文档库 最新最全的文档下载
当前位置:文档库 › 静电纺丝制备纳米纤维

静电纺丝制备纳米纤维

静电纺丝制备纳米纤维

静电纺丝制备MWNTs 高度取向的PSF/MWNTs-Epoxy 杂化纳米纤维

刘大伟,李旭,李刚,杨小平

北京化工大学有机/无机复合材料国家重点实验室,北京,100029

CFRP 复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性[1,2],然而单向纤维增强树脂基复合材料在垂直于纤维的方向力学性能较差,层间强度低,影响了CFRP 的

整体性能。本课题组采用静电纺丝的方法将MWNTs-Epoxy 预分散在纺丝液中[3],制备

PSF/MWNTs-Epoxy 杂化的纳米纤维膜,以碳纤维预浸布包覆的辊筒作为静电纺丝的接收器,通过将预浸料按照不同角度铺放于辊筒上以接收纳米纤维,来控制碳纳米管在复合材料中的取向,最终实现复合材料性能的可设计性。我们考察了MWNTs 环氧化改性效果,研究了不同MWNTs-Epoxy 含量对PSF/MWNTs-Epoxy 杂化纳米纤维膜微观形貌的影响。研究成果可总结为以下两方面:1)利用纯化、混酸化、环氧化等手段制备了MWNTs-Epoxy 。官能化MWNTs-Epoxy 的环氧基团接枝率为24.87%。MWNTs-Epoxy 在静电纺丝液中分散良好,且静电纺丝液的表面张力和电导率随MWNTs-Epoxy 含量的增加而提高。2)随着MWNTs-Epoxy 含量的升高,通过SEM 、TEM 照片可以看出,PSF/MWNTs-Epoxy 杂化纳米纤维的直径逐渐减少,通过取向红外和拉曼谱图研究发现PSF/MWNTs-Epoxy 杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy 的取向度逐渐提高。MWNTs-Epoxy 良好的分散于PSF/MWNTs-Epoxy 杂化纳米纤维轴向位置。

图 1 5wt% MWNTs-Epoxy 含量的PSF/MWNTs-Epoxy 杂化纳米纤维取向表征图

(a )SEM 照片(b )TEM 照片(c )取向红外谱图(d )偏振拉曼谱图

本研究为江苏省自然科学基金(BK2011227)资助

参考文献:

[1] Williams JC, Starke Jr EA. Progress in structural materials for aerospacesystems. Acta Metall 2003;51(10):5775–99.

[2] Ahmed K, Noor AK, Venneri SL, Donald B, Paul DB, Hopkins MA. Structurestechnology for future aerospace systems. J Comput Struct 2000;74:507–19.

[3] Gang Li , Xiaolong Jia , Zhibin Huang , Bo Zhu , Peng Li , Xiaoping Yang , Wuguo Dai. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybridnanofibers reinforced and toughened epoxy matrix, Materials Chemistry and Physics 134 (2012) 958-965 10μm 10μm (a) (b) (c) (d) 10μm

静电纺纳米纤维与药物控制释放

静电纺纳米纤维与药物控制释放 陈义旺博士、教授、博士生导师、洪堡学者。南昌大学化学系主任,理学院副院长。 摘要 将抗肿瘤药物通过静电纺丝的方法装载到纳米纤维中以实现药物的控制释放,载药纳米纤维具有较低的药物突释效应,延长药物释放时间,并且从纳米纤维中缓释的抗肿瘤药物能很好地抑制HepG-2细胞的生长。负载抗肿瘤药物的电纺纳米纤维膜纤维能很好的应用于药物缓释系统,对肿瘤进行定位治疗及癌症手术后的化疗有很好的应用前景。 药物的控制释放一直是药物治疗领域中的重要课题。纳米纤维具有纵横交错的纳米孔结构、尺寸可控性好、比表面积大,是一种良好的新型载药系统;纳米纤维是封装药物的理想材料,它不但能将固体药物以颗粒形式封装入纤维内,还可以将液体药物以双层纤维或链珠状纤维形式进行封装[1,2]。因此,纳米纤维及其复合材料在药物控释系统、组织工程支架、伤口敷料等领域均得到了广泛的应用[3,4]。 研究内容 1.溶液电纺或乳液电纺PEG-PLLA/明胶复合纤维纳米纤维担载亲水/疏水药物控制释放及抗肿 瘤活性研究[5-7]应用。PEG-PLLA纳米纤维作为大环内酯类抗生素药物布雷菲德菌素A(BFA)的控制释放系统,用HPLC测定药物BFA在PBS溶液中的释放曲线,结果表明药物可以长时间的控制释放。用MTT法对含有3%,6%,9%,12%和15%BFA的纳米纤维进行体外抗肿瘤活性测试(人肝癌HepG2细胞),细胞生长抑制率在72h分别为64%,77%,80%,81%和85%。结果证明担载BFA的PEG-PLLA纳米纤维(BFA/PEG-PLLA)的对药物BFA 有很好的控释效果,适合癌症的术后化疗。通过乳液电纺方法成功将亲水药物头孢拉定及疏水的药物五氟尿嘧啶装载入PLGA纤维中,同时装载天然蛋白明胶来提高纤维的细胞粘附能力。装载明胶的纤维具有很好亲水性及力学性能,乳液电纺纤维具有低的药物突释效应,具有低的毒性

