文档库 最新最全的文档下载
当前位置:文档库 › 5、混沌时间序列的相空间重构研究_图文(精)

5、混沌时间序列的相空间重构研究_图文(精)

5、混沌时间序列的相空间重构研究_图文(精)
5、混沌时间序列的相空间重构研究_图文(精)

混沌时间序列的相空间重构研究

扬州市环境资源职业技术学院顾泽慧

[摘要]本文以T akens 的坐标延迟嵌入理论为基础, 研究了混沌时间序列的相空间重构问题, 并用互信息量法计算延迟, 假邻近法(FNN 和L iangyue Cao 方法的联合方法计算最小嵌入维数。最后通过L o renz 时间序列进行仿真实验, 实验结果证明了这种相空间重构方法的有效性。

[关键词]相空间重构互信息量法假邻近法L iangyue Cao

方法

98—科技信息高校理科研究

09—科技信息高校理科研究

19—科技信息高校理科研究

29—科技信息高校理科研究

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

时间序列相空间重构及其应用研究(精)

时间序列相空间重构及其应用研究 摘要时间序列的重构分析是从产生该序列的系统特性的角度提取该时间序列的特征量,在这种分析方法的应用过程中,关联积分和关联维的正确、快速计算是重要的第一步.本文对混沌时间序列相空间重构中最佳延迟时间间隔和嵌入维数的选取方法作了综述, 基于时间序列分析的方法,提出了一种神经网络时间序列预测及建模方法. 关键词时间序列 ,相空间重构,延迟时间间隔, 关联维,神经网络 1 引言 混沌是一种低阶确定性的非线性动力系统所表现出来的非常复杂的行为,它对现代科学具有广泛而深远的影响,几乎覆盖了一切学科领域,尤其是在物理学、天体力学、数学、生物学、经济学等方面得到了广泛的应用.在对混沌时间序列的各种分析中,如混沌预测(prediction of chaos)。动力学不变量(dynamical invariants)的估计。混沌信号的诊断(detection of chaos)等,所要进行的第一步工作是要对混沌信号进行相空间重构.1981年Takens提出了相空间重构的延时坐标法,奠定了相空间重构技术的基础,这种方法用单一的标量时间序列来重构相空间,包括吸引子、动态特性和相空间的拓扑结构.现已成为最主要、最基本的相空间重构方法[1]. 分形维是用来描述混沌信号的一个重要参数,目前主要流行是基于GP算法的关联维提取算法。 2 G.P算法的描述 自从人们发现延迟时间对重构相空间的重要之后,便开始了探索确定延迟时间的方法,并取了显著的成效,相空间重构理论认为,要保证相空间重构的正确性,所选用的延迟时间必须使重构相空间的各个分量保持相互独立,选择的延迟时间如果太大, 就混沌吸引子而言,由于蝴蝶效应的影响,时间序列的任意两个相邻延迟坐标点将毫不相关,不能反映整个系统的特性;而延迟时间选择过小的话,时间序列的任意两个相邻延迟坐标点又非常接近,不能相互独立,将会导致数据的冗余。.因此我们需要一种方法来选择恰当的 ,于是围绕这一条件便先后出现了用自相关函数和互信息来确定延迟时间的方法[3]。自相关函数能够提供信号自身与它的时延之间由冗余到不相关比较这种的度量,一般取自相关函数值首次出现零点时的时延为所要确定的时间延迟。现描述如下: 对于单变量时间序列x 1, x 2 , x 3 ,…, x n 取延迟时间为 ,则其自相关函数为: (9) 其中,n为时间序列点数, 为时间序列的平均值.延迟时间的选取原则是让时间序列内元素之间的相关性减弱,同时又要保证时间序列包含的原系统的信息不会丢失.研究表明,当关联函数C的值第一次为0(或近似为0)对应的延迟时间比较合适[4]. 4 关联维m的选取

