文档库 最新最全的文档下载
当前位置:文档库 › SBR改性沥青混合料低温抗裂性能蠕变试验研究

SBR改性沥青混合料低温抗裂性能蠕变试验研究

SBR改性沥青混合料低温抗裂性能蠕变试验研究
SBR改性沥青混合料低温抗裂性能蠕变试验研究

SBR改性沥青混合料低温抗裂性能蠕变试验研究

焦兴华

(辽宁省交通工程质量与安全监督局,沈阳110005)

摘要:通过大量的试验研究证明,SBR改性沥青不仅在高温性能、感温性能及抗老化性能效果明显,其低温抗裂性能的改善效果尤为显著。弯曲蠕变速率指标能够有效地

判断沥青混合料的低温性能,方法简单、宜行。本文采用0℃、-10℃、-20℃三个温度

下弯曲蠕变指标对SBR改性沥青混合料的低温抗裂性能进行了评价,进而为沥青路面的

设计提供了数据基础

关键词:SBR改性沥青;弯曲蠕变;低温抗裂

沥青路面的低温开裂是寒冷地区道路工程面临的一个重要问题,世界上几乎所有的寒区公路都存在着这一问题,是世界公认的一大难题。处于与大气直接接触的沥青面层,应该具有优良的低温抗裂性能。沥青路面在低温或温度骤降情况下,由于沥青混合料内部产生的温度应力未能及时松弛的情况下便会产生温缩裂缝,并且裂缝会进一步发展,将会造成水分下渗,这样就加剧了基层的冻融循环,造成基层过早破坏,反过来又影响到面层,形成恶性循环,极大地影响着公路的运营效果。

现在国内外对于沥青混合料低温抗裂性能的试验研究方法主要有:等应变加荷载的破坏试验(间接拉伸试验、低温弯曲、压缩试验)、直接拉伸试验、弯曲拉伸蠕变试验、受限试件温度应力试验(TSRST)、三点弯曲J积分试验、C*积分试验、收缩系数试验、应力松弛试验等。弯曲蠕变试验仪具有结构简单、实用性强,大量沥青混合料对比试验表明,蠕变速率及蠕变柔量指标均与沥青的使用性能相吻合,现场取样验证结果也证明是可靠的。因此,用弯曲蠕变试验的弯曲蠕变速率作为评价指标来评价沥青混合料低温性能是适宜的。

本研究选用O℃、-10℃、-20℃对SBR改性沥青混合料和基质沥青混合料的低温性能进行弯曲蠕变试验,通过对试验数据的分析来达到评价沥青混合料的低温抗裂性能的目的。

1、试验材料

1.1沥青

辽河90#基质沥青掺入4%兰州石化公司生产的昆仑牌PSBR 1500-1型沥青改性剂制备SBR改性沥青。基质沥青和SBR改性沥青三大技术指标见下表1。

表1 两种沥青三大技术指标

指标针入度25℃软化点5℃延度辽河90#基质沥青76.5 43.8 0.2

SBR 改性沥青71 46.2 >150

1.2级配和沥青用量

本文采用AC-13型沥青混合料,为对比研究SBR 改性沥青混合料和基质沥青混合料的低温性能,两种沥青混合料的油石比和级配相同,两种沥青混合料油石比均为4.7%,级配见图1 。

图1 沥青混合料级配组成

2、试验方法

沥青混合料弯曲蠕变试验的目的就是对规定尺寸(250mm ×35mm ×30mm )的小梁试件在跨中施加恒定集中荷载,测定随时间不断增长的蠕变变形。本次试验过程及试件的制备严格按照《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)要求执行,蠕变仪器采用长沙亚星沥青混合料高低温弯曲蠕变试验仪(LRB-1型),该仪器能够实时记录试件的试验时间及位移,并能自动绘出时间-位移曲线,便于检验试验效果。

3、试验结果与分析

沥青混合料在高温下发生显著的蠕变现象,参见图2,它可分为瞬时蠕变(蠕变随时间的增大而减小)、稳态蠕变(应变速率几乎为一常数)和加速蠕变(应变速率随时间迅速增大)三个阶段[1]。

t

图2 沥青混合料蠕变曲线

根据试验采集数据可计算弯曲蠕变速率,沥青混合料蠕变速率计算公式: 21210

()

()/s t t εεεσ-=

- (1)

式中: 0σ—— 试件的蠕变弯拉应力,MPa ;

()t ε——试件梁底弯拉应变;

s ε—— 试件的弯曲蠕变速率,1/s/MPa ;

21,t t —— 分别为蠕变稳定期直线段起始点及终点的时间,s ;

21,εε—— 分别为对应于时间21,t t 时的蠕变应变。

蠕变速率是单位应力条件下,小梁试件在单位时间内应变的变化值。在同等的低温试验条件下,混合料的蠕变速率越大,说明混合料的变形能力越强,韧性越强,也就是抗低温开裂能力越好。

本文试验选用0℃、-10℃、-20℃温度下对基质沥青和SBR 改性沥青混合料进行弯曲蠕变试验,试验结果见表2

表2 沥青混合料在0、-10、-20℃条件下蠕变速率计算结果

试验温度(℃)

试件

蠕变速率()

