文档库 最新最全的文档下载
当前位置:文档库 › 营销数据分析常用方法

营销数据分析常用方法

营销数据分析常用方法
营销数据分析常用方法

营销数据分析常用方法

市场营销是企业的命脉,然而,为数不少的市场部、销售部工作人员由于缺乏营销分析概念和方法,企业累积的大量数据得不到有效的利用,营销分析只停留在数据和信息的简单汇总和流水帐式的通报,缺乏对客户、业务、营销、竞争方面的深入分析,结果决策者只能凭着本能的反应来运作,决策存在很大的失误风险.本课程着眼于营销数据的分析和统计,教授如何挖掘数据背后的规律和隐含的信息.通过学习本课程您将可以掌握营销数据分析的重要概念和高级技能,提升科学管理和科学决策的水平。

三、数据规划和数据收集

没有数据,营销分析就成了空中楼阁。本节介绍数据搜集的思路和方法,为营销分析奠定坚实的基础。

1.思考:应该采集哪些数据

2.数据来源和收集途径

3.构建有效的数据采集系统

4.数据表的规划和设计

5.低成本的数据收集手段

6.利用新技术手段简化数据收集

四、常用分析方法

数据分析不是空洞理论,还需要有科学的技术手段和方法,本节演练常用的数据分析方法

1.对比分析

2.多维分析和统计

3.时间序列分析

4.数据分布分析

5.方差分析

五、竞争分析

企业总是在竞争中壮大,如果能提前预知竞争对手的信息和策略,企业更容易成功。

1.如何界定竞争对手

2.市场竞争的四个层次

3.需求的交叉弹性

4.品牌转换矩阵

5.行业竞争力分析

6.竞争分析矩阵

7.竞争对手数据收集

六、市场调查与置信度分析

市场调研是合法获取数据的重要来源,也是快速了解市场反应的途径,本节讨论市场调查的策划和统计方法。

1.如何策划一次市场调查

2.常规调查方法和网上调查方法

3.如何进行统计学上有效的抽样调查

4.理解误差的来源分析

5.如何对抽样结果进行统计

6.通过置信度分析计算调查误差

七、客户细分与精确营销

无差别的大众媒体营销已经无法满足零和的市场环境下的竞争要求。精确营销是现在及未来的发展方向,而客户细分是精确营销的基础。

1.精确营销与客户细分

2.客户细分的价值

3.基于数据驱动的细分

4.客户数据库分析的RFM指标

5.基于聚类细分方法的案例解析

6.细分结果的应用

八、商业预测技术

预测是企业重要的决策依据,企业通过预测技术可以估计下一季度、年度的市场规模、市场占有率、销售量等。

1. 预测责任者与支持者

2. 预测的组织流程

3. 不同的预测模型各自的优缺点

4. 多元回归分析:如何分析多个因素对目标值的影响程度,包含

i. 如何建立多变量业务预测模型

ii. 如何评估业务模型的有效性

iii. 企业外部变量(例如经济宏观数据)的选择和过滤

5. 回归分析演练:如何量化分析广告的效果

科研常用的实验数据分析与处理方法

科研常用的实验数据分析与处理方法 对于每个科研工作者而言,对实验数据进行处理是在开始论文写作之前十分常见的工作之一。但是,常见的数据分析方法有哪些呢?常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。 1、聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 2、因子分析(Factor Analysis) 因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

3、相关分析(Correlation Analysis) 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y 分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。 4、对应分析(Correspondence Analysis) 对应分析(Correspondence analysis)也称关联分析、R-Q 型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。 5、回归分析 研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设 计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。 一般来讲,在用列表法处理数据时,应遵从如下原则:

(1) 栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2) 在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3) 填入表中的数字应是有效数字。 (4) 必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 从表中,可计算出 D i D = n = 5.9967 ( mm)