静电纺丝工艺条件对复合材料中纤维形貌影响

静电纺丝工艺条件对复合材料中纤维形貌影响 赵小龙1,2 (1. 北京石油化工学院环境材料研究中心,北京102617;2. 北京化工大学材料科学与工程学院,北京100029) 摘要:静电纺丝是一种简单、方便的生产微米、纳米纤维的技术,其中可纺丝的材料主要包括聚合物、聚合物的混合物、聚合物与无机物的混合物。静电纺丝制得的纤维毡,具有孔隙率高、比表面积大等优点,可以用在夹心净化材料上,使过滤材料的过滤性能大大增强。本文首先简要介绍电纺丝制备原理及设备,并详细阐述下静电纺丝的主要工艺参数聚合物溶液浓度、纺丝电压、接收距离、溶剂性质和挤出速度对纤维形貌影响。 关键词:静电纺丝;纳米纤维;聚合物溶液浓度;纺丝电压;接收距离;溶剂性质;挤出速度 1 静电纺丝原理 静电纺丝是在溶液干法纺丝与熔体纺丝的基础上发展起来的,通过静电纺丝可以制备纳米或亚微米级的纤维。静电纺丝技术与传统纺丝技术有着明显的不同,即静电纺丝技术通过静电力作为牵引力来制备超细纤维。静电纺丝装置主要由三部分组成,即高压静电发生器、供给系统和接收装置,静电纺丝装置如图1所示[1]。从图中可以看出在静电纺丝工艺过程中,将聚合物熔体或溶液加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力。当电场力施加于液体的表面时,将在表面产生电流。相同电荷相斥导致了电场力与液体的表面张力的方向相反。这样,当电场力施加于液体的表面时,将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。在电场力增强的过程中,喷丝口表面的液滴就会从球状液滴被拉长为锥状,这个锥就是所谓的“泰勒锥”(Taylor cone) [2]。当电场强度增加至临界值时,电场力克服液滴的表面张力,从Taylor 锥中喷出,从而产生出一个震荡、不稳定的喷射流,喷射流在喷射过程中被快速拉伸变形,在此过程中溶剂迅速挥发,在接收板上最终得到成形的纤维。Fong[3]将静电纺丝过程分为三个阶段:(1)喷射流的产生和延伸;(2)鞭动不稳定性的形成和喷射流的进一步拉伸;(3)喷射流固化形成纳米纤维。 图1 静电纺丝装置示意图 2 纳米纤维 纳米纤维主要包括两个概念:一是严格意义上的纳米纤维,是指纤维直径小

纳米蜘蛛——静电纺丝纳米纤维工业化的武器

Production Nozzle-Less Electrospinning Nanofiber Technology Stanislav Petrik and Miroslav Maly Elmarco s.r.o. V Horkach 76/18, CZ-46007 Liberec, Czech Republic ABSTRACT The theoretical background and technical capabilities of the free liquid surface (nozzle-less) electrospinnig process is described. The process is the basis of both laboratory and industrial production machines known as Nanospider TM and developed by Elmarco s.r.o. Technical capabilities of the machines (productivity, nanofiber layer metrics, and quality) are described in detail. Comparison with competing/complementary technologies is given, e.g. nozzle electrospinning, nano-meltblown, and islets-in-the sea. Application fields for nanofiber materials produced by various methods are discussed. Consistency of the technology performance and production capabilities are demonstrated using an example of polyamide nanofiber air filter media. INTRODUCTION Electrospinning methods for creating nanofibers from polymer solutions have been known for decades [1, 2]. The nozzle-less (free liquid surface) technology opened new economically viable possibilities to produce nanofiber layers in a mass industrial scale, and was developed in the past decade [3]. Hundreds of laboratories are currently active in the research of electrospinning process, nanofiber materials, and their applications. Nanofiber nonwoven-structured layers are ideal for creating novel composite materials by combining them with usual nonwovens. The most developed application of this kind of materials is air filtration [4]. liquid filters and separators are being developed intensively with very encouraging results. Also well known are several bio-medical applications utilizing nanofiber materials, often from biocompatible/degradable polymers like PLA, gelatine, collagen, chitosan. These developing applications include wound care, skin-, vessel-, bone- scaffolds, drug delivery systems and many others. [3, 5]. Inorganic/ceramic nanofibers attract growing interest as materials for energy generation and storage (solar and fuel cells, batteries), and catalytic materials [6-10]. To fully explore the extraordinary number of application opportunities of nanofibers, the availability of reliable industrial-level production technology is essential. This paper intends to demonstrate that the technology has matured to this stage.

静电纺丝技术研究及纳米纤维的应用前景..