1810/--??s MPa s ε

SBR 改性沥青混合料 29.5299 基质沥青混合料 25.2784 -10

SBR 改性沥青混合料 10.5073 基质沥青混合料

3.45681 -20

SBR 改性沥青混合料 4.20291 基质沥青混合料

2.27536

由此可见,两种沥青混合料的蠕变速率随温度的降低逐渐减小,这表明沥青混合料的低温变形能力随温度降低而逐渐下降,SBR 改性沥青混合料的蠕变速率在0℃、-10℃和-20℃的低温情况下都比基质沥青混合料的蠕变速率大,尤其是在-10℃时,SBR 改性沥青混合料的蠕变速率是基质沥青混合料蠕变速率的3倍,说明基质沥青经过SBR 改性剂改性后,其低温抗裂性明显得到改善。

对沥青混合料来说,在恒应力作用下,应变随时间和温度的变化而变化。蠕变柔量和蠕变劲度模量呈倒数关系,即0

1()

()()t J t S t εσ=

=

,()J t 为沥青混合料的蠕变柔量,()S t 为沥青混合料的蠕变劲度模量,()t ε、0σ的符号意义同前。由蠕变试验可得到在荷载作用时间t 和温度T 的条件下的沥青混合料的蠕变柔量,如表3所示

表3 通过蠕变试验得出数据如下

试验温度 混合料类型 时间(秒)

蠕变柔量()

MPa /1

1t

2t

3t

4t

)(1t J

)(2t J

)(3t J

)(4t J

0℃ SBR 990 1060 2230 2957 0.000879 0.000898 0.00116 0.00128 基质 1357 1723 3112 4183 0.000543 0.000628 0.000812 0.000972 -10℃ SBR 2762 4922 7707 11776 0.000536 0.000588 0.000650 0.000764 基质 3970 6008 11143 14239 0.000484 0.000565 0.000604 0.000633 -20℃

SBR 1386 3394 6183 11479 0.000216 0.000254 0.000273 0.000311 基质

1057

1534

5476

9492

0.000123

0.000135

0.000155

0.000174

从表中数据可以看出,在加载阶段,沥青混合料的蠕变柔量随时间的延长而逐渐增加。在相同的低温条件下SBR改性沥青混合料的蠕变柔量均大于基质沥青混合料的蠕变柔量,也就是SBR改性沥青混合料相对基质沥青混合料有较小的进度模量,这也表明SBR改性沥青混合料较基质沥青混合料有良好的低温性能。

4结论

(1)沥青混合料的蠕变速率和蠕变柔量随着温度的降低而减小。

(2)沥青混合料的蠕变柔量在给定温度条件下,随荷载作用时间的增加而增加。

(3)SBR改性沥青混合料的低温性能较基质沥青混合料的低温性能好。

参考文献

[1]郭大智任瑞波.层状粘弹性体系力学.哈尔滨工业大学出版社,2001,10

[2]申爱琴付菁.SBS、PE、SBR改性国炼沥青性能研究.内蒙古公路与运输,2000,3

[3]李琦.SBR改性沥青的试验研究与应用.湖南交通科技,1998,12

[4]王慧颖.沥青混合料低温性能断裂力学研究[学位论文].东北林业大学,2009,6

[5]沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2006,7

[6]12.Lee. Low Temperature Nature Modified Asphalt Binders and Asphalt Concrete

Mix. AAPT. 2004,11

[7]Chen JS, Huang LS. Field and Laboratory Evaluation of ASTM Specification for

Polymer Modified Asphalt Binders.TRB,2000

[8]刘涛郝培文.沥青混合料低温抗裂性能评价方法研究.同济大学学报,2002,12

[9]郝培文牛长友王强.丁苯橡胶改性沥青混合料路用性能的研究.石油炼制与化工,

1999,10

[10]张熙颖沥青混合料低温抗裂性能蠕变试验研究及粘弹性分析[学位论文].吉林大

学,2005,4

[11]郝培文刘红瑛.运用蠕变速率评价沥青混合料低温抗裂性能研究.石油沥青,1994,3

[12]周金枝.不同降温速率下沥青路面温度应力仿真分析.华中科技大学学报,2008,12

[13]李静.沥青混合料低温抗裂性能研究.公路交通科技,2005,4

Creep Experiment and Research on Low Temperature Crack

Resistance of SBR Modified Asphalt Mixture

Jiao Xing Hua

(Liaoning Province Communications Engineering Quality and Safety Supervision Bureau,

Shenyang 110005 )

Abstract:It has been proved through abundant experiments that SBR modified asphalt has

obvious effects on improvement of high temperature performance, temperature sensibility and ageing resistance, but its effect on improvement of low temperature crack resistance is the most significant. The low temperature performance of asphalt mixture can be effectively judged by the indices of bending creep rate, which is simple and practicable. In this paper, the low temperature crack resistance of SBR modified asphalt mixture is estimated by using the bending creep indices at the temperatures of 0℃, -10℃and -20℃so as to provide a data base for the design of asphalt pavement.