销售数据分析

前言 营销总经理这个职位压力大而且没有安全感——天气变化、竞品动态、本品产品质量、公司的战略方向、费用投入、经销商的突然变化、行业动荡、上游采购成本等等诸多因素影响业绩。营销行业没有常胜将军,但是这个行业以成败论英雄。 营销总经理这个职位事情多而且杂乱琐碎:营销总经理要遥控管理庞大的营销团队,服务于全国几千万家经销商和终端。工作千头万绪,哪怕每天干25个小时,工作还是俄罗斯方块一样堆积。 压力和杂务干扰之下,就容易迷失,做营销总经理需要热情、能力、经验、更需要固化的可复制的工作模型,帮助自己脱身庶务,联系市场实际,提升管理绩效。 营销总经理工作模型一:数据分析模型 一、营销总经理数据分析流程概述 数据分析好像“业绩体检报告”,告诉营销总经理哪里有问题。营销总经理要每天按照固定的数据分析模型对当日发货量、累计业绩进度、发货客户数、发货品项数、产品结构、区域结构等关键指标进行全方位多维次的实时监控。随时关注整体业绩达成的数量和质量。 如果公司整体业绩分析没问题就下延看区域业绩有没问题,没问题就结束分析。如果公司整体业绩有问题;就要思考有没有特殊原因——比如:天气下雨造成三天发货量下滑,天晴后业绩会恢复。公司上半月集中力量乡镇市场压货,所以低价产品业绩上升高价产品业绩下滑是计划内正常现象。如果没有特殊原因,确实属于业绩异常,就要立刻从这个指标着手深度分析:通常是从产品、区域、客户三条主线来研究。发现问题产品(哪个产品需要重点管理)、发现问题区域(哪个区域需要重点巡查)、发现问题客户(哪个重点零售ka系统重点经销商的业绩不正常)。除非问题非常严重,一般营销总经理的数据分析下延到直接下级(大区或者省区层面)即可,然后要求问题区域的大区经理做出解释,拿出整改方案。大区省区经理再做区域内数据分析,寻找问题产品、问题片区和问题经销商。 数据分析得出结论就找到了管理重点,接下来营销总经理要采取针对性有的放失的管理动作——比如立刻去巡检重点问题区域、要求问题区域限期改善、更改当月的促销投入或者产品价格、设立新的工作任务(比如乡镇铺货)等等,整个分析流程图示如下:

16种常用的数据分析方法汇总

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。

16种常用数据分析方法

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策 树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0 (常为理论值或标准值)有无差别; B 配对样本t 检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t 检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析用于分析离散变量或定型变量之间是否存在相关。对于二维表,可进行卡 方检验,对于三维表,可作Mentel-Hanszel 分层分析列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以

常用的数理统计及数据处理方法

常用的数理统计及数据处理方法 水泥厂生产中的质量控制和分析都是以数据为基础的技术活动。如果没有数据的定量分析,就无法形成明确的质量概念。因此,必须通过对大量数据的整理和分析,才能发现事物的规律性和生产中存在的问题,进而作出正确的判断并提出解决的方法。 第一节数理统计的有关概念 一、个体、母体与子样 在统计分析中,构成研究对象的每一个最基本的单位称为个体。 研究对象的所有个体的集合即全部个体称为母体或总体,它可以无限大,也可以是有限的,如一道工序或一批产品、半成品、成品,可根据需要加以选择。 进行统计分析,通常是从母体中随机地选择一部分样品,称为子样(又称样本)。用它来代表母体进行观察、研究、检验、分析,取得数据后加以整理,得出结论。取样只要是随机和足够的数量,则所得结论能近似地反映母体的客观实际。抽取样本的过程被称作抽样;依据对样本的检测或观察结果去推断总体状况,就是所谓的统计推断,也叫判断。 例如,我们可将一个编号水泥看成是母体,每一包水泥看成是个体,通过随机取样(连续取样或从20个以上不同部位取样),所取出的12kg检验样品可称为子样,通过检验分析,即可判断该编号水泥(母体)的质量状况。 二、数据、计量值与计数值 1,数据 通过测试或调查母体所得的数字或符号记录,称为数据。在水泥生产中,无任对原材料、半成品、成品的检验,还是水泥的出厂销售,都要遇到很多报表和数据,特别是评定水泥质量好坏时,更要拿出检验数据来说明,所以可用与质量有关的数据来反映产品质量的特征。 根据数据本身的特征、测试对象和数据来源的不同,质量检验数据可分为计量值和计算值两类。 2,计量值 凡具有连续性或可以利用各种计量分析一起、量具测出的数据。如长度、质量、温度、化学成分、强度等,多属于计量值数据。计量值也可以是整数,也可以是小数,具有连续性。