静电纺丝技术研究及纳米纤维的应用前景 引言: 术语“电纺”来源于“静电纺丝”。虽然电纺这一术语是20世纪90年代才开始使用,但是其基本思想可以追述到60年前。1934一1944年间,FomalaS[1]申请了一系列的专利,发明了用静电场力来制备聚合物纤维的实验装置。1952年,vonnegut和NeubauerI53)发明了电场离子化技术,得到了粒径(0.lmm)均匀、带电程度高的线流。1955年,Drozin进行了不同液体在高电压下,形成气溶胶的研究。1966年,Simons发明了一种装置,用静电场纺丝法制备出了很轻超薄的无纺织物,他在研究中发现,低浓度溶液纺出的纤维较短且细;高浓度溶液纺出的纤维长且连续[2]。1971年,Baumgarten采用静电纺丝法制备出了直径在0.05u m一1.1um的丙烯酸纤维。自从80年代,特别是近些年,由于纳米技术的兴起,使得静电纺丝技术再度引起了纳米材料研究人员的高度关注。采用静电纺丝技术可以很容易的制备出直径在几百微米到几百纳米甚至几十纳米的高质量纤维。目前为止,己经有近上百种高分子采用静电纺丝技术被纺成纳/微米纤维。这些纳/微米纤维有些己经广泛应用于纳米复合材料、传感器、薄膜制造、过滤装置,以及生物医用材料的加工和制造上。本文立足于静电纺丝技术的研究现状,分别从材料的化学组成、纤维的分布方式和特殊结构形态三个方面进行了阐述。同时,概括并展望了纳米纤维的应用领域与前景。 1静电纺丝的基本原理 在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷,受到一个与表面张力方向相反的电场力。当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”(Taylorcone)[3-6]。而当电场强度增加至一个临界值时,电场力就会液体的表面张力,从“泰勒锥”中喷出。喷射流在高电场的作用下发生震荡而不稳,产生频率极高的不规则性螺旋运动。

通过静电纺丝技术制备导电高分子纳米纤维【开题报告】

开题报告 应用化学 通过静电纺丝技术制备导电高分子纳米纤维 一、选题的背景与意义 静电纺丝技术是目前制备纳米纤维最重要的基本方法。由于能直接、连续制备聚合物纳米纤维,因而成为国内外的研究热点。利用静电纺丝技术制备导电聚合物纤维是今年来发展起来的一项新的技术,然而由于导电高分子具有不溶,不熔的特点,利用静电纺丝技术制备导电聚合物纤维过程中遇到了许多困难,主要的问题在于:第一,导电聚合物刚性结构的特性使得静电纺丝过程难以进行;第二,大多数关于静电纺丝制备导电聚合物纤维的研究和应用仅仅处于实验室阶段,因此,必须通过更加深入的研究来探索静电纺丝技术制备聚合物纤维的最科学、最有效的方法,这将作为一个刺激,来实现在工业中大规模生产可控、可重复利用的静电纺丝聚合体纤维。 二、研究的基本内容与拟解决的主要问题: 综述利用静电纺丝技术制备导电聚合物纳米纤维的方法及相应的导电聚合物纤维的用途,综合对比各种方法的优缺点。 制备聚2乙烯基吡啶纳米纤维,利用它作为模板制备聚吡咯纳米纤维,尝试新的合成导电聚合物纳米纤维的方法。 三、研究的方法与技术路线: 合成聚2乙烯基吡啶,将2-乙烯基吡啶在引发剂存在聚合,产生聚2-乙烯基吡啶。 将聚2-乙烯基吡啶同氯金酸混合后,通过静电纺丝直接在高压下纺成纳米纤维。 上述纳米纤维在吡咯蒸汽中进行气相聚合,制备成核壳结构的聚吡咯纳米纤维。四、研究的总体安排与进度: 2010.07.08至2010.07.11:翻译文献,熟悉实验流程,设计实验步骤; 2010.07.12至2010.08.10:通过静电纺丝技术制备导电高分子纳米纤维;2010.11.08至2010.12.25:完成文献综述,文献翻译和开题报告; 2011.04.18至2011.05.08:撰写论文,准备答辩; 2011.05.12至2011.05.19:论文答辩。 五、主要参考文献: [1].Ioannis S. Chronakis , Sven Grapenson , Alexandra Jakob . Science Direct

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

超疏水静电纺丝纳米纤维

超疏水静电纺丝纳米纤维 摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。 关键字:超疏水静电纺丝纳米纤维性能应用展望

Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications. Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook

静电纺丝法制备SrTiO_3多晶微纳米纤维

Vo.l 28 高等学校化学学报No .72007年7月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 1220~1222 静电纺丝法制备SrTi O 3多晶微纳米纤维 周险峰1,2,赵 勇2,曹新宇2,薛燕峰1,许大鹏1,江 雷2,苏文辉1 (1.吉林大学物理学院,长春130012;2.中国科学院化学研究所分子科学中心,北京100080) 摘要 应用静电纺丝法并结合So l g el 技术制备了SrT i O 3微纳米纤维.SE M,TEM 及电子衍射分析结果显示,于900 煅烧获得的纤维直径分布在50~400n m 之间,其典型直径约为280n m.XRD 分析结果表明,纤维由立方结构的S r T i O 3晶粒组成,平均晶粒尺寸为33n m. 关键词 静电纺丝;溶胶 凝胶;钛酸锶(Sr T i O 3);超细纤维 中图分类号 O 614 文献标识码 A 文章编号 0251 0790(2007)07 1220 03 收稿日期:2007 03 19. 基金项目:国家自然科学基金(批准号:30370406)资助. 联系人简介:许大鹏(1960年出生),男,博士,教授,博士生导师,主要从事稀土纳米材料研究.E m ai:l xudp@jlu .edu .cn 钛酸锶(Sr T i O 3)为典型的ABO 3钙钛矿型氧化物,由于具有高介电常数、低介电损耗和热稳定性好等优点,在电子、机械和陶瓷工业领域中已得到广泛应用[1].近年来,Sr T i O 3纳米材料的制备和研究 已引起了人们的极大兴趣,但已有研究主要集中于纳米粉体和纳米薄膜上 [2,3],而具有准一维结构的Sr T i O 3微纳米纤维的制备及研究还未见报道. 作为一种制备微纳米超细纤维重要而简单的方法,静电纺丝技术被应用于无机材料微纳米纤维的制备始于2002年[4],至今人们已制备出20多种无机材料超细纤维[5~7].当前国际上微米/纳米系统的研究热点是纳米材料的可控调变制备及其在纳电子学中的应用,通过制备尺寸、形貌和结构都可控的微米/纳米结构单元,进而研究组装分子电子器件、纳米结构传感器等新型器件.因此,制备具有准一维结构的Sr T i O 3微纳米电子陶瓷纤维,在纳电子学研究方面具有重要的应用价值.本文应用静电纺丝法并结合溶胶 凝胶(So l ge l)技术,制备了Sr T i O 3多晶微纳米纤维. 1 实验部分 1.1 试剂与仪器 乙酸锶[Sr(C H 3C OO )2 1/2H 2O )],分析纯,A lfa A esar 公司;钛酸四丁酯[T i(OC 4H 9)4],化学纯,北京化学试剂公司;聚乙烯吡咯烷酮(P VP), A.R.级,ALDR I C H 公司,平均分子量1300000;无水乙醇(C 2H 5OH )和冰醋酸(C H 3COOH )均为分析纯,北京化学试剂公司. JEOL JS M 6700F 型扫描电子显微镜(SE M );J EOL 100CX 型透射电子显微镜(TE M );R i g aku D /m ax 2500型X 射线衍射仪(XRD);STA 409PC 型差热 热重分析仪(TG DSC ,NETZSC H 公司). 1.2 前驱体溶胶的配制 在搅拌下,将0 54g 乙酸锶缓慢地加入到10mL 质量分数为10%的PVP 乙醇溶液中,再滴入1mL 冰醋酸,然后把0 85g 钛酸四丁酯边搅拌边滴入到上述溶液中,在室温下搅拌2h,得到前驱体溶胶. 1.3 静电纺丝 将前驱体溶胶加入到由玻璃注射器制成的纺丝器中(纺丝喷头内径为0 8mm ),用一根插入前驱体溶胶中的铜丝作阳极,铝箔作阴极,铝箔与水平面成30!角,阳极和阴极之间的垂直距离为15c m,在18kV 电压下静电纺丝,在铝箔上即得到无序排列的复合超细纤维. 1.4 Sr T i O 3微纳米纤维的制备 将从铝箔上取下来的复合纤维放入马弗炉中,以2 /m i n 的速率升温,在600,800和900 下分

认识静电纺丝

静电纺丝即在高压静电下用聚合物溶液进行纺丝的过程。静电纺丝可以制备直径在几十到几百纳米的纤维,产品具有较高的孔隙率和较大的比表面积,成分多样化,直径分布均匀,在生物医学、环境工程以及纺织等领域具有很高的应用价值。 原理 将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。 当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。

装置 静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。 高聚物

目前静电纺丝技术已经可用于几十种不同的高分子聚合物,既包括聚酯、聚酰胺、聚乙烯醇、聚丙烯腈等柔性高聚物的静电纺丝,也包括聚氨酯弹性体的静电纺丝以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的静电纺丝。 影响因素 静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。 溶液黏度对纤维性能的影响 同轴静电纺丝

同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。 同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。 应用