Key words: SBR modified asphalt, creep , low temperature crack resistance

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

沥青混合料低温开裂影响机理

摘要 本文研究的主要内容是:沥青混合料低温开裂机理,沥青混合料低温开裂影响因素,沥青橡胶碎石,玻璃纤维沥青碎石的高温抗压强度,低温劈裂强度,抗滑性能及其施工工艺,技术与经济比较等,探索新型的沥青路面结构组合。 通过在室内对沥青碎石,沥青橡胶碎石,玻璃纤维沥青碎石进行了马歇尔试验和低温抗裂强度试验,得到了各种试验数据,应用数理统计的方法进行试验,得到了各种试验数据,应用数理统计的方法进行试验数据的处理,通过对比分析,提出了三种沥青碎石的最佳配合比。在试验室和沥青混合料拌和场摸索了沥青橡胶碎石的摊铺工艺。 通过试验研究认为:玻璃纤维沥青碎石的技术性能不如沥青碎石好,但路用弹性性能较好,如能解决拌和工艺问题,调整纤维丝的品种,增大其直径,其路用性能仍值得探讨,沥青橡胶碎石结构层具有变形性能和抗裂性能良好,空隙率小,防水性能好,热稳定性较好,施工工艺简单的特点,因此,沥青橡胶碎石是二级及二级以下公路因疲劳而开裂的沥青路面的良好罩面材料,也是防止半刚性基层收缩裂缝反射的良好结构措施,在沥青类路面面层和半刚性基层之间夹铺沥青橡胶碎石薄层,虽然造价比夹铺土工布高,但其施工工艺,抗裂性能和防水性能均优于土工布,不仅可以大大减少半刚性基层材料的反射裂缝,延长路面使用寿命,而且可能适当减薄沥青混合料面层的厚度,虽然初期造价有所增加,从长远来看,具有十分重要的技术和经济意义。 该成果对公路沥青路面的养护和设计具有重要的实践指导作用,对于减少公路沥青路面的养护费用,延长路面使用寿命具有重要的经济和社会意义。 关键词: 沥青橡胶碎石抗裂性能玻璃纤维沥青碎石经济与技术分析

Abstract The main contents that are researched in the thesis are : asphalt mixture low temperature crazing principle , the influencing factor of asphalt mixtures low temperature crazing ,asphalt-rubber macadam , the pressure-resistance intensity , the crazing high temperature , the smooth-resistance and construction technology ,the technological economical compare and so on , exploring the new-type structural combinations of asphalt pavement . Through the Marshall experiment and the low temperature crazing-resistance intensity experiment , which work on the asphalt-rubber macadam , fiberglass asphalt macadam indoors ,we have got various kinds of experimental data , carrying out experiment by means of the method of mathematical statistics ,we have got various kinds of experimental data ,dealing with the experimental data by means of the method of mathematical statistics , through contrast and analyzing , we have put forward the best suitable rate of the three asphalt macadam ,in the laboratory asphalt macadam ,In the laboratory and the asphalt mixtures blending gathering plane , we have groped after paving technology of the asphalt-rubber macadam . Through the experimental research , we think :the technological capacity of fiberglass asphalt macadam if weaker than asphalt macadam ,however ,if use elasticized capacity to solve blending technological problem ,adjust the breed of fiber silk , extend its diameter , its paving capacity is still worth exploring , Asphalt-rubber macadam structure lager have good deformed-become capacity and crazed-resistance capacity , small gap rate .good water-resistance capacity ,good hot-stability and simple construction technology ,therefore ,pitch rubber spall is a good cover material which is suitable for the second class or lower whose asphalt pavement has split open because of fatigue ,and is the good structural measure of preventing half-rigidity grass-roots unit shrink-rift reflecting ,pave a thin layer of pitch rubber spall between asphalt -type pavement layer and half-rigidity basic level ,although the cost of building is higher than paving Togongbu in the middle , the construction technology, crazing-resistance and water-resistance are better than Togongbu , not only could reduce greatly the reflex of half-rigidity grass-roots unit material , long then the use lifespan of pavement , but also

【2017年整理】改性沥青混合料面层施工技术

改性沥青混合料面层施工技术本文简要介绍了改性沥青混合料和改性沥青SMA混合料(通称改性沥青混合料)面层的施工工艺,主要包括生产和运输、摊铺、碾压、接缝、开放交通等内容。 一、生产和运输 (一)生产 改性沥青混合料的生产除遵照普通沥青混合料生产要求外,尚应注意以下几点: 1.改性沥青混合料混合料生产温度应根据改性沥青品种、黏度、气候条件、铺装层的厚度确定,改性沥青混合料的正常生产温度根据实践经验并参照表1K41104 2选择。通常宜较普通沥青混合料的生产温度提高10~20℃。当采用表1K411042以外的聚合物或天然沥青改性沥青时,生产温度由试验确定。 改性沥青混合料的正常生产温度范围(℃) 表I

2.改性沥青混合料宜采用间歇式拌合设备生产,这种设备除尘系统完整,能达到环保要求;给料仓数量较多,能满足配合比设计配料要求;且具有添加纤维等外掺料的装置。 3.改性沥青混合料拌合时间根据具体情况经试拌确定,以沥青均匀包裹骨料为度。间歇式拌合机每盘的生产周期不宜少于45s(其中干拌时间不少于5~lOs)。改性沥青混合料的拌合时间应适当延长。 4.间歇式拌台机宜备有保温性能好的成品储料仓.贮存过程中混合料温降不得大于10℃,且具有沥青滴漏功能。改性沥青混合料的贮存时间不宜超过24h;改性沥青SMA 混合料只限当天使用;OGFC混合料宜随拌随用。 5.添加纤维的沥青混合料,纤维必须在混合料中充分分散,拌合均匀。拌合机应配备同步添加投料装置,松散的絮状纤维可在喷入沥青的同时或稍后采用风送装置喷入拌合锅,拌合时间宜延长5s以上。颗粒纤维可在粗骨料投入的同时自动加入,经5---lOs的干拌后,再投入矿粉。 6.使用改性沥青时应随时检查沥青泵、管道、计量器是否受堵,堵塞时应及时清洗。 (二)运输

浅谈SBR改性沥青混合料路面施工技术.

