t=t+1,pop(t)=mutpop(t),重复第(2)步。流程如图一所示。

BP神经网络:

BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

6、自适应神经模糊法:自适应神经模糊推理系统(ANFIS)

在对P EM FC 非线性较强的系统进行辨识时, 利用模糊隶属度函数及模糊规则通过对P E M FC 在最佳稳定工作状况下不同时刻的工作温度值学习,与神经网络结合形成自适应模糊推理系统, 再结合神经网络的反向传播学习算法, 提高整个系统的辨识精度。如图4 所示A N FIS 结构基于S ug eno 模型的模糊神经网络的实现算法。

典型的A NF IS 结构分为5 层, 依次为: 隶属度函数节点、归一化节点、模糊规则输出节点、模糊系统输出节点;

7、阶跃响应建模法提供了过程数学模型建立的一种解决方案。

阶跃响应建模法的基本思想是首先通过实验获得被控变量在控制量一定的阶跃激励下的阶跃响应曲线, 然后用表达形式已定而参数未定的低阶模型去逼近该阶跃响应曲线, 借助于图解的方法, 简单有效地确定各种模型的参数。常用的低阶逼近模型有: 二参数模型、三参数模型、四参数模型。对于一个自衡过程, 可以分别用上述三种不同模型来建立被控对象的数学模型[ 1 ]。

控制采用多模态控制策略

8、陀螺仪温度建模研究:本文介绍了一种陀螺仪温度试验系统,并应用此系统对某型陀螺进行了测试。在大量试验数据的基础上,分别使用一元线性回归算法和小波网络对陀螺进行静态温度建模研究。建模结果表明,线性回归法算法简单,易于应用到实际工程中;而小波网络辨识可以任意逼近陀螺仪温度模型的非线性特性,得到更好的辨识精度。

线性回归算法建模研究:

1)部温度求取,并拟合计算,

陀螺热敏电阻阻值与实际代表的温度呈非线性关系,工程上是以离散数据的形式给出的。所以要进行温度建模,需要考虑热敏电阻到实际温度的拟合计算。

3)系数建模

考虑到工程实用性,用一元线性回归算法进行参数辨识,建立陀螺刻度系数与漂移系数的静态温度模型如下:

由上可知,用回归法建模,总的拟合误差由两部分组成,即由热敏电阻到陀螺温度的拟合误差及由温度到陀螺刻度系数和漂移系数的拟合误差。

小波网络建模:

小波网络是在小波分解基础上提出的一种单隐层前向神经网络,结构类似于径向基网络,隐层节点的激发函数以小波函数基来替代,输入层到隐层的权值和阈值分别对应小波的伸缩和平移参数。小波网络的权值学习算法也较常规神经网络简单,并且误差函数对于权值是线性的,其学习不存在局部极小点,收敛速度较快。在函数逼近方面,小波网络不但与其它前向神经网络一样具有任意逼近非线性函数的能力,而且具有最佳逼近和全局逼近的能力。小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛

性等优点。

小波神经网络模型

主要应用于非线性逼近,信号表示,错误诊断,以及动态建模等。

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

高中数学-函数模型及其应用夯基提能作业

2.9 函数模型及其应用 A组基础题组 1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( ) 答案 C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通 堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C. 2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,正确的是( ) 答案 A 依题意,前3年年产量的增长速度越来越快,说明总产量C的增长速度越来越快,只有选项A中的图象符合要求,故选A.

3.(2018临沂模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9√3平方米,且高度不低于√3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的范 围为( ) A.[2,4] B.[3,4] C.[2,5] D.[3,5] 答案 B 根据题意知,9√3=1 2(AD+BC)h,其中AD=BC+2·x 2=BC+x,h=√3 2x,所以 9√3=1 2(2BC+x)·√3 2x,得BC=18x -x 2,由,得2≤x<6,所以y=BC+2x=,+ 3x 2 (2≤x<6),由18x + 3x 2 ≤10.5, 解得3≤x ≤4.因为[3,4]?[2,6),所以腰长x 的范围是[3,4]. 4.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p=at 2 +bt+c(a,b,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 答案 B 由已知得,解得, ∴p=-0.,t , +1.5,-2=-,+13 16 , ∴当t=15 4=3.75时p 最大, 即最佳加工时间为3.75分钟.故选B. 5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份( ) A.甲食堂的营业额较高