常用数据分析方法详细讲解

常用数据分析方法详解 目录 1、历史分析法 2、全店框架分析法 3、价格带分析法 4、三维分析法 5、增长率分析法 6、销售预测方法 1、历史分析法的概念及分类 历史分析法指将与分析期间相对应的历史同期或上期数据进行收集并对比,目的是通过数据的共性查找目前问题并确定将来变化的趋势。 *同期比较法:月度比较、季度比较、年度比较 *上期比较法:时段比较、日别对比、周间比较、 月度比较、季度比较、年度比较 历史分析法的指标 *指标名称: 销售数量、销售额、销售毛利、毛利率、贡献度、交叉比率、销售占比、客单价、客流量、经营品数动销率、无销售单品数、库存数量、库存金额、人效、坪效 *指标分类: 时间分类 ——时段、单日、周间、月度、季度、年度、任意 多个时段期间 性质分类 ——大类、中类、小类、单品 图例 2框架分析法 又叫全店诊断分析法 销量排序后,如出现50/50、40/60等情况,就是什么都能卖一点但什么都不 好卖的状况,这个时候就要对品类设置进行增加或删减,因为你的门店缺少 重点,缺少吸引顾客的东西。 如果达到10/90,也是品类出了问题。 如果是20/80或30/70、30/80,则需要改变的是商品的单品。 *单品ABC分析(PSI值的概念) 销售额权重(0.4)×单品销售额占类别比+销售数量权重(0.3) × 单品销售数量占类别比+毛利额权重(0.3)单品毛利额占类别比 *类别占比分析(大类、中类、小类) 类别销售额占比、类别毛利额占比、 类别库存数量占比、类别库存金额占比、

类别来客数占比、类别货架列占比 表格例 3价格带及销售二维分析法 首先对分析的商品按价格由低到高进行排序,然后 *指标类型:单品价格、销售额、销售数量、毛利额 *价格带曲线分布图 *价格带与销售对数图 价格带及销售数据表格 价格带分析法 4商品结构三维分析法 *一种分析商品结构是否健康、平衡的方法叫做三维分析图。在三维空间坐标上以X、Y、Z 三个坐标轴分别表示品类销售占有率、销售成长率及利润率,每个坐标又分为高、低两段,这样就得到了8种可能的位置。 *如果卖场大多数商品处于1、2、3、4的位置上,就可以认为商品结构已经达到最佳状态。以为任何一个商品的品类销售占比率、销售成长率及利润率随着其商品生命周期的变化都会有一个由低到高又转低的过程,不可能要求所有的商品同时达到最好的状态,即使达到也不可能持久。因此卖场要求的商品结构必然包括:目前虽不能获利但具有发展潜力以后将成为销售主力的新商品、目前已经达到高占有率、高成长率及高利润率的商品、目前虽保持较高利润率但成长率、占有率趋于下降的维持性商品,以及已经决定淘汰、逐步收缩的衰退型商品。 *指标值高低的分界可以用平均值或者计划值。 图例 5商品周期增长率分析法 就是将一段时期的销售增长率与时间增长率的比值来判断商品所处生命周期阶段的方法。不同比值下商品所处的生命周期阶段(表示) 如何利用商品生命周期理论指导营运(图示) 6销售预测方法[/hide] 1.jpg (67.5 KB) 1、历史分析法