浅谈SBR改性沥青混合料路面施工技术 :近几年,随着SBR改性沥青在新疆的广泛使用,说明SBR改性沥青以它优异的性质,收到了良好的社会与经济效益。它的具体性质有:具有很好的耐高温性,低温抗拉裂性,抗车辙能力,提高了路面的抗滑能力,减如了沥青的老化。本文就中国——巴基斯坦公路第五合同段的施工经验,进行论述。 关键词:SBR改性沥青施工技术 一、工程概况 本标段起点为塔什库尔干县城镇道路起点桩号K1756 460,终点为达布达尔乡K1818 000均为三级公路平原徽丘标准,长61.54km.公路沿线为高平原区,地形较平缓,线路总体趋势为南北走向,海拔高度从3100m一3600m. 二、施工的前提条件 (一)路线导线点、水准点复核完毕。(二)下封层的各项检测指标均达到设计及规范求。(三)沥青面层原材料试验检测各项指标均符合设计及规范求。(四)施工前放样已完毕。(五)沥青料拌合站已调试完毕,建站位置已经监理工程师批准。沥青摊铺机、压路机、水车都已到现场,摊铺机已调试完毕。 三、施工工艺 备料:采用装载机推料、自卸车运输、配合石料破碎机破碎、震动筛砂机进行集中采筛,规格符合沥青面层粗细集料规范求,最大粒径不超过19.5mm一间歇式沥青混凝土拌和站厂拌,ZL50装载机进行上料一运输采用15吨双桥自卸车进行运输一摊铺采用陕西ABG423型摊铺机沿平衡梁进行摊铺一碾压采用双钢轮12T压,路机按压一路面面层施工技术规范进行碾压一胶轮16T压路机进行终压。 四、SBR沥青混合料的拌和 (一)拌和料按1500kg控制,干拌时间为5s,加入沥青后湿拌时间为40s 拌和成料装入成品仓,周期为60s,这样拌和出的沥青混合料均匀一致、无离析、无花白现象。(二)拌和温度控制在以下范围内:砂石料温度保持在200℃一210℃之间,改性沥青温度控制在160℃一165℃出料温度控制在160~C 一180℃之间,不能超过195℃或不低于160℃每车料出厂前均应检埘温度,不合求的不能送往现场。(三)矿粉量占总量的5%,由人工经螺旋输料器加入

提高沥青路面使用性能和耐久性

湖南城市学院全日制本科自考助学班毕业论文 题目提高沥青路面使用性能和耐 久性的主要因素 学院湖南城市学院 专业交通土建 年级2009 学习形式自考助学 层次本科 学号912110100056 姓名 指导教师汪惠民 2011 年9 月15 日

湖南城市学院全日制自学本科助学教育 毕业论文指导签 专业交通土建层次本科年级2009

目录 摘要 (4) 关键词 (4) 一、引言 (4) 二、影响沥青路面使用性能和耐久性的因素 (4) 三、影响沥青路面使用性能分析 (5) 1).高温稳定性 (5) 2)水稳定性 (5) 3)强度性能 (5) 四、影响沥青路面耐久性的主要病害和防治措施 (6) 1)路面波浪 (6) 2)局部推移、松散、隆起 (6) 3)裂缝 (6) 4)车辙的防治 (6) 五、提高沥青路面的使用性能和耐久性的主要因素 (6) 六、结束语 (7) 七、参考文献 (7) 八、致谢 (8)

提高沥青路面使用性能和耐久性的主要因素 土木工程(交通土建)专业专升本科 [摘要]:随着道路交通量的日益增大,道路路面经受着越来越严重的考验,很多沥青路面均不同程度出现了早期破坏,如路面波浪、局部推移、松散、车辙、裂缝等。这些病害的发生,既影响了车辆的顺利运行,又增加了道路养护治理资金的投入。通过优化设计、加强施工管理、提高施工质量等措施去防治,从而提高沥青路面使用性能和耐久性。路面耐久性和使用性能涉及设计、材料学和工艺学等多方面的技术要求,是一个综合的问题。在荷载与自然因素长期作用下,路面结构的使用性能在不断变化,就总体而言是个衰减过程。但就高等级公路而论,不仅巨额投资要求确保使用寿命,而且作为经济命脉,也不能容许经常修复甚至中断交通大修,因此提高路面使用性能和耐久性的研究势在必行。 [关键词]:沥青路面使用性能耐久性 一、引言 由于沥青路面具有表面平整、无接缝、振动小、噪音低、行车平稳舒适、养护维修简便等优点,我国近年来建设的城市道路大多采用半刚性基层沥青路面。但是,随着城市人口和各种客运车辆的日益增长,城市道路所承受的交通压力不断加大,许多新修的沥青路面使用时间不长就出现了各种病害。这一方面是由沥青路面抗弯拉强度低、面层的温度稳定性较差,另一方面则与城市道路的特点、施工质量、组织管理等有密切的关系。因此,深入分析影响城市道路沥青路面质量的各种因素,寻求提高城市道路沥青路面质量的各种对策,对延长城市道路沥青路面的使用寿命、降低城市道路建设成本、方便城市居民的出行等都具有重要的意义。 二、影响沥青路面使用性能和耐光性的因素 矿物组成、表面构造粘度空隙率、渗透性、沥青量、湿度、水的pH多孔性、含土量、耐流变性、电荷极性、沥青膜厚度、值、盐分、温度、表面积、吸收成分填料类型、矿料级配、度循环、交通量、含水率、形状、是否使用抗剥落剂沥青混合料类型计、施-T质量、路基等等,这些都会影响沥青路面的性能。 下面主要是从沥青路面所处的结构和环境特点对沥青路面上面层材料组成进行分析,参考国内的成功经验和国外相关规范及研究成果,分析适合我国沥青路面上面层用的集料和沥青的相关指标。 (1)沥青路面中,粗集料所占比较大,对混合料整体性能影响显著,因而对透水性沥青混合料上面层粗集料质量的尤其是对磨耗损失、压碎值、磨光值和针片状含量等关键指标的控制应当严格。 (2)对沥青路面用细集料和矿粉的技术标准主要参考《公路沥青路面施工技术规范》(JTGF 40--2004)中相应的规定指标。为了改善沥青与集料的粘附性,