浅谈数学模型在各个领域中的应用

浅谈数学模型在各个领域中的应用 发表时间:2018-05-02T11:10:12.163Z 来源:《科技中国》2017年11期作者:丁文[导读] 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 关键词:数学模型;数学建模;应用引言 数学是一种研究空间形式和数量关系的科学,它学科历史悠久,文化底蕴博大精深,如今发展迅速,在生产生活中发挥着重要的作用。然而,当今社会对数学的需求不只局限在数学理论,而更多是要求数学在实际应用中的作用,数学模型正是将理论知识与实践应用联系起来的桥梁。数学模型是通过运用数学理论和适当的数学工具、将复杂的实际问题不断简化的解题工具。数学建模的主要手段便是通过数学模型这一工具来快速解决实际问题。如今数学模型被应用于医学、生物、经济、金融等各个领域,取得了较好的经济效益和社会效益。 1.数学模型简介 1.1数学模型的定义 数学模型(Mathematical Model)是一种以解决实际问题为目的,运用数学语言和数学方法刻画出的数学结构。它利用数学的理论和方法分析和研究实际问题,并对实际的研究对象进行抽象、简化,进而利用数学知识解决现实生活中的问题。从另一种意义上来讲,它是一种将理论与实践紧密结合、并借此来解决各种复杂问题的最便捷的工具,对社会各个领域的发展都有重要意义。图1为数学建模流程图。 图1 数学建模流程 1.2模型分类 由于数学应用广泛,各领域对数学模型的要求各不相同,可根据不同的分类方法将数学模型分作许多种类。根据系统各量是否随时间的变化而变化可分为静态模型和动态模型,前者一般用代数方程式表达,后者则采用微分方程。分布参数模型和集中参数模型均用来描述动态特性,前者主要用偏微分方程表达,后者通过常微分方程来表达。上述各类用微分方程描述的模型都是连续时间模型,即模型中的时间变量是在一定区间内连续变化,与之相对的是离散时间模型,这是一种用差分方程描述的将时间变量离散化的数学模型。此外,还有根据变量间的关系是否确定区分的随机性模型和确定性模型;根据是否含有参数区分的参数模型和非参数模型;根据变量间的关系是否满足线性关系,是否满足叠加原理区分的线性模型和非线性模型,其中非线性模型中各量之间的关系不是线性的,不满足叠加原理,在某种情况下可转化为线性模型。 1.3数学建模 将实际问题进行抽象、简化,得到数学模型,然后对模型进行求解,再对模型的合理性进行分析、检验,最后将合理的模型应用到实际问题中,这便是数学建模。建立数学模型的过程,大体分为分析问题构建模型、运用数学方法数学工具求解、根据实际问题代入检验、应用于解决实际问题四个步骤,其中由于种种原因前三个步骤常常多次重复已求得最优解决方案。如今数学建模的应用很广,无论是在医学、军事、交通、经济、金融等较大课题,还是在日常计划、工作规划等较小事物中,都取得了较大的成就。 2.数学模型在各领域的应用 2.1数学模型在医学领域的应用

matlab绘制温度场

通过在室内的某些位置布置适当的节点,采集回来室内的温湿度以及空气质量等实际参数。首先对室内空间建模,用一个无限细化的三维矩阵来模拟出室内的温度分布情况,针对采集回来的数据,采用插值法和适当次数的拟合函数的拟合,得出三维矩阵的实际值的分布,最后结合matlab软件绘制出计算出的温度场的三维图像。 一.数据的采集与处理 因为影响人的舒适感的温度层只是室内的某一高度范围内的温度,而温度传感器虽然是布置在一个平面内,但是采用插值法和拟合函数法是可以大致再现出影响人的舒适感的温度层的温度变化的。同时,在构建出的三维模型中,用第三维表示传感器层面的温度。 在传感器层面,传感器分布矩阵如下: X=【7.5 36.5 65.5】(模型内单位为cm) Y=【5.5 32.5 59.5】 Z=【z1 z2 z3; z4 z5 z6; z7 z8 z9;】(传感器采集到的实时参数) 采用meshgrid(xi,yi,zi,…)产生网格矩阵; 首先按照人的最小温度分辨值,将室内的分布矩阵按照同样的比例细化,均分,使取值点在坐标一定程度上也是接近于连续变化的,从而才能最大程度上使处理数据得来的分布值按最小分辨值连续变化! 根据人体散热量计算公式:C=hc(tb-Ta) 其中hc为对流交换系数; 结合Gagge教授提出的TSENS热感觉指标可以计算出不同环境下人的对环境温度变化时人体温度感知分辨率,作为插值法的一个参考量,能使绘制出的温度场更加的符合人体的温度变化模式。 例如按照10cm的均差产生网格矩阵(实际上人对温度的分辨率是远远10cm大于这个值的,但是那样产生的网格矩阵也是异常庞大的,例如以0.5cm为例,那么就可以获得116*108=12528个元素,为方便说明现已10cm为例): [xi yi]=meshgrid(7.5:10:65.5,5.5:10:59.5) xi = 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000