静电纺丝纳米纤维薄膜的应用进展_李蒙蒙

基金项目:国家自然科学基金(20904037)、江苏省自然科学基金(BK2009141); 作者简介:李蒙蒙(1988-),男,硕士研究生,主要从事静电纺丝制备纳米材料及其性质等方面的研究; *通讯联系人,E -mail :dy yang2008@sinano .ac .cn . 静电纺丝纳米纤维薄膜的应用进展 李蒙蒙1,2,朱 瑛1,仰大勇1*,蒋兴宇3,马宏伟1 (1.中国科学院苏州纳米技术与纳米仿生研究所,苏州 215125; 2.青岛大学物理科学学院,青岛 266071; 3.国家纳米科学中心,北京 100190) 摘要:静电纺丝是一种简单而高效制备高分子微纳米纤维的技术,由于设备和实验成本低、纤维产率高、制 备出的纤维比表面积比较大、适用性广泛等独特的优势,近些年来备受关注。静电纺丝的应用是静电纺丝研究 的最基本动力和终极目标,因此成为研究者一直努力的方向。为了研究静电纺丝应用的研究现状和主要发展 方向,本文综述了静电纺丝纳米纤维薄膜几个主要的应用领域,包括组织工程、药物缓释、纳米传感器、能源应 用、生物芯片和催化剂负载等,并展望了未来可能的发展方向。 关键词:静电纺丝;纳米纤维薄膜;应用进展 引言 静电纺丝是一种简便易行、可以直接从聚合物及复合材料制备连续纤维的方法,其制备的纳米纤维薄膜通常是以无纺布形式存在的。静电纺丝技术具有一些突出的优点:设备和实验成本较低,纤维产率较高,制备出的纤维比表面积比较大(纤维直径在几十纳米到几个微米的范围内),并且适用于许多不同种类的材料。这些优点使静电纺丝纳米纤维薄膜在许多领域具有广泛的潜在应用 [1~6]。静电纺丝的原理和设备如图1(a )所示[7],高压电源提供高压,正极接在医用注射器的不锈钢针头上, 负极(接地)接在铝箔上。电压一般在5kV 到30kV 之间,针头到收集极间的距离(工作距离)一般在5cm 到20cm 之间。实验时,将纺丝溶液装入注射器内,并加上高压。由于高压电场的作用,在针头处形成“泰勒锥”。溶液在高电压作用下形成射流,并经过多次分裂,同时溶剂快速挥发,在收集板上就得到了微纳米尺度的纤维,如图1(b )&(c )所示 。 图1 (a )静电纺丝的装置示意图及得到的聚合物纳米纤维的(b )数码照片和(c )电镜照片[7] Fig ure 1 (a )Schematic illustration of electr ospinning se t -up ;(b )Dig ital came ra imag e and (c )SEM image o f electro spun nanofiber s co llected on an aluminum fo il [7] 近年来,静电纺丝逐渐成为材料科学与纳米科技的研究热点之一,吸引着全世界的科技工作者。纵观近期已发表的相关文献,研究的内容包括以下几个方面:(1)新材料静电纺丝的制备,主要包括生物材

静电纺丝资料

1.静电纺丝的定义 静电纺丝又称“电纺”, 是一种使带电荷的聚合物溶液或熔体在静电场中射流来制备聚合物超细纤维的加工方法。在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷, 受到一个与表面张力方向相反的电场力。当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”,而当电场强度增加至一个临界值时,电场力就会克服液体的表面张力,从“泰勒锥”中喷出。在高速震荡中,喷射流被迅速拉细,溶剂也迅速挥发,最终形成直径在纳米级的纤维,并以随机的方式散落在收集装置上,形成无纺布。 2.静电纺丝的生物材料领域应用可行性 由电纺丝纤维制得的无纺布具有孔隙率高、比表面积大、纤维精细程度与均一性高、长径比大等优点, 这些优点使其具备了现实的和潜在的众多应用价值。由电纺法制备出的无纺布具有良好的生物相容性和结构相容性,可以在生物医学材料中广泛应用。通过对材料加工过程的调控,可以实现电纺丝材料在结构、形貌、组分和功能上满足生物医用材料的要求。 3.用于组织工程支架制备的纺丝工艺 ①溶液浇铸成孔剂滤出法。该法所用的成孔剂含量低,由于采用溶液浇铸于器皿中,从而导 致成孔剂下沉,孔隙分布不均匀以及上下表面形态出现诧异。 ②三维层化法。通过制备多孔膜,然后再通过溶剂把各层粘接起来,从而形成三维的支架。该法工艺复杂,而且在粘接过程中,粘接部分孔被封闭,从而形成界面,使材料内部形态不均匀。③熔融加工法。该法在聚合物的熔点以上,把成孔剂与聚合物共混挤人模具。冷却得到预定形状的多孔支架。该法的缺点是在挤出机里,由于熔体与成孔剂的密度相差较大,因而混合难以均匀。而且部分聚合物,尤其是生物可降解的聚合物在熔融加工时,容易热降解。 ④相分离法。该法采用溶液混合物冷却到溶剂的熔点以下,从而产生相分离。再通过真空干燥,从而得到多孔支架。该法的缺点是所得的孔径一般在10μm 以下,而且控制较为困难。 ⑤高压二氧化碳法。该法采用把已成型的聚合物暴露于高压二氧化碳。再通过减压把溶于聚