应用时间序列分析第4章答案

河南大学: 姓名:汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

相空间重构参数选择方法的研究

1 前言 混沌时间序列分析与预测的基础是Takens,Packard等提出的状态空间的重构 理论[1,2] ,即把具有混沌特性的时间序列重建为一种低阶非线性动力学系统。通过相空间重构,可以找出混沌吸引子在隐藏区的演化规律,使现有的数据纳入某种叫描述的框架之下,从而为时间序列的研究提供了种崭新的方法和思路[3]。相空间重构 相空间重构参数选择方法的研究 谢忠玉1,2 张 立2 1.哈尔滨工程大学自动化学院 150001; 2.黑龙江工程学院电子工程系 150050 是非线性时间序列分析的重要步骤,重构的质量将直接影响到模型的建立和预测。而重构相空间或者说构造一个非线性时间序列的嵌入,需要选择两个重要参数——嵌入维数m和延迟时间τ。对于无限长、无噪声数据序列,延迟时间τ的选取理论上没有限制,而嵌入维数m可以选择充分的大。实际中,由于数据长度有限并可能带噪,τ和m的选择对相空间的重构质量就尤其重要。关于嵌入维数m和延迟时间τ的选取,现在主要有两种观点。一种观点认为两者是互不相关的,如求时延的自相关法、互信息法,求嵌入维的G-P算法、FNN(flase nearest neighbors) 法等。另一种观点认为两者是相关的,如时间窗口法、C-C法和嵌入维、时间延迟自动算法等[4] 。多数研究人员认为,第2种观点在工程实践中更为实用、合理。有关嵌入维和延迟时间联合算法的研究是混沌时间序列分析的热点之一。 本文在国内外学者工作的基础上,结合时间窗法[5]和互信息法[6],提出一种新的确定嵌入维数和时间延迟的联合算法。在 仿真试验中用本方法确定的嵌入参数计算 Lorenz系统的混沌不变量(关联维数D), 算例表明本文提出的方法是有效的。 2时间窗口法及互信息法 提出联合算法以时间窗口法及互信息法为基础计算嵌入维和延迟时间,时间窗口法及互信息法的基本原理和存在的问题如下: 2.1 时间窗口法 1996年Kugiumtzis提出延迟时间τ的选取不应该独立于嵌入维数m,而应该依赖延迟时间窗口 τw=(m-1)τ (1) 具体算法为:首先根据原时间序列的波动求出平均轨道周期τp,在保证嵌入维数m大于序列本身关联维D的前提下,均匀τw值后依据式(1)变换m和τ的值,使用关联维作为验证指标,逐渐改变 τw的大小来确定最优的时间窗长度。经过多次试验发现,在一定时间窗长度下,大 致为τw≥τp,只要m和τ的值满足式(1),最后求出的关联维就保持不变。时间窗口法的优势是:能够同时确定m和τ,但时间窗口在确定m和τ的值时经过大量的试验,因此计算量较大。2.2 互信息法互信息法是估计重构相空间延迟时间的一种有效方法,它在相空间重构中有着 广泛的应用。考虑两个离散信息系统{s1,s2,…sn}和{q1,q2,…qn}构成的系统S和Q。根据信息论的知识,从两个系统测量中所获得的平均信息量,即信息熵分别为:在给定S的情况下,我们得到的关于 系统Q的信息,称为S和Q的互信息,用下 式表示: 其中Psq(si,qj)为事件si和事件qj的联合

第四章教案++时间序列分析

第四章时间序列分析 (一)教学目的 通过本章的学习,掌握时间序列的概念、类型,学会各种动态分析指标的计算方法。 (二)基本要求 要求学会各种水平和速度指标的计算方法,并能对时间序列的长期趋势进行分析和预测。 (三)教学要点 1、时间序列的概念与种类; 2、动态分析指标的计算; 3、长期趋势、季节变动的测定。 (四)教学时数 7——10课时 (五)教学内容 本章共分四节: 第四章时间数列分析 本章前一部分利用时间数列,计算一系列分析指标,用以描述现象的数量表现。后一部分根据影响事物发展变化因素,采用科学的方法,将时间数列受各类因素(长期趋势、季节变动、循环变动和不规则变动)的影响状况分别测定出来,研究现象发展变化的原因及其规律性,为预测未来和决策提供依据。 第一节时间数列分析概述 一、时间数列的概念 时间数列:亦称为动态数列或时间序列(Time Series),就是把反映某一现象的同一指标在不同时间上的取值,按时间的先后顺序排列所形成的一个动态数列。 时间数列的构成要素: 1.现象所属的时间。时间可长可短,可以以日为时间单位,也可以以年为时间单位,甚至更长。 2.统计指标在一定时间条件下的数值。 二、时间数列的分类 时间数列的分类在时间数列分析中具有重要的意义。因为,在很多情况下,时间数列的种类不同,则时间数列的分析方法就不同。因此,为了能够保证对时间数列进行准确分析,则首先必须正确判断时间数列的类型。而要正确判断时间数列的类型,其关键又在于对有关统计指标的分类进行准确理解。 由于时间数列是由统计指标和时间两个要素所构成,因此时间数列的分类实际上和统计指标的分类是一致的。 时间数列分为:总量指标时间数列、相对指标时间数列和平均指标时间数列。 (一)总量指标时间数列 总量指标时间数列:又称为绝对数时间数列,是指由一系列同类的总量指标数值所构成的时间数列。它反映事物在不同时间上的规模、水平等总量特征。总量指标时间数列又分为时期数列和时点数列。 1.时期数列:是指由反映某种社会经济现象在一段时期内发展过程累计量的总量指标所构成的总量指标时间数列。