1附录:平板在对称热流作用下非稳态导热温度分布计算z

附录 平板在对称热流作用下非稳态导热温度分布计算 问题的数学模型: 22x t a t ??=??τ δδ≤≤-x 0>τ 定解条件: λδw x q x t -=??±= (第二边界 恒热流) 00=??=x x t (对称性条件) i t x t ==0),(ττ (初始温度) 解:由于大平板所受的外加热流恒定且对称,取[0,δ]的部分进行计算。 把边界条件齐次化 ,把关于t 的方程变为u 与w 方程的叠加。 记),(),(),(τττx w x u x t += 代入方程: 2''222022022()(,)(,)(,) 00(,0)(,0) 0(,),2,02(,)2x x i x w x w w w w u u a aw x x t x u x w x u u a x u x u x u x t w x w w a x w x q w x q aq w x bx cx d e b e ab c q aq w x x d δδττττττλ ττδλδλ ττδλδλ==±==±??=+??=+??=???=??=?=-??=???=??=-?=+++?=- ==-==--+

22202(,0)200(,0)2w i x x w i q u x t x d u u a x u x u x q u x t x d δδλτδλ ==±=+ -??=???=??=?=+- u 的方程通过分离变量法获得,也可根据齐次边界条件——u 关于x 的一阶导数为0,将u 展开为余弦级数。 答案: }cos )exp()1(263{),(2122222x a x a q x t n n n n n w βτββδδδτλδτ--+--=∑∞- 式中: 2 2 ??? ??=δπβn n o n F n n a a 2222)()(ππδττβ== 最后的常数d 通过总加热量和试样内能的增量平衡式来确定。