市政道路建设中改性沥青混凝土路面的施工技术

市政道路建设中改性沥青混凝土路面的施工技术 发表时间:2018-10-24T17:04:03.657Z 来源:《建筑学研究前沿》2018年第18期作者:彭秋波 [导读] 传统的橡胶沥青材料相比,改性沥青混凝土材料具备更多优势。 核工业井巷建设公司 摘要:目前在道路建设中普遍应用改性沥青材料,这是由于这种材料能够改善工程的承载力,有着抗车辙效果,能够提升抗高温,降低维护费用,延长工程的使用年限,有着广阔的发展前景。应当严格根据相关标准开展改性沥青材料的运输、制备以及应用,保障充分发挥其优良性能,使道路质量能够提升。下面我们来重点探讨下市政道路建设中改性沥青混凝土路面的施工技术。 关键词:市政道路;改性沥青混凝土路面;施工技术 与传统的橡胶沥青材料相比,改性沥青混凝土材料具备更多优势,工程通过应用改性沥青混凝土材料其维护成本和耐磨性要比传统路面更好,在工程进行中要严格开展分配比设计,重视质量检测,优化配置施工组织,同时确保施工技术和施工工艺的不断提升,进而使改性沥青混凝土材料的应用性能得到不断提高,切实达到工程效益和工程质量提高的目的。 一、简述改性沥青的作用和性质 因为改性沥青所添加的改性剂不同,进而在性质上存在一定差异,由于改性剂的不同,从目前状况上讲存有三种改性沥青,即:橡胶类、热塑性、树脂类。而现在比较普遍的改性沥青是热塑性橡胶类沥青,这种沥青的性质与常规沥青相比具备更优良的弹性和抗车辙变形能力,它在道路施工中也可分为面层质量控制、摊铺、混合料拌合、施工接缝处理、级配控制、碾压以及原材料试验等部分。通过近阶段的发展,改性沥青已衍生多种性能的改性防水卷材、新型改性沥青以及改性的涂料,通常一些特殊的铺装工作常常会用到这些特殊改性材料。 二、改性沥青的分类 改性沥青的分类,国际上还没有统一的分类标准,按使用改性剂的不同,一般将其分为三类: 1、热塑性橡胶类:也称热塑性弹性体,主要是苯乙烯类嵌段共聚物,如苯乙烯一丁二烯一苯乙烯嵌段共聚物(SBS)、苯乙烯一异戊二烯一苯乙烯嵌段共聚物(SIS)、苯乙烯一聚乙烯/丁基一聚乙烯(SE/BS)等嵌段共聚物。 2、热塑性树脂类:主要有聚乙烯(PE)、乙烯一醋酸乙烯共聚物(EVA)。 3、橡胶类:主要有丁苯橡胶(SBR),属丁二烯一苯乙烯聚合物。 其中热塑性橡胶类的SBS由于具有良好抗车辙变形能力和弹性,已成为目前世界上最为普遍使用的道路沥青改性剂。 三、改性沥青混合料的配合比设计 沥青混合料的配合比设计,应遵循《公路沥青路面施工技术规范》中关于热拌沥青混合料配合比设计的有关规定确定矿料级配及最佳沥青用量。沥青混和料施工过程中须注意以下几点事项: (1)混和料的拌合和击实温度应根据沥青路面施工技术规范,以及沥青胶结料的粘温关系曲线进行确定,进行室内配合比设计时的拌合、击实温度应与拌合厂拌合温度、现场碾压温度一致。 (2)试验取样和拌合时要保证沥青胶结料的均匀性,应将制备好的胶结料拌合均匀后,进行取样和混合料的制备。 (3)混合料体积指标的测定要统一。 (4)沥青混合料的水稳定性应符合以下两个指标要求,达不到以下要求时应采取抗剥落措施,调整最佳沥青用量后再次实验。 ①采用“沥青混合料马歇尔稳定度试验”方法测定的48h浸水马歇尔稳定度试验残留稳定度不应小于85%。 ②采用“沥青混合料冻融劈裂试验”方法测定的残留强度比不应小于80%。 四、改性沥青混凝土路面的施工技术 1合理拌合混合料 将沥青和集料根据一定配合比倒入拌和机中,之后通过加热和除尘后,经专门管道将这些回收粉排送至废粉池内。而混合料的拌合时间是根据矿料颗料均裹覆沥青、混合料拌合均匀为标准,同时经过试拌确定。通常间歇式拌合机的拌合时间为45秒,其中湿拌为40秒,干拌为5秒。混合料拌合好后要先存放在有保湿效果的储料仓内,确保在仓内温度降低不超于10℃。在混合料拌合时,禁止人员调整生产配合比的参数,假如根据需要必须调整时,要先向驻地监理工程师请示,同意后才能进行操作,而冷料可依照实际状况进行合理调整。 2 运送混合料 一般情况下,使用12至15台载重40吨运料车来运送改性沥青上面层混合料,且要确保车况稳定,在工程施工时,要保证摊铺机前面有3台运料车等待卸料。当运料车辆启动前,应把油水混合物也就是水与植物油的拌合物先涂刷在底板和车厢上,进而确保混合料不会粘结到车厢上。当运料车辆在拌合站受料时,要不断移动车辆的位置,进而杜绝装车时混合料产生离析。 3摊铺工作 要在市政道路施工之前喷洒适量乳化沥青粘层油,通常用量保持在0.3至0.4L/m2。另外在施工前,要清理干净前一天留下的接缝处,同时对平整度进行检查,之后涂抹好乳化沥青,来确保接头紧密。为了杜绝在装料时发生离析以及摊铺时的温度离析,使用1辆混合料转运车,并在摊铺时开展二次搅拌,使道路混合料的铺筑质量提高。在摊铺机铺筑之前半小时,对熨平板进行预热使其温度达到100℃以上,在铺筑时应利用捶击或者熨平板的振动使装置夯实。 4 压实混合料 通常应用振动双钢轮压路机来碾压改性沥青路面。压路机在工作中应当遵照“慢压、紧跟、低幅、高频”的准则,也就是说紧贴于摊铺机后面,应用高频率低振幅方法实现慢速碾压。假如发觉沥青混合料在高温碾压后存在堆拥情况,就应当检查级配是不是恰当。为了杜绝温度损失,确保碾压快速完成,在改性路面施工时要确保有足够重量且充足的的压路机,在双车道改性沥青路面铺筑过程中,所应用的双钢轮振动压路机不得小于4辆,注意控制终压温度不低于90℃,而复压温度则不低于160℃。在碾压时要有人员专门测量终压温度和复压温度,同时做好相关记录。针对终压和复压段要有突出标志,确保不超压、无漏压。对于边缘位置通常要多压2至3遍。