第六章 时间序列分析 补充作业 参考答案

第六章 时间序列分析 补充作业 参考答案 1、解: (1)、各季平均每月总产值 一季度平均每月总产值:)(34003 3600 340032001 210万元=++= ++++= n a a a a a n 二季度平均每月总产值:)(38503 3900385038001 210万元=++=++++= n a a a a a n 三季度平均每月总产值:)(42003 4400420040001 210万元=++=++++= n a a a a a n 四季度平均每月总产值:)(33.463334800460045001 210万元=++=++++= n a a a a a n (2)、全年平均每月总产值: )(83.40204 33 .46334200385034001210万元=+++=++++= n a a a a a n 或: )(83.402012 4800 46004500440042004000390038503800360034003200万元=+++++++++++= a 2、解: 2006年平均存款余额: ) (21.9612 5.115435313 2102 10052100903290971297952221 1221110万元==+++?++?++?++?+=+++++=∑=-n i i n n n f f a a f a a f a a a 3、解: 年份 2001 2002 2003 2004 2005 2006 0a 1a 2a 3a 4a 5a 发展水平(万元) 500 550 625 775 968.75 1023 逐期增长量(万元) —— 50 75 150 193.75 54.25 累计增长量(万元) —— 50 125 275 468.75 523 平均增长量(万元) —— 50 62.5 91.67 117.19 104.6 环比发展速度(%) —— 110 113.64 124 125 105.6 定基发展速度(%) 100 110 125 155 193.75 204.6 环比增长速度(%) —— 10 13.64 24 25 5.6 定基增长速度(%) 0 10 25 55 93.75 104.6 增长1%的绝对值(万元) —— 5 5.5 6.25 7.75 9.69

相空间重构python

from operator import sub import numpy as np from sklearn import metrics from sklearn.neighbors import NearestNeighbors from toolz import curry def global_false_nearest_neighbors(x, lag, min_dims=1, max_dims=10, **cutoffs): """ Across a range of embedding dimensions $d$, embeds $x(t)$ with lag $\tau$, finds all nearest neighbors, and computes the percentage of neighbors that that remain neighbors when an additional dimension is unfolded. See [1] for more information. Parameters ---------- x : array-like Original signal $x(t). lag : int Time lag $\tau$ in units of the sampling time $h$ of $x(t)$. min_dims : int, optional The smallest embedding dimension $d$ to test. max_dims : int, optional The largest embedding dimension $d$ to test. relative_distance_cutoff : float, optional The cutoff for determining neighborliness, in distance increase relative to the original distance between neighboring points. The default, 15, is suggested in [1] (p. 41). relative_radius_cutoff : float, optional The cutoff for determining neighborliness, in distance increase relative to the radius of the attractor. The default, 2, is suggested in [1] (p. 42). Returns ------- dims : ndarray The tested dimensions $d$. gfnn : ndarray The percentage of nearest neighbors that are false neighbors at each dimension. See Also -------- reconstruct References ----------

第六章时间序列分析题库1-0-8

第六章时间序列分析 题库1-0-8

问题: [单选]下列数列中属于时间数列的是() A.学生按学习成绩分组形成的数列 B.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 C.工业企业按产值高低形成的数列 D.降水量按时间先后顺序排列形成的数列