(完整版)常用数据分析方法论

常用数据分析方法论 ——摘自《谁说菜鸟不会数据分析》 数据分析方法论主要用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如主要从哪几方面开展数据分析?各方面包含什么内容和指标? 数据分析方法论主要有以下几个作用: ●理顺分析思路,确保数据分析结构体系化 ●把问题分解成相关联的部分,并显示它们之间的关系 ●为后续数据分析的开展指引方向 ●确保分析结果的有效性及正确性 常用的数据分析理论模型 用户使用行为STP理论 SWOT …… 5W2H 时间管理生命周期 逻辑树 金字塔SMART原则 …… PEST分析法 PEST分析理论主要用于行业分析 PEST分析法用于对宏观环境的分析。宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。 对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

以下以中国互联网行业分析为例。此处仅为方法是用实力,并不代表互联网行业分析只需要作这几方面的分析,还可根据实际情况进一步调整和细化相关分析指标:

5W2H分析法 5W2H分析理论的用途广泛,可用于用户行为分析、业务问题专题分析等。 利用5W2H分析法列出对用户购买行为的分析:(这里的例子并不代表用户购买行为只有以下所示,要做到具体问题具体分析)

逻辑树分析法 逻辑树分析理论课用于业务问题专题分析 逻辑树又称问题树、演绎树或分解树等。逻辑树是分析问题最常使用的工具之一,它将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。 把一个已知问题当成树干,然后开始考虑这个问题和哪些相关问题有关。 (缺点:逻辑树分析法涉及的相关问题可能有遗漏。)

大数据的统计分析方法

统计分析方法有哪几种?下面天互数据将详细阐述,并介绍一些常用的统计分析软件。 一、指标对比分析法指标对比分析法 统计分析的八种方法一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法,有比较才能鉴别。 指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。 二、分组分析法指标对比分析法 分组分析法指标对比分析法对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。 统计分组法的关键问题在于正确选择分组标值和划分各组界限。 三、时间数列及动态分析法 时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。 时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。

动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。 四、指数分析法 指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。 指数的作用:一是可以综合反映复杂的社会经济现象的总体数量变动的方向和程度;二是可以分析某种社会经济现象的总变动受各因素变动影响的程度,这是一种因素分析法。操作方法是:通过指数体系中的数量关系,假定其他因素不变,来观察某一因素的变动对总变动的影响。 用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。 五、平衡分析法 平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况;二是揭示不平衡的因素和发展潜力;三是利用平衡关系可以从各项已知指标中推算未知的个别指标。 六、综合评价分析 社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面;对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。 进行综合评价包括四个步骤:

大学物理实验_常用的数据处理方法

1.7 常用的数据处理方法 实验数据及其处理方法是分析和讨论实验结果的依据。在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。 1.7.1 列表法 在记录和处理数据时,常常将所得数据列成表。数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。 列表的要求是: (1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。 (2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。 (3)列表的形式不限,根据具体情况,决定列出哪些项目。有些个别的或与其他项目联系不大的数据可以不列入表内。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表中所列数据要正确反映测量结果的有效数字。 列表举例如表1-2所示。 表1-2铜丝电阻与温度关系 1.7.2 作图法 作图法是将两列数据之间的关系用图线表示出来。用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。 1.作图规则 为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。 (1)作图必须用坐标纸。当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。 (2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。原则上讲,数据中的可靠数字在图中应为可靠的。我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。 (3)标明坐标轴。对于直角坐标系,要以自变量为横轴,以因变量为纵轴。用粗实线在坐标纸上描出坐标轴,标明其所代表的物理量(或符号)及单位,在轴上每隔一定间距标明