浅谈数学模型在实际生活中的应用

万方数据

浅谈数学模型在实际生活中的应用 作者:蔡桂荣 作者单位:湖北黄冈职业技术学院 刊名: 黑河教育 英文刊名:HEIHE EDUCATION 年,卷(期):2010,""(8) 被引用次数:0次 参考文献(2条) 1.问题解决的数学模型方法 1999 2.数学建模基础 2004 相似文献(10条) 1.期刊论文陈登连整体建构学生活数学自主探究过数学生活——浅谈小学数学课堂教学的有效性-科技信息2009,""(34) 课堂教学的有效性直接影响学生知识的建构和数学素养的养成.新课程下提高数学教学的有效性,关键在于教师要树立以学生发展为中心的教学理念,尊重学生的主体地位,科学地解读教材与学生,充分考虑学生的已有知识经验,不断沟通生活数学与教材数学的联系,努力为学生营造一个适合探索的氛围,满足学生的求知心理需求;沟通数学与生活的联系,让书本的数学成为生活的数学,让凝固的数学成为活动的数学,让理论的数学成为实践的数学.通过有效的课堂,让学生快乐地学"生活数学",愉快地过"数学生活". 2.期刊论文梁慧也谈数学与生活-教师2010,""(19) 数学来源于生活,生活中又充满着数学.学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际.所以教师在课堂教学中要善于发现和挖掘生活中的数学素材,把数学和学生的现实生活结合起来,从学生的实际生活中引出数学知识,让学生深刻感受到自己的生活中处处都有教学问题,自己的生活实际本身就是和数学知识融为一体的,这样学生学起来也会感到自然亲切和真实.因此,在数学教学中教师应重视学生的生活体验,把学生的生活体验和我们的数学知识相联系,把生活情境和数学问题相结合,让我们的教学生活化,让我们的生活数学化. 3.期刊论文程继德.许洪洪回归数学本质,把"生活数学"提升到"学校数学"-教育实践与研究2007,""(3) 数学教学"生活化"是新课程改革极为重视和倡导的内容,但由于一些教师对数学教学"生活化"的片面理解,错误地将"生活数学"等同于"学校数学",出现了片面追求数学教学生活化的倾向.对此我们认为要正确看待"生活数学",认识"生活数学"的必要性和局限性,以及"生活数学"与"学校数学"的不同点.要克服"生活数学"的局限性,数学教学必须回归数学本质,把"生活数学"提升到"学校数学",从具体的生活情景中抽象概括出一般的数学知识;从现实的生活问题中归纳建立适用的数学模型;从普通的生活现象中发展学生的数学思考. 4.期刊论文沙宪柱在生活中学习数学,在数学中感受生活-青年与社会·中外教育研究2009,""(12) 为使学生感受数学与现实生活的联系,教学时必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习和理解数学,体会到数学就在我们身边,感受到数学的趣味和作用,体验到数学的魅力. 5.期刊论文郑吉洁生活中的数学,数学中的生活——记课例:数学归纳法及其应用(第一课时)-科教导刊2010,""(21) 新课程强调数学课堂教学应为学生提供丰富的学习材料,拓展学生的数学活动空间,让学生感受数学来源于生活,发展学生"做数学""用数学"的意识,认识到课本不是课程的唯一资源;课本不是学生的世界,而世界才是学生的课本.只有教师跳出数学看数学,学生才能透过数学看世界. 6.期刊论文陈雪燕引生活之源活数学之水——谈小学"生活数学"的构建-现代中小学教育2009,""(8) 数学来源于生活,而又应用于生活,因此在教学中应奉行"生活数学"的教学理念.构建生活数学需采用一定的策略:运用"生活语言",感受数学的趣味性;捕捉"生活现象",认识数学的普遍性;模拟"生活情景",感悟数学的生动性;开展"生活实践",体验数学的实践性;拓展"生活时空",体会数学的应用性. 7.期刊论文张维数学来源于生活、生活中处处有数学-中国科教创新导刊2007,""(2) 数学来源于生活,又应用于生活.教学与生活是一个相辅相成、和谐兼容的有机整体.生活的世界就是教学的世界.那么,如何让小学生在数学生活中体验生括、在感受生活中学会数学呢?下面就此谈谈自己的几点粗浅的认识. 8.期刊论文胡支祥数学源于生活用于生活-剑南文学2010,""(5) 数学源于实际生活,植根于生活,教育只有通过生活才能产生作用并真正成为教育.学生用数学可以解决生活中的实际问题,增强其学习数学的主动性. 9.期刊论文任浙斌生活与数学走得更近一些-湖南中学物理·教育前沿2009,""(4) 数学是对客观世界数量关系和空间关系的一种抽象.可以说生活中处处有数学.<课程标准>中指出:"数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……."数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活数学走进学生视野,进入数学课堂,使数学教材变的具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识. 10.期刊论文杨潮突出"生活数学",营造教学之美-考试周刊2010,""(22) 数学来源于生活,而又应用于生活.教师应让数学走出书本、走出教室,融进生活、融进活动,把生活问题带进数学课堂,紧密联系学生的生活实际讲数学,把生活经验数学化,把数学问题生活化,让学生在感知、认知的气氛中想学、乐学、会学,使学生感受到生活的世界是一个充满数学的世界,把看似枯燥的数学教得生动、有趣、易于理解,营造数学课堂教学之美,真正调动学生学习数学的积极性,培养他们的自主探索能力. 本文链接:https://www.wendangku.net/doc/c918654179.html,/Periodical_hhjy201008056.aspx