改性沥青混合料

改性沥青混合料 改性沥青是在沥青中掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料某一方面的性能得以改善的沥青结合料。 沥青作为现代公路路面的主要材料之一,具有很广泛的使用用途,随着社会发展对路面的要求不断提升,普通沥青由于其自身性能的局限性在使用上受到一定的限制,改性沥青正是为了满足这些需要而诞生。改性沥青混合料相比普通沥青混合料具有较高的抗流动性,良好的路面柔性和弹性,较高的耐磨耗能力和更长使用寿命。 改性沥青的分类 根据改性沥青添加的改性材料不同可以分为以下几类:一是橡胶及热塑性弹性体改性沥青,包括:天然橡胶改性沥青、SBS改性沥青(使用最广)、丁苯橡胶改性沥青、氯丁橡胶改性沥青、顺丁橡胶改性沥青、丁基橡胶改性沥青、废橡胶和再生橡胶改性沥青、其他橡胶类改性沥青等。二是塑料与合成树脂类改性沥青,包括:聚乙烯改性沥青、乙烯-乙酸乙烯聚合物改性沥青、聚苯乙烯改性沥青、环氧树脂改性沥青、α-烯烃类无规聚合物改性沥青等。三是共混型高分子聚合物改性沥青,即用两种或两种以上聚合物同时加入到沥青中对沥青进行改性。这里所说的两种以上的聚合物可以是两种单独的高分子聚合物,也可以是事先经过共混形成高分子互穿网络的所谓高分子合金。 改性沥青的用途 改性沥青的用途和普通沥青用途相似,主要是公路路面和防水工程上。在公路路面工程中,由于现代公路发生许多变化:交通流量和行驶频度急剧增长,货运车的轴重不断增加,普遍实行分车道单向行驶,要求进一步提高路面抗流动性,即高温下抗车辙的能力;提高柔性和弹性,即低温下抗开裂的能力;提高耐磨耗能力和延长使用寿命。现代建筑物普遍采用大跨度预应力屋面板,要求屋面防水材料适应大位移,更耐受严酷的高低温气候条件,耐久性更好,有自粘性,方便施工,减少维修工作量。使用环境发生的这些变化对石油沥青的性能提出了严峻