问题: [单选]评比城市间的社会发展状况,将各城市每人分摊的绿化面积按年排列的时间数列是属于。 A.时期数列 B.时点数列 C.相对指标时间数列 D.平均指标时间数列 相对指标时间数列是指将同一相对指标的数值按其发生的时间先后顺序排列而成的数列。题中,平均每人分摊绿化面积是一个强度相对指标,将其按年排列的时间数列属于相对指标时间数列。

问题: [单选]已知某商业集团2008-2009年各季度销售资料,如表5-1所示。 表5-1 则表5-1中,属于时期数列的有。 A.A.1、2、3 B.1、3、4 C.2、4 D.1、3 1、3的每个数值反映的是现象在一段时期内发展过程的绝对数之和,故属于时期指标数列;2的每个数值反映的是现象在某一时间上所达到的绝对水平,故属于时点指标数列;4是把同一相对指标在不同时间上的数值按时间先后顺序排列而形成的数列,故属于相对指标数列。 (天津11选5 https://www.wendangku.net/doc/ca18627436.html,)

问题: [单选]下列对时点数列特征的描述,错误的一项是。 A.时点数列中的指标数值可以相加 B.时点数列中指标数值的大小与计算时间间隔长短无关 C.时点数列中各指标数值的取得,是通过一次性调查登记而来的 D.时点数列属于总量指标时间数列 A项,时点数列中的指标数值不能相加,相加没有意义。

spss教程第四章时间序列分析

第四章时间序列分析 由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。 本章主要内容: 1. 时间序列的线图,自相关图和偏自关系图; 2. SPSS 软件的时间序列的分析方法季节变动分析。 §4.1 实验准备工作 §4.1.1 根据时间数据定义时间序列 对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。定义时间序列的具体操作方法是: 将数据按时间顺序排列,然后单击Date Define Dates打开Define Dates对话框,如图4.1所示。从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。 图4.1 产生时间序列对话框 §4.1.2 绘制时间序列线图和自相关图 一、线图 线图用来反映时间序列随时间的推移的变化趋势和变化规律。下面通过例题说明线图的制作。 例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。(参考文献[2]) 表4.1 某地背心汗衫零售量一览表单位:万件 1979 1980 1981 1982 1 23 30 18 22 2 3 3 37 20 32 3 69 59 92 102 4 91 120 139 155 5 192 311 324 372 6 348 334 343 324 7 254 270 271 290 8 122 122 193 153 9 95 70 62 77 10 34 33 27 17 11 19 23 17 37 12 27 16 13 46 解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。具体操作如下: 1. 在数据编辑窗口单击Graphs Line,打开Line Charts对话框如图4. 2.。从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。 图4.2 Line Charts对话框 2. 单击Define,打开对话框如图4.4所示。选择分析变量进入Line Represents,,在Category Labels 类别标签(横坐标)中选择Case number数据个数(或变量年 度 月 份

基于改进的C-C方法的相空间重构参数选择

基于改进的C-C 方法的相空间重构参数选择* 陆振波 蔡志明 姜可宇 (海军工程大学电子工程学院, 武汉430033) 摘 要:针对混沌时间序列相空间重构C-C 方法的三点不足,提出了一种基于改进的C-C 方法的确定最优时延与嵌入窗的新算法。在关联积分计算过程中引入了权衡计算精度与速度的可调参数,合理选择该参数,能在不严重损失估计精度的前提下,大大加快计算速度。在理论分析的基础上,用所提出的算法对三种混沌序列进行相空间重构,仿真结果表明该算法对最优时延的选择更准确,对最优嵌入窗的选取更可靠。 关键词:混沌,时间序列分析,相空间重构,关联积分 Determination of embedding parameters for phase space reconstruction based on improved C-C method Lu Zhen-bo Cai Zhi-ming Jiang Ke-yu (Electronic Engineering College, Navy Engineering University, WuHan 430033, China) Abstract : A new algorithm to determine delay time and embedding window was presented based on the improved C-C method modified the classical C-C method in three aspects. Considering precision and rapidity of computation, an optimal parameter was introduced into the computation of correlation integral. On the foundation of theory study, phase space reconstruction of three kinds of chaotic time series is carried out, and the result of simulations verify that the algorithm is more applicable for determining appropriate delay time and embedding window. Key Words : chaos, time series analysis, phase space reconstruction, correlation integral 1 引言 近年来,混沌时间序列分析方法在很多科研和工程领域中得到广泛应用。相空间重构是混沌时间序列分析的基础,Takens [1]等人提出了用延迟坐标法对混沌时间序列},,2,1|{N i x x i ???==进行相空间重构 },,2,1,],,,,[|{)1(M i x x x X X X T t m i t i i i i ???=???==?++ (1) 其中m 为嵌入维,t 为时延,t m N M )1(??=为相空间中的点数。 Takens 定理证明了如果嵌入维m ≥12+d ,d 为系统动力学维数,则重构的动力系统与原动力系统在拓扑意义上等价。Takens 定理 *国家重点实验基金(批准号:514450801JB1101)和 国家重点实验基金(批准号:51444030105JB1101)资助的课题 联系人:E-mail: luzhenbo@https://www.wendangku.net/doc/ca18627436.html,