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

目前应用的温度场的数学模型综述

目前应用的温度场的数学模型: 1、冶金过程温度场建模,采用瞬态温度场有限单元法。通过曲线拟合方法, 获得了温度与 各物性间的关系, 建立了变物性熔渣冷却温度场数学模型, 分析了各种工艺参数对富硼渣温度场分布的影响。 有限元法的应用范例: 1)动态分析:计算结构的固有属性,以及动态载荷下的结构的各种响应和动应力,动 应变等; 2)热分析:计算在热环境下,结构或区域内部的温度分布和热流,以及由热引起的热应 力和热变形; 3)其他 离散: 数学上,有限元法的基本思想是通过离散化的手段把微分方程或者变分方程变成袋鼠方程进行求解。 。。适合处理形状复杂的结构 。。复杂的边界条件 2、高炉炉衬砌体结构温度场的数学模型:根据几何对称性,基于三维结构图,数学模型主 体为描述控制体内三维变物性稳态热传导方程 3、沥青路面温度场模型应用的是统计回归法。以镇漓试验路连续2a实测的气候数据和路面温度场数据为基础,建立了精度更高的路面温度场模型,尤其提高了较深处路面温度的预测效果。 1)测试方案 2)影响因素分析:采用分布回归法分析不同环境因素对路面温度影响的显著程度。本文温度沿深度的衰减因子采用乘幂函数

采用分段函数建立了温度场模型,预测值与实测温度数据相关系数R2达到0.92,能预测0~38cm任何深度的路面温度,改善了以往模型在较深处预测精度差的问题;( 2) 气温太阳辐射等环境因素对路面温度影响有明显的延后性,层位越深则延后时间越长,就此提出了不同路面层位气温和太阳辐射影响的延后时长;( 3) 路面温度受气温太阳辐射的影响而产生波动,波动的幅度随深度增加而衰减,采用乘幂函数H-i作为温度衰减因子,表征不同深度路面温度波动幅度的差异更为合适。 3、GA和BP 网络模型的建立:基于GA (遗传算法)结合BP网络的智能算法建立了钢坯表 面温度模型, 并且提出了利用BP 算法进行在线补偿的机制, 使模型预报精度进一步提高。 本文在BP 网络的基础上把输出端信号通过延时环节反馈到输入端, 从而形成动态BP 网络。

数学模型在现实生活中的应用

数学模型在现实生活中的应用 ——如何乘车最省时 清远市第一中学 2006届高一(12)班 课题组成员: 组长:禤文考 组员:朱沛华、曾志伟、姚天发、李峰、李雪峰 指导老师:郭智君 问题的提出: 我们小组6人要到距学校km 10的某地进行实地考察。我们只有一辆自行车作为交通工具(自行车只能一个人骑再乘搭一个人),且自行车的速度为h km /14,步行的速度为h km /4,每人都从学校出发到全部到达目的地,我们最快要多长时间呢? 课题目的: 通过建立数学模型的方法来解决问题的实践,使我们对数学模型这种重要的数学方法有一个更深刻的理性认识。 课题研究方法: 查阅有关资料,了解数学建模的方法、步骤。 课题研究过程: 方案一:一起步行到达目的地。 若我们一起步行到达目的地,则我们所需要的时间为 h h km km 5.2/410=。 方案二:用自行车轮流把每个人从学校送到目的地。 只有一辆自行车,且只能乘搭一人,一人骑车把其余五人每人逐个从学校送到目的地,自行车在送前四个人到达目的地后都要返回,送最后一个人不用返回,那么自行车行驶的路程是km 90101042=+??,所以从第一个人出发到全部到达目的地的时间是h h km km 4.6/1490≈ 方案三:边步行边用自行车来回地接送(每次都送到目的地),直到全部到达目的地(没有同时到达)。 出发时一人骑自行车并乘搭一人,剩余四人步行前往目的地,乘自行车的到达目的地时所用时间是 h h km km 75/1410=,这段时间这四人步行了km h h km 7 2075/4=?,自行车返回直到与这四人相遇时所用时间是h h km h km km km 6325/14/472010=+-,这段时间这四人步行了