市场调查中常用的数据分析方法和手段

第四编 市场调查中的数据分析 第十五章 市场调查数据的录入与整理 第一节 调查问卷的回收与编辑 数据资料的处理过程是从回收第一份问卷开 始的。按照事先调查方案的计划,尽量确保每份问 卷都是有效问卷(所谓“有效”问卷,指的是在调 查过程中按照正确的方式执行完成的问卷)。问卷 回收以后,督导员必须按照调查的要求,仔细的检 查问卷。检查问卷的目的在于将有错误填写,或者是挑出不完整或不规范的问卷,保证数据的准确性。所谓错误填写即出现了那些不合逻辑或根本不可能的结果,通过对调查员的复核,可以检查出哪些调查员没有按照调查的要求去访问,那么,该调查员完成的问卷可能存在很多问题。还有可能出现漏答了某些必须回答的问题,比如被访者的人口特征等基本情况,造成问卷回答不完整。 鉴于这些情况,不管是由于调查员造成的还是被访者的原因,通常有两种方式进行补救:对于出现漏答的问卷,通常要求调查员对受访者进行重访,以补充未答的问题;如果不便于重访或重访后的问卷还有问题,数目不是很多,可以当作缺失值计。如果数量非常大,这份问卷就只能当作废卷处理,并且按照被访对象的抽样条件, 补作相关的样本。 问卷检查

问卷的检查一般是指对回收问卷的完整性和访问质量的检查,目的是要确定哪些问卷可以接受,哪些问卷要作废。检查的要点包括:(1)规定详细的检查规则,一份问卷哪些问题是必须填写完整的,哪些问题出现缺失时可以容忍等,使督导员明确检查问卷的每一项流程。 (2)对于每份调查员交回来的问卷必须彻底地检查,以确认调查员或者被访者是否按照相关的要求完成了访问,并且完整的记录在问卷恰当的位置。 (3)应该将问卷分成三种类型,一种是完成的问卷,一种是作废的问卷,第三种是有问题的问卷,但是通过追访还可以利用的问卷。 (4)如果抽样中有配额的要求,那么应将完成的问卷中的配额指标进行统计分析,确定问卷是否完成配额的要求,以便及时的补充不足的样本。 (5)通常有下面的情况的问卷是不能接受的:所回收的问卷明显不完整,缺了一页或者多页;问卷中有很多内容没有填答;问卷的模式说明调查员(被访者)没有理解或者遵循访问指南回答等;问卷的答案几乎没有什么变化,如在态度的选项上全部选择第x项的情况;问卷的被访者不符合抽样要求;问卷的回收日期超过了的访问的时限等。

企业销售数据的分类汇总分析方法

实验二企业销售数据的分类汇总分析 实验2-1“北风”贸易公司客户特征分析 实验目的 ?理解数据分类汇总在企业中的作用与意义; ?掌握数据透视表工具的基本分类汇总功能; ?掌握建立分类汇总数据排行榜、生成时间序列、绘制pareto曲线图、计 算各地区客户分布、统计各地区客户的平均销售额和大宗销售时间序列的方法和步骤。 实验环境 ?microsoft office access2003; ?microsoft office query2003; ?microsoft office excel2003。 实验内容:“北风贸易”公司客户经理希望能获得有关客户特征的分类汇总数据,以便根据客户的特点,预测未来的销售情况、制订有关销售的策略。 客户经理希望能够利用数据透视表完成以下的汇总工作: 1.按照销售额汇总客户各年度销售排行榜,按照从大到小的方式排列,并且列出 各客户在各类别上的销售额。 实验步骤: (1).首先创建数据源:启动Microsoft Query程序,执行”文件/新建”命令,按下图 所示设置好数据源名字和相关定义,即完成了数据源的创建.