混沌时间序列处理之第一步:相空间重构方法综述

第1章 相空间重构 第1章相空间重构 (1) 1.1 引言 (2) 1.2 延迟时间τ的确定 (3) 1.1.1自相关函数法 (4) 1.1.2平均位移法 (4) 1.1.3复自相关法 (5) 1.1.4互信息法 (6) 1.2嵌入维数m的确定 (7) 1.2.1几何不变量法 (7) 1.2.2虚假最近邻点法 (8) 1.2.2伪最近邻点的改进方法-Cao方法 (9) 1.3同时确定嵌入维和延迟时间 (10) 1.3.1时间窗长度 (10) 1.3.2 C-C方法 (10) 1.3.3 改进的C-C方法 (12) 1.3.4微分熵比方法 (14) 1.4非线性建模与相空间重构 (14) 1.5海杂波的相空间重构 (15) 1.6本章小结 (16) 1.7 后记 (16) 参考文献 (17)

1.1 引言 一般时间序列主要是在时间域或变换域中进行研究,而在混沌时间序列处理中,无 论是混沌不变量的计算、混沌模型的建立和预测都是在相空间中进行,因此相空间重构 是混沌时间序列处理中非常重要的第一步。 为了从时间序列中提取更多有用信息,1980年Packard 等人提出了用时间序列重构 相空间的两种方法:导数重构法和坐标延迟重构法[1]。从原理上讲,导数重构和坐标延 迟重构都可以用来进行相空间重构,但就实际应用而言,由于我们通常不知道混沌时间 序列的任何先验信息,而且从数值计算的角度看,数值微分是一个对误差很敏感的计算 问题,因此混沌时间序列的相空间重构普遍采用坐标延迟的相空间重构方法[2]。坐标延 迟法的本质是通过一维时间序列{()}x n 的不同时间延迟来构造m 维相空间矢量: {(),(),,((1))}x i x i x i m ττ=++?x(i) (1.1) 1981年Takens 等提出嵌入定理:对于无限长、无噪声的d 维混沌吸引子的标量时 间序列{()}x n ,总可以在拓扑不变的意义上找到一个m 维的嵌入相空间,只要维数 21m d ≥+[3]。Takens 定理保证了我们可以从一维混沌时间序列中重构一个与原动力系 统在拓扑意义下等价的相空间,混沌时间序列的判定、分析与预测是在这个重构的相空 间中进行的,因此相空间的重构是混沌时间序列研究的关键[2]。 1985年Grassberger 和Procaccia 基于坐标延迟法,提出了关联积分的概念和计算公 式,该方法适合从实际时间序列来计算混沌吸引子的维数,被称作G-P 算法[4]。G-P 算 法是混沌时间序列研究中的一个重要突破,从此对混沌时间序列的研究不仅仅局限于已 知的混沌系统,而且也扩展到实测混沌时间序列,从而为混沌时间序列的研究进入实际 应用开辟了一条道路[2]。 坐标延迟相空间重构技术有两个关键参数:即嵌入维m 和时间延迟τ的确定。在 Takens 定理中,对于理想的无限长和无噪声的一维时间序列,嵌入维m 和时间延迟τ可 以取任意值,但实际应用最后等时间序列都是含有噪声的有限长序列,嵌入维数和时间 延迟是不能任意取值,否则会严重影响重构的相空间质量。 有关时间延迟与嵌入维的选取方法,目前主要有两种观点。一种观点认为两者是互