静电纺丝纳米纤维膜在过滤领域的应用研究

建设科技 ∣ 81部品技术与应用 建设科技CONSTRUCTION SCIENCE AND TECHNOLOGY 2018年11月上 总第371 期1 前言 随着现代化进程的加快,污染问题也越来越严重。 空气中漂浮的颗粒物浓度超标,由此形成的雾霾天气不 仅影响人们的生活,更是严重危害人民的身心健康;水 资源的匮乏也使得污水处理问题引起人们的极大关注。 因此,开发出有效拦截污染物的过滤材料是全世界共同 的目标。静电纺制备的纤维直径可达到微纳米级,且纤 维直径在一定的程度上可以进行有效调控,大到几微米 小到几十纳米。静电纺丝纳米纤维因其优良的性能被引静电纺丝纳米纤维膜在过滤领域的应用研究 方梦珍1 张弘楠1 覃小红1 匡宁2 (1.东华大学纺织学院,上海 201620;2.中材科技股份有限公司,江苏南京 210012) [摘要]静电纺丝纳米纤维膜具有很高的比表面积、孔隙率和通透性,在多个领域都有着不可替代的作用,尤其是过滤领域。本文简要介绍了近年来国内外静电纺丝纳米纤维膜在空气过滤和液体过滤领域中的研究进展。项目团队在功能型纳米纤维过滤材料研究及产业化方面取得的研究成果,展望了未来在被动式建筑室内空气质量提升方面的应用趋势。 [关键词]静电纺丝;纳米纤维膜;空气过滤;液体过滤;被动式建筑 Progress in Application of Electrospun Nanofibrous Membranes for Filtration Fang Mengzhen 1, Zhang Hongnan 1, Qin Xiaohong 1, Kuang Ning 2 (1.College of Textile of Donghua University, Shanghai, 201620; 2.Sinoma Science & Technology Co., Ltd., Nanjing, 210012, Jiangsu) Abstract : Electrospun nanofibrous membranes enjoy high specific surface area, porosity and permeability, and have an irreplaceable role in many fields, especially in the field of filtration. This review briefly summarizes the progress on application of electrospun nanofibrous membranes in the field of air filtration and liquid filtration in recent years as well as the achievements of the project team in the research and industrialization of functional nanofiber filtration materials. The application trend to improve indoor air quality in passive buildings in the future is prospected. Keywords : Electrospun, nanofibrous membrane, air filtration, liquid filtration, passive buildings 入过滤领域,表现出极大的优势。2 静电纺丝的发展静电纺丝即高分子流体在电场下受到静电力而拉伸成丝的过程,最终固化形成纤维。其最早可以追溯到18世纪中,一种牛顿流体的静电雾化。但是真正被世人认可的静电纺丝的开端是1934年Formhals 申请的关于纺丝装置的专利[1-3],这是首次利用高压静电制备纤维的装置,其专利详细描述了高分子溶液如何在高压DOI: 10.16116/https://www.wendangku.net/doc/cb4478499.html,ki.jskj.2018.21.014

静电纺丝纳米纤维在过滤材料中的应用

静电纺丝纳米纤维在过滤材料中的应用 戚妙北京永康乐业科技发展有限公司 1.静电纺过滤材料简述 一般说来,人们对于过滤材料原材料的甄选基本会在以下几种材料中进行:天然纤维、合成纤维、玻璃纤维、陶瓷、矿物等等[1-2]。按照不同的加工工艺这些过滤材料可分为以下几类[3]:①机织物、针织物、编织网和纤维束等;②纺粘和熔喷无纺布;③多孔陶瓷材料;④有机膜和无机膜材料; ⑤静电纺丝材料。 传统纤维过滤材料是直通的孔隙,其孔隙率也只有30%~40%[4]。从生产工艺流程角度审视,传统纤维织造过滤材料流程长,产品的生产效率低,主要通过经纬纱之间的孔隙进行过滤,滤料本身产生的阻力也比较大;且织造成型的过滤材料必须在其形成粉尘层之后,才能起到阻挡较小颗粒状物质的作用,如果过滤材料还没有形成粉尘层、过滤层清灰或者其它原因破坏了滤料的粉尘层时,就会导致传统纤维滤料的过滤效率大幅下降。 在过滤材料上运用静电纺丝技术有非常多的优点,现将其归纳成以下几个方面[5-9]。 (1)纤维直径小,均一性好。提高纤维滤材过滤性能的有效方法之一就是降低其纤维的直径,因为对于由直径数十微米的纤维制备出的纤维过滤器,随着纤维直径的降低滤材的过滤效率会得到提高。 (2)小孔径、高孔隙率及高通量。运用静电纺丝技术的纤维孔隙率可达80%~90%,这种结构的滤材在有效地去除亚微米级别以及微米级别的颗粒的同时,对水流只会产生较小的阻碍比。 (3)大比表面积、强吸附力。静电纺纤维有非常大的比表面积,这种结构大大地增加了颗粒沉积在纤维滤材表面的几率,这会对过滤的效果产生巨大的改观。其次,当过滤的颗粒非常小时,这些细小的颗粒会堆积在膜表面,产生所谓的“层效应”,也会使得静电纺丝薄膜的有效孔径尺寸显著下降。 (4)可再生性、节约环保。在实际的过滤过程中,大部分的杂质会留在静电纺丝薄膜的表面,只有其他很少的一部分颗粒会在静电纺薄膜内部和底部沉积,这就决定了该过滤材料方便清洁的特性,它的可持续再生的吸附功能有利于环保要求并会降低成本。 (5)低成本、种类多及工艺可控。静电纺丝已经是高效制备纳米级纤维材料的主要途径之一,它的优点甚多,可纺物质种类涵盖广、生产制造的装置简单、纺丝成本低廉、纺丝工艺可控等等。静电纺丝技术已经成功制备出多种纳米纤维,包括有机、有机/无机复合和无机纳米纤维。 目前应用静电纺丝技术的纳米纤维过滤材料已经可以应用于诸多高要求的过滤领域,其对直径在0.3um以下的颗粒,过滤效率可达到99.97%以上,也由于它出色的过滤精度,该材料具备了广泛应用于电子、生物、医药和防护等领域的前景[10]。 2.静电纺丝在过滤材料的应用 根据不同的应用领域可将对于静电纺丝过滤材料的研究分为以下三个方面: 2.1气体过滤