数学模型在生物学中的应用

数学模型在生物学中的应用 摘要 数学模型是研究生命发展规律,发现和分析生命现状的工具。建立可靠的本文从生物数学的发展、分支了解生物数学的历史,紧接着又在数学模型在生物数学的地位中了解数学模型的地位,最后在数学模型的应用中知道了微分方程模型、差分方程模型以及稳定性模型.这将有助于在生物数学的研究中,依据数学模型的基础,建立符合规律的数学模型,在生命进程中验证新的规律、新的发现,使在研究生物学时更清晰、更明了. 关键词:数学模型;生物学;应用 Application of mathematical model in Biology Abstract: Mathematical models in biology such as a microscope can be found in biological mysteries, biological research through with the establishment of the mathematical rules of the law of development of life, which launched a new discovery, new rules and in biology established reliable model of the biological status of classified analysis and forecasting.The from the history of mathematical biology development, the branch of the understanding of mathematical biology, followed by another in the mathematical model in Mathematical Biology status in understanding the status of mathematical model. Finally, in the application of mathematical model know differential equation model, the differential equation model and the stability of the model.This will help in mathematical biology research, on the basis of the mathematical model, established in accordance with the law of the mathematical model, in the process of life to verify new rules, new found in biological research clearer, more clear. Keywords: mathematical mode;biology;application 目录 1 引言…………………………………………………………………………………… 2 文献综述……………………………………………………………………………… 2.1 国内外研究现

可变式导热管的工作机理分析和数学模型 (1)

226 中国原子能科学研究院年报 2006 6)将9个燃料元件等效为一个大圆管,以9个元件的圆心连线作为大园管的平均直径,在圆管的内、外壁之间为燃料部分,圆管的内、外壁为不锈钢材料,中间为二氧化铀,用带内热源的热传导方程来描述,中心元件仍按照实际尺寸计算。这等于增加了中心燃料元件与外界的传热热阻,这样计算出的中心元件的壁温偏高。因此,这种等效方法是合理的,计算结果偏保守。 1.2 数学物理模型 1)容器外表面温度 根据能量守恒定律,对运输容器外表面进行分析,容器外表面有两种传热模式:(1)与外面空气的自然对流换热;(2)向外的辐射散热。综合两种换热模式,可以得到如下运输容器外表面总传热量Ta Q 为: 844Ta 00s a r s a () 5.6710[(273)(273)]Q h A t t A t t ε?=?+×+?+ (1) 公式右边第一项是容器外表面与环境空气的对流传热量,采用牛顿冷却公式;第二项是容器外表面与环境的辐射传热量,采用由斯蒂芬-玻耳兹曼定律导出的灰体间的辐射换热公式。总传热量由破损燃料衰变热和吸收太阳暴晒量组成。由上式可迭代计算出容器外表面的温度。 2)容器壁各层温度 容器壁各层之间只有热传导的传热模式。按照圆筒壁的温度计算公式,可得内壁的温度为: ()()in out l i out in πln t t q D D λ=+ (2) 3)容器内腔各部分温度 这次秦山燃料的计算中有10根燃料棒,在假设和简化模型中,将外面的9根燃料元件按体积等效为一个大圆环,大圆环的燃料包壳外表面与容器内腔表面、燃料包壳和燃料之间的计算模型为有限空间的自然对流传热和辐射换热模型,其基本公式如下: ()844l ef c win win c n c c win 2π()ln 5.6710[(273)(273)] q t t D D F t t λε?=?+×+?+ (3) c c πF D = (4) ()n c c win win 1111F F εεε=+????? (5) 4)内腔压力 在一定的压力温度范围内,可认为内腔中的气体近似为理想气体,满足理想气体状态方程,即: 111222 P V P V T = (6) 2 计算结果与分析 从分析结果可知:采用R-52型乏燃料运输容器运送1组秦山一期乏燃料能够保证其散热条件,燃料和运输容器的温度处在允许的温度范围内。 可变式导热管的工作机理分析和数学模型 郭春秋,赵守智 1 可变式导热管概述 可变式导热管是一种特殊的可以控制温度的高效率传热元件,其传热能力能够自动随热负荷