改性沥青混凝土路面施工工艺标准

改性沥青混凝土路面施工工艺标准 1、适用范围 本工艺适用于高速公路、一级公路、城市主干道和机场跑道等改性沥青路面表面层工程。 2、施工准备 2.1材料 沥青混合料应符合设计和施工规范的要求。 2.2机具设备 2.2.1摊铺、碾压设备 改性沥青路面常用于高等级路面,质量标准高,要求的摊铺及碾压设备应具有性能优良、稳定的特点。 2.2.2其他设备 15t以上自卸汽车、浮动基准梁或非接触式平衡梁、空压机、装载机,水车,加油车,移动照明车。 2.2.3小型施工工具 手推车、铁锹、扫把、铁钎、耙子。 2.2.4检测、测量设备 平整度仪、水准仪、全站仪、钢卷尺、3m直尺、摆式摩擦仪、构造深度仪等。 2.3作业条件 2.3.1正式施工前应准备好需用的改性沥青混合料生产、运输、摊铺、压实等设备,并进行必要的校验调试工作。 2.3.2铺筑改性沥青混合料前,应检查下承层的质量,检验合格方可铺筑沥青混合料。路缘石与沥青混合料接触面应涂刷粘结油。 2.3.3在旧沥青路面或水泥混凝土路面上加铺改性沥青面层时,应修补破损的路面、填补坑洞、封填裂缝或失效的水泥路面接缝;松动的水泥混凝土板应清除或进行稳定处理;表面应整平,摊铺前应清扫干净,喷洒粘层油。 2.3.4夜间施工时,必须有充足良好的照明条件。 2.3.5施工前对各种施工机具做全面检查,经调试证明处于性能良好状态,

机械设备数量应足够,施工能力应配套,关键设备宜有备用设备或应急方案。 2.3.6当气温低于10℃时,不得进行改性沥青混合料路面施工。 2.4技术准备 2.4.1提前对现场情况进行调查,并制订出详细的试验路段摊铺、碾压方案、质量保证措施和预防措施,对参施人员技术交底,并做好试验段施工总结工作,为展开规模化施工奠定基础。 2.4.2对各种计量仪器、设备进行调试、标定。 2.4.3建立测量控制系统:按施工要求加密坐标点、水准点控制网,按照设计位置、宽度和高程测设出边线、桩位,调整好摊铺机熨 平板横坡、虚铺厚度。 3、操作工艺 3.1工艺流程 3.2操作方法 3.2.1粘层油施工 3.2.1.1粘层的沥青材料宜采用快裂的洒布型乳化沥青,也可采用快、中凝液体石油沥青,粘层沥青应符合《沥青路面施工及验收规范》(GB50092—96)附录C的规定。 3.2.1.2粘层沥青宜采用沥青洒布车喷洒,洒布时应保持稳定的速度和喷洒量。沥青洒布车在整个洒布宽度内必须喷洒均匀;粘层沥青也可采用人工喷洒方式,手工喷洒必须由具有熟练喷洒技术的工人操作,均匀洒布。 3.2.1.3在路缘石、雨水进水口、检查井等局部应用刷子人工涂刷。 3.2.1.4粘层沥青浇洒过量处应予刮除。 3.2.1.5路面有脏物尘土时应采用人工清扫或空压机吹扫的方式清除干净,必要时采用水车进行冲洗,并待表面干燥后进行浇洒作业。 3.2.2安装调试高程控制装置 3.2.2.1改性沥青混合料通常摊铺高程控制宜采用浮动基准梁或非接触式基准平衡梁。对于有些特殊要求的路段,施工可采用基准高程线导引方式,即固定

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

SMA沥青混合料耐久性研究

SMA 沥青混合料耐久性研究 【摘要】沥青路面的使用寿命受到很多因素的影响,其中一个关键的影响因素就是沥青混合料的耐久性。沥青玛蹄脂碎石(Stone Matrix AsPhalt ,简称sMA )以其优良的耐久性和抗车辙性而被广泛使用在沥青路面结构中。本文对SMA 沥青混合料耐久性的一系列影响因素进行相关的试验分析和探讨。 【关键词】SMA 沥青混合料,耐久性能,沥青玛蹄脂本文简单介绍了相关试验方案以及试验方法,在此基础上对SMA 沥青混合料耐久性的众多影响因素进行了一系列的试验与分析。 1 试验方案及方法 1.1 原材料试验通过对沥青混合料、矿料、纤维、水泥、消石灰以及抗剥落剂进行相关的技术性质试验,使之均满足相关的技术要求。 1.2 SMA耐久性的试验 1.2.1 SMA沥青混合料的耐久性与混合材料的水稳性相关,同时还与混合材料的抗疲劳能力相关。因此,应该对其进行相关的疲劳性试验以及水稳定性试验,并在此基础上,在各项性能保持最佳时确定出沥青的最佳用量和沥青的级配。 1.2.2 通过对填料类型、粉胶比的分析研究,分析其对玛蹄脂

耐老化前后的三大指标(延度、软化点以及针入度)的影响。试验方案如下。 图1 耐老化试验 1.2.3 水稳定性试验对SMA 沥青混合料水稳定性的试验应该通过冻融劈裂试验来进行,另外SMA 沥青混合料水稳定性还应该通过相关的浸水马歇尔试验来测试。通过SMA 沥青混合料的填料类型、填料与填料之间不同的空隙率、4.75mm 筛孔通过率、SMA 沥青混合料中的矿粉含量以及不同的沥青用量以及采取基质沥青还是改性沥青等不同的沥青类型的一系列的试验,全面综合地分析和探讨SMA 沥青混合料水稳定性因素。 1.3 试验方法 对SMA 沥青混合料的耐久性进行研究的相关试验除了上述的冻融劈裂试验等,还包括车辙试验、浸水马歇尔试验、肯塔堡飞散试验、疲劳性能试验、谢伦堡沥青析漏试验、渗水试验等等。 2 原材料配合比 SMA 沥青混合料同传统的沥青相比,其沥青的含量更高,矿粉的含量也较高,且混合料中的粗集料较多。应该严格控制 SMA 沥青混合料中粗骨集料与细骨集料的数量配合比,如果粗 骨集料过少,则SMA 沥青混合料的结构骨架不能有效形成,如果细骨集料过少,将会影响SMA 沥青混合料的密实程度,从而最终影响SMA 沥青混合料的耐久性。沥青混合料的技术性应该符合一定的要求,如能与集料较好地粘附在一起,粘度较高,与