第六章 时间序列分析

第六章时间序列分析 重点: 1、增长量分析、发展水平及增长量 2、增长率分析、发展速度及增长速度 3、时间数列影响因素、长期趋势分析方法 难点: 1、增长量与增长速度 2、长期趋势与季节变动分析 第一节时间序列的分析指标 知识点一:时间序列的含义 时间序列是指经济现象按时间顺序排列形成的序列。这种数据称为时间序列数据。 时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。 时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。表现了现象在时间上的动态变化,故又称为动态数列。 一个完整的时间数列包含两个基本要素: 一是被研究现象或指标所属的时间; 另一个是该现象或指标在此时间坐标下的指标值。 同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。 研究时间数列的意义:了解与预测。 [例题·单选题]下列数列中哪一个属于时间数列(). a.学生按学习成绩分组形成的数列 b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 c.工业企业按产值高低形成的数列 d.降水量按时间先后顺序排列形成的数列 答案:d 解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。 知识点二:增长量分析(水平分析)

一.发展水平 发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用y t (t=1,2,3,…,n) 。 在绝对数时间数列中,发展水平就是绝对数; 在相对数时间数列中,发展水平就是相对数或平均数。 几个概念:期初水平y 0,期末水平y t ,期间水平(y 1 ,y 2 ,….y n-1 ); 报告期水平(研究时期水平),基期水平(作为对比基础的水平)。 二.增长量 增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为: 增长量=报告期水平-基期水平 根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。 1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为: △ = y n - y n-1 (i=1,2,…,n) 2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为: △ = y n - y (i=1,2,…,n)(i=1,2,…,n) 二者关系:逐期增长量之和=累计增长量 3.平均增长量 平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。 一般用累计增长量除以增长的时期数目计算。 (y n - y )/n [例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。 a.逐期增长量 b.累计增长量 c.平均增长量 d.增长速度 答案:c 解析:平均每期增长的绝对数量是平均增长量。 知识点三:增长率分析(速度分析) 一.发展速度

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析 题目一: ()()()()()()()12312123121231 ?14111??2144451 . 1616T T T T T T T T T T T T T T T T T T T T T x x x x x x x x x x x x x x x x x x x x x -------------=+++?? =+++=++++++????=+++ 题目二: 因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子 ()()1 1111t t t t t t x x x x x x αααα-++=+-??? =+-?? 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-????,代入数据得:2 =5 α. 题目三: ()()()2122192221202019200 1 ?1210101113=11.251 ? 1010111311.2=11.04.5 ???10.40.6.i i i x x x x x x x x αα-==++++=++++===+-=?∑(1)(2) 根据程序计算可得:22?11.79277.x = ()222019181716161?2525x x x x x x =++++(3)可以推导出16,0.425a b ==,则4 25 b a -=-. 题目四: 因为,1,2,3, t x t t ==,根据指数平滑的关系式,我们可以得到以下公式: ()()()()()()() ()()()()()()()() 2 2 1 2 21 11121111 1111311. 2t t t t t t t x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, + +2+用(1)式减去(2)式得: ()()()()()2 21=11111. t t t t x t αααααααααααα------------- 所以我们可以得到下面的等式: ()()()()()()1 2 2111=11111=. t t t t t x t t αααααααα +---------- -------

时间序列分析第五章作业

时间序列分析第五章作业 班级:09数学与应用数学 学号: 姓名: 习题5.7 1、 根据数据,做出它的时序图及一阶差分后图形,再用ARIMA 模型模拟该序列的发展,得出 预测。根据输出的结果,我们知道此为白噪声,为非平稳序列,同时可以得出序列t x 模型 应该用随机游走模型(0,1,0)模型来模拟,模型为:,并可以预测到下一天 的收盘价为296.0898。 各代码: data example5_1; input x@@; difx=dif(x); t=_n_; cards ; 304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 ; proc gplot ; plot x*t difx*t; symbol v =star c =black i =join; proc arima data =example5_1; identify Var =x(1) nlag =8 minic p = (0:5) q = (0:5); estimate p =0 q =0 noint; forecast lead =1 id =t out =results; run ; proc gplot data =results; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay ; symbol1 c =black i =none v =star; symbol2 c =red i =join v =none; symbol3 c =green i =join v =none l =32; run ; 时序图:

应用时间序列分析第4章答案

大学: :汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

相关文档
相关文档 最新文档