高中数学解题模型化及应用

高中数学解题模型化及应用 【摘要】在高中阶段,数学相对于其它学科来说是比较抽象、严密而泛味的,学生对数学的学习显得艰难而缺乏学习的兴趣。要激发学生对数学的学习兴趣,培养学以致用的意识和能力,关键还是激发他们对数学重要性和应用性的再认识。除了应将基本概念、定义、定理、方法讲清、讲透之外,在教学过程中适当地引入与课堂知识相关的简单“数学模型案例”,是行之有效的办法。本文主要研究在数学解题中的模型化方法、步骤,以及数学模型化在高中解题中的应用。 【关键词】高中数学解题模型化方法步骤应用 数学来源于实践,又高于实践,服务于实践。因此,我们学习数学的目的,就是为解决实际问题,不管是运用已有数学知识去解决实际问题,还是从社会实践去发现新的数学研究课题,去创造性地研究和发展数学科学,化实际问题为数学模型都起着极其重要的作用。 因此,本文主要研究在数学解中的模型化方法、步骤,以及数学模型化在高中解题中的应用。下面我们首先学习几个数学模型的有关概念: 1.数学模型 我们早在学习初等代数的时候就已经碰到过数学模型了,当然其中许多问题是老师为了教会学生知识而人为设置的。譬如你一定解过这样的所谓“航行问题”: 甲乙两地相距750km,船从甲到乙顺水航行需要30h,从乙到甲逆水航行需50h,问船速、水速各若干?用x 、y 分别代表船速和水速,可以列出方程(x+y)·30=750,(x-y)·50=750 实际上,这组方程就是上述航行问题的数学模型,列出方程,原问题已转化为纯粹的数学问题,方程的解x=20km/h,y=5km/h,最终给出了航行问题的答案。 一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学模型是联系客观世界与数学的桥梁。数学模型是用数学语言来模拟空间形式和数量关系的模型。广义地看,一切数学概念、公式、理论体系、算法系统都可称为数学模型,如:算术是计算盈亏的模型,几何是物体外形的模型等.狭义地看,只有反映特定问题的数学结构才称为数学模型,如 一次函数是匀速直线运动的模型,不定方程是鸡兔同笼问题的模型等[1] 。

浅谈数值分析在数学建模中模型求解的应用

浅谈数值分析在数学建模模型求解中的应用 姓名:孙亚丽 学号:2013G0602015 专业:计算机技术 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2.数值分析在模型求解中的应用 2.1.插值法和拟合法在模型求解中的应用 2.1.1.拟合法求解 在数学建模中,我们常常建立了模型,也测量了(或收集了)一些已知数据,但是模型中的某些参数是未知的,此时需要利用已知数据去确定有关参数,这个过程通常通过数据拟合来完成。最小二乘法是数据拟合的基本方法。其基本思想就是:寻找最适合的模型参数,使得由模型给出的计算数据与已知数据的整体误差最小。 假设已建立了数学模型),(c x f y =,其中,T m c c c c ),,,(21 =是模型参数。已有一组已知数据),(1,1y x ,),(22y x ,…,),(,k k y x ,用最小二乘确定参数c ,使 ∑=-=k i i i c x f y c e 12)),(()(最小。 函数),(c x f 称为数据),,2,1)(,(,k i y x i i =的最小二乘拟合函数。如果模型函数),(c x f y =具有足够的可微性,则可用微分方程法解出c 。最合适的c 应满足必要条件m j c c x f c x f y c c e k i j i i i j ,,2,1,0),()),((2)(1 ==??--=??∑=。 2.1.2.插值法求解 在实际问题中,我们经常会遇到求经验公式的问题,即不知道某函数)(x f y =的具体表达式,只能通过实验测量得到该函数在一些点的函数值,即已知一部分精确的函数值数据),(1,1y x ,),(22y x ,…,),(,k k y x 。要求一个函数 )(i i x y ?=,k i ,,1,0 =, (2) 这就是插值问题。函数)(i i x y ?=称为)(x f 的插值函数。),,1,0(k i x i =称为插值节点,式(2)称为插值条件[2]。多项式插值是最常用的插值方法,在工程计算中样条插值是非常重要的方法。 2.2.模型求解中的解线性方程组问题 在线性规划模型的求解过程中,常遇到线性方程组求解问题。线性方程组求解是科学计算中用的最多的,很多计算问题都归结为解线性方程组,利用计算机求解线性方程组的方法是直接法和迭代法。直接法基本思想是将线性方程组转化为便于求解的三角线性方程组,再求三角线性方程组,理论上直接在有限步内求

相关文档