静电纺丝法制备pvp纳米纤维研究进展

静电纺丝法制备pvp纳米纤维研究进展 学院:材料科学与工程学院 专业班级:材料化学151 学生姓名: 学号: 指导教师:1 成绩: 2018年6 月29 日 静电纺丝法制备pvp纳米纤维研究进展

王逸凡 (材料科学与工程学院材料化学151班) 摘要:采用双针尖平行放置的一对细小铜针作为接收装置,聚乙烯基吡咯烷酮(PVP)无水乙醇质量分数为10%,电压25kV,在不同的旋转数下纺出了PVP纳米纤维绳在电纺丝喷丝针头和接收铜针间的静电库仑引力,以及纺丝间库仑斥力的双重作用下,电纺出PVP纳米纤维,纺丝电源中断后,一端的铜针固定,另一端作高速旋转,在接收器铜针的高速旋转下最终制得PVP纳米纤维用扫描电子显微镜(SEM)对其进行表征实验结果表明,接收器旋转速度和接收距离对多纤维结构的形貌有显著影响讨论了纳米纤维的形成机理。 关键词:聚乙烯吡咯烷酮;静电纺丝;纳米纤维 1.引言 静电纺丝技术是一种简便低耗的微米和亚微米纤维制备技术高压电场克服了带电聚合物溶液或熔体的表面张力,形成喷射细流,在向负极移动的过程中溶剂蒸发,最终以无纺布的形式收集在接收装置上[1-3]一般来说,从喷嘴形成的液体纤维束在向负极移动的过程中,经常会出现某些特殊的几何形状,从理论上讲,这些形状能够随着纤维的固化而被保存下来Renekerl[4-5]等相继报道了花环纤维和带状纤维的制备过程,并以PEO 为原料获得了螺旋结构的纤维在此基础上, Teppera等[6]从PEO/PA SA双组分溶液中得到了较为规则的螺旋纤维德国的PaulD.Dalton等人[7]以一对平行的金属圆环为接收器当两圆环之间布满了定向纤维的长丝之后,转动其中的一个圆环,制备出定向纳米纤维的编织绳纳米纤维绳具有很高的柔韧性和孔隙度,在微电子器件、高级光学材料和药物传输等领域有着广泛的应用杨帆等人以双针尖为接收器,在两根接地的针尖之间收集到了定向的纳米纤维双针尖接收器方法收集到的纤维更为集中,取向程度也更为理想。至今为止,从单组分非导电高分子中得到具有规则纳米纤维绳结构的纤维还比较少见本文以平行相对的一对铜针尖为接收器,纺丝电源中断后,高速旋转其中一端的铜针,将收集到的定向纤维编织成缠绕紧密的聚乙烯吡咯烷酮的纤维绳,研究了螺旋纤维的形成条件、接收器装置和纺丝距离对纤维形貌的影响,讨论了螺旋纤维的形成机理. 1.1原理 近年来的研究已经证实静电纺丝技术一般来说包括三个步骤:(1)流体溶液喷射出来,沿着直线方向延伸;(2)随着电动弯曲不稳定性的增长,喷射流将会发生一定程度上的分