(2).打开EXCEL,执行“数据/导入处部数据/新建数据库查询”命令,在Microsoft Query中数据的整理。 (导入的数据源数据)

(按销售额从大到小汇总客户各年度销售排行榜) (3)列各客户在各类别上的销售额:从Microsoft Query中导入数据,再进行分类汇总,以下为所操作的过程图。 (导入的相关数据)

(各客户在各类别上的销售额) 对以上图的一些说明:图中共有93个客户,产品类别共有是一直到BY列。

运营必备的 15 个数据分析方法

提起数据分析,大家往往会联想到一些密密麻麻的数字表格,或是高级的数据建模手法,再或是华丽的数据报表。其实,“分析”本身是每个人都具备的能力;比如根据股票的走势决定购买还是抛出,依照每日的时间和以往经验选择行车路线;购买机票、预订酒店时,比对多家的价格后做出最终选择。 这些小型决策,其实都是依照我们脑海中的数据点作出判断,这就是简单分析的过程。对于业务决策者而言,则需要掌握一套系统的、科学的、符合商业规律的数据分析知识。 1.数据分析的战略思维 无论是产品、市场、运营还是管理者,你必须反思:数据本质的价值,究竟在哪里?从这些数据中,你和你的团队都可以学习到什么? 数据分析的目标 对于企业来讲,数据分析的可以辅助企业优化流程,降低成本,提高营业额,往往我们把这类数据分析定义为商业数据分析。商业数据分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策,提供可规模化的解决方案。商业数据分析的本质在于创造商业价值,驱动企业业务增长。 数据分析的作用 我们常常讲的企业增长模式中,往往以某个业务平台为核心。这其中,数据和数据分析,是不可或缺的环节。 通过企业或者平台为目标用户群提供产品或服务,而用户在使用产品或服务过程中产生的交互、交易,都可以作为数据采集下来。根据这些数据洞察,通过分析的手段反推客户的需求,创造更多符合需求的增值产品和服务,重新投入用户的使用,从而形成形成一个完整的业务闭环。这样的完整业务逻辑,可以真正意义上驱动业务的增长。 数据分析进化论 我们常常以商业回报比来定位数据分析的不同阶段,因此我们将其分为四个阶段。 阶段 1:观察数据当前发生了什么? 首先,基本的数据展示,可以告诉我们发生了什么。例如,公司上周投放了新的搜索引擎 A 的广告,想要

营销数据分析总复习题汇总(doc 22页)

营销数据分析总复习题汇总(doc 22 页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

营销数据分析总复习题 第一部分章节复习题 第一、二章 一、单项选择题 1.问卷设计中封闭式间题与开放式问题的区别是 A. 列出两个对立的答案,由被调查者选择一个 B. 列出多个备选答案,由被调查者选择一个 C. 列出多个备选答案,被调查者选择多个 D. 前者设立备选答案,后者不设备选答案 2.在给变量命名时,下面的提法正确的是: A.SPSS的变量名中不能有汉字 B.SPSS的变量名中可以有汉字,最多可以有8个汉字 C.SPSS的变量名中可以有汉字,最多可以有4个汉字 D.SPSS的变量名中可以有汉字,汉字个数没有限制 3.SPSS数据文件的扩展名是: A. .xls B..sas C..doc D..sav 4.对于用SPSS读取Excel的数据文件,下面的提法正确的是: A.SPSS不能读取Excel的数据文件 B.如果Excel的数据文件首行有变量名,那么SPSS只能读取数据而无法读取首行的变量名 C.如果Excel的数据文件首行有变量名,那么SPSS不仅可以读取数据,而且可以读取首行的变量名 D.以上说法都不对 5. 横向合并数据选择怎样的菜单 A. Merger File B. Add Cases C. Merge Variable D. Add V ariable 二、多选题 1. 下列名称哪些可以在SPSS中充当变量名。 A.性别 B.XINGZHENGSHIYED C.行政事业单位 D.NIANNIN E. A!358 F. J5678 G. N_35678 H. ALL 2. SPSS有哪些数据类型。 A. 数值型 B. 定序型 C. 定类型 D. 字符型 E. 定量型 F. 日期型 G. 标准型 H. 圆点型 三、简答题 1. 按数据的计量尺度可将数据分为哪三类,这三类数据类型在SPSS中如何定义其尺度。并分别举例说明。 2、下面是每周去图书馆学习的次数的编码方案: 1=每天去1次 2=每周去2次或2次以上 3=每周去3次或3次以上