沥青混合料低温性能及其改良

沥青混合料低温性能及其改良 摘要:沥青路面使用期开裂是世界各国普遍存在的问题, 沥青路面在温度骤降或温差较大地区, 会由于温度应力的作用而产生裂缝, 低温缩裂在我国北方地区是十分普遍的, 它的产生严重危害道路的使用寿命和质量, 是沥青路面主要破坏形式之一,为此研究沥青混合料低温抗裂性能的评价方法是很有必要的。本文简单介绍了沥青低温抗裂性的评价指标及改良措施。 关键词:破坏机理评价指标影响因素改良措施 裂缝作为我国高等级沥青路面的主要病害之一,不仅会影响行车的舒适性,而且水会沿着裂缝进入沥青路面体内,引起路面结构性的破坏。沥青混合料低温抗裂性能与沥青路面裂缝病害直接相关,为了提高路面的抗裂能力,必须提高沥青混合料的低温抗裂性能。自20世纪60年代以来,加拿大、美国、日本等国家重点对沥青混合料低温开裂与材料低温性能指标进行了系统调查和研究,并铺筑了许多试路,提出了沥青及沥青混合料低温抗裂的不同评价指标,但是这些指标都是针对本国具体实验进行的研究尚缺乏验证,尤其是沥青及沥青混合料性能指标与路用性能的相关关系。因此,提高沥青路面的抗裂性能仍是沥青路面的重要研究内容。 一、破坏机理 沥青路面的低温开裂是路面破坏的主要形式之一。一般认为沥青路面的低温开裂有3种形式:一是面层低温开裂,是由气温骤降造成面层温度收缩,在有约束的沥青层内产生温度应力超过沥青混凝土的抗拉强度时造成的开裂;二是温度疲劳裂缝,是由于沥青混凝土经过长时间的温度循环,使沥青混凝土的极限拉伸应变变小,应力松弛性能降低,将在温度应力小于其抗拉强度时开裂;三是反射裂缝,是指低温状态下基层产生横向开裂,在荷载和温度共同作用下,裂缝逐渐向沥青面层的横向开裂。沥青路面裂缝会导致路面承载力下降,影响行车舒适性,并缩短路面使用寿命。因此,提高路面抗裂性是道路领域研究的重要课题。 二、评价方法

AC-13C细粒式改性沥青混凝土

xx高速公路第XX合同段 AC-13C细粒式改性沥青混凝土上面层施工方案 一、工程概况 我项目经理部所承建的xx高速公路路面第四合同段,全线共长20km,起讫桩号K88+200~K108+200。主要路面结构设计为:4cm厚AC-13C细粒式改性沥青混凝土+粘层油+8cm厚AC-20C中粒式沥青混凝土中面层+粘层油+12cm厚ATB-30沥青稳定碎石下面层+封层+透层+水泥稳定碎石基层。我标段负责K88+200-K108+200的施工。 二、施工准备 1、在经检测并经监理工程师签认合格后的喷洒过粘层油的中面层顶进行AC-13C细粒式改性沥青混凝土上面层施工作业。 2、AC-13C目标配合比 AC-13C细粒式改性沥青混凝土目标配合比设计详见:AC-13C细粒式改性沥青混凝土目标配合比设计。 3、QLB-4000型沥青拌和楼AC-13C生产配合比 AC-13C细粒式改性沥青混凝土QLB-4000型拌和生产配合比设计详见:AC-13C细粒式改性沥青混凝土生产配合比设计。

4、按规范要求对进场材料进行抽样检测,所采用原材料满足规范要求,原材料检验详见:原材料进场检验报告。 5、由试验人员在拌和站检测AC-13C细粒式改性沥青混凝土配合比、油石比以及毛体积密度,确认配和比符合设计。 三、施工工艺 1、施工现场准备: 1)、铺筑前清除粘层上的SBS浮石子和杂物等,对局部污染较严重的地方进行冲洗,重新喷洒粘层油。 2)、在与沥青面层相接触的结构物面上均匀地刷涂一层乳化沥青,以保证与结构物的相互粘接。 3)、根据施工计划前后桩号多放样10~20m,利于数据采集和剩余料的铺筑。根据设计图正线铺筑面边框线即:离中线1.5m,13m。位置10m整桩号进行放点或有构造物相互连接地段进行复核,采用全站仪逐桩逐点进行放样。中面层采用平衡梁方式。 2、施工方案: 1)沥青混合料的拌和: ①沥青采用导热油加热,沥青温度稳定,具有一定的流动性,使沥青混合料拌和均匀,出厂温度符合要求,保证沥青能源源不断地从沥青罐输送到拌和机内。 ②集料铲运方向与流动方向垂直,保证铲运材料均匀,避免集料离析。 ③每天开工前检测原材料的含水量,以便调节冷料进料速度,

道路沥青混合料的种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐 久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%

相关文档
相关文档 最新文档