多种聚乳酸静电纺丝纤维膜及其制备方法

多种聚乳酸静电纺丝纤维膜及其制备方法 专利名称申请号申请人摘要 一种增强耐热聚 乳酸静电纺丝纤维膜及其制备方法CN201610 290831.6 代秀;王新龙;曹雨;李嘉玮;石小卫;霍长安本发明公开了一种增强耐热聚乳酸静电纺丝纤维膜 及其制备方法。该静电纺丝纤维膜包括聚乳酸基体树 脂和复合增强剂,所述的复合增强剂为表面负载沸石 咪唑酯骨架ZIF?8的氧化石墨烯片。所述的静电纺 丝纤维膜是采用溶液共混的方法将一定浓度的聚乳酸溶液与复合增强剂的N’N?二甲基甲酰胺的超声分散液按配比进行共混,然后在一定的工艺条件下通过静电纺丝法制得。与纯的聚乳酸纤维膜相比,聚乳酸 纤维膜的拉伸强度和断裂伸长率均明显提高,同时其 耐热性显著增强,并且产品可生物降解,安全可靠, 无异味,对人体和环境的危害及污染程度低,在生物 医学,包装,纺织,交通、电子、电器设备等领域有 着广泛的应用价值。 一种具有阻隔性 的高强韧聚乳酸复合膜的制备方法CN201510 216265.X 陈一本发明涉及一种具有阻隔性的高强度聚乳酸复合膜 的制备方法,其过程为将聚乳酸、聚乳酸接枝马来酸 酐、聚己内酯、马来酸酐-异丁基接枝POSS 溶解于二氯甲烷溶液得到透明溶液,后将溶液移于槽中作为底液,在溶液中引入静电纺丝尼龙纳米纤维,后流延于聚四氟乙烯模具中,静置后干燥蒸发溶液得到复合 膜。该复合膜具有优异的强度、韧性,并对氧气具有 良好的阻隔性,可应用于环保包装膜领域。 一种纳米纤维增 强的聚乳酸/聚己内酯复合材料及其制备方法CN201310 278728.6 杨桂生;刘凯本发明一种纳米纤维增强的聚乳酸/聚己内酯复合材 料及其制备方法,制备方法包括:将聚乳酸与聚己内酯磁力搅拌后加入静电纺丝装置中进行静电纺丝,将干燥得电纺纤维增强体片材和聚己内酯片材以layer-by-layer 型结构叠加,用液压成型机压制成型 后,再在硫化仪上冷压制得。使聚乳酸/聚己内酯共 混物电纺纤维与聚己内酯基体紧密结合,使得制备的

静电纺丝制备纳米纤维

静电纺丝制备MWNTs 高度取向的PSF/MWNTs-Epoxy 杂化纳米纤维 刘大伟,李旭,李刚,杨小平 北京化工大学有机/无机复合材料国家重点实验室,北京,100029 CFRP 复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性[1,2],然而单向纤维增强树脂基复合材料在垂直于纤维的方向力学性能较差,层间强度低,影响了CFRP 的 整体性能。本课题组采用静电纺丝的方法将MWNTs-Epoxy 预分散在纺丝液中[3],制备 PSF/MWNTs-Epoxy 杂化的纳米纤维膜,以碳纤维预浸布包覆的辊筒作为静电纺丝的接收器,通过将预浸料按照不同角度铺放于辊筒上以接收纳米纤维,来控制碳纳米管在复合材料中的取向,最终实现复合材料性能的可设计性。我们考察了MWNTs 环氧化改性效果,研究了不同MWNTs-Epoxy 含量对PSF/MWNTs-Epoxy 杂化纳米纤维膜微观形貌的影响。研究成果可总结为以下两方面:1)利用纯化、混酸化、环氧化等手段制备了MWNTs-Epoxy 。官能化MWNTs-Epoxy 的环氧基团接枝率为24.87%。MWNTs-Epoxy 在静电纺丝液中分散良好,且静电纺丝液的表面张力和电导率随MWNTs-Epoxy 含量的增加而提高。2)随着MWNTs-Epoxy 含量的升高,通过SEM 、TEM 照片可以看出,PSF/MWNTs-Epoxy 杂化纳米纤维的直径逐渐减少,通过取向红外和拉曼谱图研究发现PSF/MWNTs-Epoxy 杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy 的取向度逐渐提高。MWNTs-Epoxy 良好的分散于PSF/MWNTs-Epoxy 杂化纳米纤维轴向位置。 图 1 5wt% MWNTs-Epoxy 含量的PSF/MWNTs-Epoxy 杂化纳米纤维取向表征图 (a )SEM 照片(b )TEM 照片(c )取向红外谱图(d )偏振拉曼谱图 本研究为江苏省自然科学基金(BK2011227)资助 参考文献: [1] Williams JC, Starke Jr EA. Progress in structural materials for aerospacesystems. Acta Metall 2003;51(10):5775–99. [2] Ahmed K, Noor AK, Venneri SL, Donald B, Paul DB, Hopkins MA. Structurestechnology for future aerospace systems. J Comput Struct 2000;74:507–19. [3] Gang Li , Xiaolong Jia , Zhibin Huang , Bo Zhu , Peng Li , Xiaoping Yang , Wuguo Dai. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybridnanofibers reinforced and toughened epoxy matrix, Materials Chemistry and Physics 134 (2012) 958-965 10μm 10μm (a) (b) (c) (d) 10μm

相关文档
相关文档 最新文档