常用数据分析方法

常用数据分析方法 常用数据分析方法:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析;问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、Cronbach’a信度系数分析、结构方程模型分析(structural equations modeling) 。 数据分析常用的图表方法:柏拉图(排列图)、直方图(Histogram)、散点图(scatter diagram)、鱼骨图(Ishikawa)、FMEA、点图、柱状图、雷达图、趋势图。 数据分析统计工具:SPSS、minitab、JMP。 常用数据分析方法: 1、聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 2、因子分析(Factor Analysis) 因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。 因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。 3、相关分析(Correlation Analysis) 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X 与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。 4、对应分析(Correspondence Analysis) 对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。 5、回归分析 研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。 6、方差分析(ANOVA/Analysis of Variance) 又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差

市场营销数据分析方法

市场营销数据分析方法 市场营销分析对于察觉有关商业洞察力,提高收入和盈收能力,提升品牌认知度都是必不可少的,对于市场营销领域来说,现在是最好的时代。下面是小编整理的市场营销数据分析方法,欢迎查看,希望帮助到大家。 1、未被满足的需求分析 商业可以简单的理解为满足客户需求的全部。未被满足的需求分析指的是揭示你的产品、服务、客户满意度以及收入方面是否还有未被满足的需求。对于未被满足的需求分析,有效的工具包括产品评价,定性调查,小组讨论和访谈。你也可以使用类似于Google Trends这样的工具来帮助识别客户都在搜索什么。 提示:现在向你的客户提问是一个非常经济实惠而又快速的办法。例如创建一个论坛,在线小组讨论,亦或是邀请客户关注你的Facebook页面并加入到一个反馈小组里面。 2、市场规模分析 如果对自己的市场规模和潜力不够了解,我们很容易对商业决策的可行性妄下结论。市场规模分析指的是评估你的产品以及服务市场规模有多大,是否有足够的增长潜力。衡量指标包括产量、产值、频率。有效数据包括政府公布的数据,行业协会数据,竞争对手财务数据以及客户调查。

提示:仅因为某个市场大并不意味着它是有利可图的——特别地,如果大多数客户想要的某个产品或者服务市场上已经有了,那么他们不太可能会接受另一个产品或服务了。 3、需求预测 了解需求对于保持企业的竞争力是至关重要的。需求预测属于预测分析领域,旨在预估消费者可能会购买的产品数量或服务。不同于简单猜测,它是基于过去市场上的历史数据或当前数据作出的估计。此时,分析技术就显得非常有用了。 提示:用于需求预测的数据必须是干净并且准确的。如果不是这样的话,得到的结果将不准确,并且有可能导致你误入歧途。 4、市场趋势分析 每个企业都需要知道它自己的一个市场前进方向。市场趋势分析指的是确定市场是否在增长,停滞还是衰落,以及市场变化的快慢。了解市场的规模大小很重要,但了解的市场正趋势上涨还是下跌同样也很重要。为了监测市场动向,你可以做一些商业推演或情景分析以此判断市场未来的一个大概样子。客户调查或小组讨论有一定的帮助作用。 提示:始终警惕外部环境,如立法的修改,社会期望。 5、非客户分析 传统地,我们被告知我们需要了解我们的客户,以便于

【精品】(最新)案例四数据挖掘之七种常用的方法

数据挖掘之七种常用的方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据 进行挖掘。 1.分类 分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为 不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。 它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 2.回归分析 回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。 它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 3.聚类 聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。 它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 4.关联规则 关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 5.特征 特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。

营销数据分析常用方法

营销数据分析常用方法 市场营销是企业的命脉,然而,为数不少的市场部、销售部工作人员由于缺乏营销分析概念和方法,企业累积的大量数据得不到有效的利用,营销分析只停留在数据和信息的简单汇总和流水帐式的通报,缺乏对客户、业务、营销、竞争方面的深入分析,结果决策者只能凭着本能的反应来运作,决策存在很大的失误风险.本课程着眼于营销数据的分析和统计,教授如何挖掘数据背后的规律和隐含的信息.通过学习本课程您将可以掌握营销数据分析的重要概念和高级技能,提升科学管理和科学决策的水平。 三、数据规划和数据收集 没有数据,营销分析就成了空中楼阁。本节介绍数据搜集的思路和方法,为营销分析奠定坚实的基础。 1.思考:应该采集哪些数据 2.数据来源和收集途径 3.构建有效的数据采集系统 4.数据表的规划和设计 5.低成本的数据收集手段 6.利用新技术手段简化数据收集 四、常用分析方法 数据分析不是空洞理论,还需要有科学的技术手段和方法,本节演练常用的数据分析方法 1.对比分析 2.多维分析和统计 3.时间序列分析 4.数据分布分析 5.方差分析 五、竞争分析 企业总是在竞争中壮大,如果能提前预知竞争对手的信息和策略,企业更容易成功。 1.如何界定竞争对手 2.市场竞争的四个层次 3.需求的交叉弹性 4.品牌转换矩阵 5.行业竞争力分析 6.竞争分析矩阵 7.竞争对手数据收集 六、市场调查与置信度分析 市场调研是合法获取数据的重要来源,也是快速了解市场反应的途径,本节讨论市场调查的策划和统计方法。 1.如何策划一次市场调查 2.常规调查方法和网上调查方法 3.如何进行统计学上有效的抽样调查 4.理解误差的来源分析 5.如何对抽样结果进行统计 6.通过置信度分析计算调查误差

(完整版)常用数据分析方法论

常用数据分析方法论 ――摘自《谁说菜鸟不会数据分析》 数据分析方法论主要用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如主要从哪几方面开展数据分析?各方面包含什么内容和指标?数据分析方法论主要有以下几个作用: 理顺分析思路,确保数据分析结构体系化 把问题分解成相关联的部分,并显示它们之间的关系为后续数据分析的开展指引方向 确保分析结果的有效性及正确性 常用的数据分析理论模型 营销方面管理方面 4P PEST 用户使用行为5W2H STP理论时间管理 SWOT生命周期 逻辑树 金字塔 SMART原贝 U PEST分析法 PEST分析理论主要用于行业分析 PEST分析法用于对宏观环境的分析。宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量 对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

以下以中国互联网行业分析为例。此处仅为方法是用实力,并不代表互联网行业分析只需要作这几方面的分析,还可根据实际情况进一步调整和细化相关分析指标:

?国衆出台那些相关政策?有何彩响?脚还是促谨? ?相关法律育哪些?有何影响? ?GDP及増悅壬迓出口总磁增氏聿谓劉介络拒题失业率、居民可支配收入 利用5W2H分析法列出对用户购买行为的分析:(这里的例子并不代表用户购买 行为只有以下所示,要做到具体问题具体分析)■ 经济 ?中国网民与中国公民在认可规愎性^比例、年龄结构、人口分布、生活方 式、购买习億教育伏况嫌扶宗教信仰状况等方面(网民与国民是否有区 别? 锻术的发明、技术传抵更新、商品礎度、技术发离窗& ■国家重点支持顶目.国羸投入的研发费甩专利个数 5W2H分析法 5W2H分析理论的用途广泛,可用于用户行为分析、业务问题专题分析等。 r How1nu已1 k何价 What How 如何做 F-* k 5W2H 分 1 i k J r厂 i JVh o 何 k Ik——-J Wheni 何时

相关文档
相关文档 最新文档