文档库 最新最全的文档下载
当前位置:文档库 › 光电成像系统

光电成像系统

光电成像系统
光电成像系统

光电成像系统

[教学目的]

1、掌握CCD的结构和工作原理、光电成像原理、光电成像光学系统;

2、了解微光像增强器件和纤维光学成像原理。

[教学重点与难点]

重点:CCD的结构和工作原理、光电成像原理、光电成像光学系统的组成。

难点:CCD的结构和工作原理、调制传递函数的分析。

成像转换过程有四个方面的问题需要研究:

能量方面——物体、光学系统和接收器的光度学、辐射度学性质,

解决能否探测到目标的问题

成像特性——能分辨的光信号在空间和时间方面的细致程度,对多

光谱成像还包括它的光谱分辨率

噪声方面——决定接收到的信号不稳定的程度或可靠性

信息传递速率方面

(成像特性、噪声——信息传递问题,决定能被传递的信息量大小)

景噪声景

声声

光电成像器件是光电成像系统的核心。

§1 固体摄像器件

固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。

固体摄像器件主要有三大类:

电荷耦合器件(Charge Coupled Device,即CCD)

互补金属氧化物半导体图像传感器(即CMOS)

电荷注入器件(Charge Injenction Device,即CID)

一、电荷耦合摄像器件

电荷耦合器件(CCD)特点)——以电荷作为信号

CCD的基本功能——电荷存储和电荷转移

CCD工作过程——信号电荷的产生、存储、传输和检测的过程1.电荷耦合器件的基本原理

(1)电荷存储

构成CCD的基本单元是MOS(金属-氧化物-半导体)电容器

电荷耦合器件必须工作在瞬态和深度耗尽状态

(2)电荷转移

以三相表面沟道CCD为例

表面沟道器件,即SCCD(Surface Channel CCD)——转移沟道在界面的CCD器件

体内沟道(或埋沟道CCD)

即 BCCD(Bulk or Buried Channel CCD)——用离子注入方法改变转移沟道的结构,从而使势能极小值脱离界面而进入衬底内部,形成体内的转移沟道,避免了表面态的影响,使得该种器件的转移效率高达%以上,工作频率可高达100MHz,且能做成大规模器件(3)电荷检测

浮置扩散输出

CCD输出信号的特点是:信号电压是在浮置电平基础上的负电压;每个电荷包的输出占有一定的时间长度T。;在输出信号中叠加有复位期间的高电平脉冲。

对CCD的输出信号进行处理时,较多地采用了取样技术,以去除浮置电平、复位高脉冲及抑制噪声。

2.电荷耦合摄像器件的工作原理

CCD的电荷存储、转移的概念 + 半导体的光电性质——CCD摄像器件

按结构可分为线阵CCD和面阵CCD

按光谱可分为可见光CCD、红外CCD、X光CCD和紫外CCD

可见光CCD又可分为黑白CCD、彩色CCD和微光CCD

(1)线阵CCD

线阵CCD可分为双沟道传输与单沟道传输两种结构

(2)面阵CCD

常见的面阵CCD摄像器件有两种:行间转移结构与帧转移结构。

二、电荷耦合摄像器件的特性参数 1. 转移效率

电荷包从一个栅转移到下一个栅时,有η部分的电荷转移过去,余下ε部分没有被转移,ε称转移损失率。

εη-=1

一个电荷量为o Q 的电荷包,经过n 次转移后的输出电荷量应为:

n o n Q Q η=

总效率为: n

o n Q Q η=/ 2. 不均匀度

光敏元的不均匀与CCD 的不均匀。

本节讨论光敏元的不均匀性,认为CCD 是近似均匀的,即每次转移的效率是一样的。

光敏元响应的不均匀是由于工艺过程及材料不均匀引起的,越是大规模的器件,均匀性问题越是突出,这往往是成品率下降的重要原因。

定义光敏元响应的均方根偏差对平均响应的比值为CCD 的不均

匀度σ:

2

1)(11o N

n on

o V V

N

V ∑=-=

σ

∑==

N n on

o V

N

V 1

1

式中on V 为第n 个光敏元原始响应的等效电压,o V 为平均原始响应等效电压;N 为线列CCD 的总位数。

由于转移损失的存在,CCD 的输出信号n V 与它所对应的光敏元的原始响应on V 并不相等。根据总损失公式,在测得n V 后,可求出on V :

np n

on V V η=

式中P 是CCD 的相数

3. 暗电流

CCD 成像器件在既无光注入又无电注入情况下的输出信号称暗信号,即暗电流。

暗电流的根本起因在于耗尽区产生复合中心的热激发。 由于工艺过程不完善及材料不均匀等因素的影响,CCD 中暗电流密度的分布是不均匀的。

暗电流的危害有两个方面:限制器件的低频限、引起固定图像噪声

4. 灵敏度(响应度)

它是指在一定光谱范围内,单位曝光量的输出信号电压(电流)。 5. 光谱响应

CCD 的光谱响应是指等能量相对光谱响应,最大响应值归一化为100%所对应的波长,称峰值波长max λ,通常将10%(或更低)的响应点所对应的波长称截止波长。有长波端的截止波长与短波端的截止波

长,两截止波长之间所包括的波长范围称光谱响应范围。

6. 噪声

CCD的噪声可归纳为三类:散粒噪声、转移噪声和热噪声。

7. 分辨率

分辨率是摄像器件最重要的参数之一,它是指摄像器件对物像中明暗细节的分辨能力。测试时用专门的测试卡。目前国际上一般用MTF(调制传递函数)来表示分辨率。

8. 动态范围与线性度

光敏元满阱信号

动态范围=等效噪声信号

线性度是指在动态范围内,输出信号与曝光量的关系是否成直线关系。

三、CMOS摄像器件

采用CMOS技术可以将光电摄像器件阵列、驱动和控制电路、信号处理电路、模/数转换器、全数字接口电路等完全集成在一起,可以实现单芯片成像系统。

1. CMOS像素结构

无源像素型(PPS)、有源像素型(APS)

(1)无源像素结构

无源像素单元具有结构简单、像素填充率高及量子效率比较高的优点。但是,由于传输线电容较大,CMOS无源像素传感器的读出噪声较高,而且随着像素数目增加,读出速率加快,读出噪声变得更大。(2)有源像素结构

光电二极管型有源像素(PP-APS)——大多数中低性能的应用

光栅型有源像素结构(PG-APS)——成像质量较高

CMOS有源像素传感器的功耗比较小。但与无源像素结构相比,有源像素结构的填充系数小,其设计填充系数典型值为20%-30%。在CMOS上制作微透镜阵列,可以等效提高填充系数。

2. CMOS摄像器件的总体结构

工作过程:首先,外界光照射像素阵列,产生信号电荷,行选通逻辑单元根据需要,选通相应的行像素单元,行像素内的信号电荷通

过各自所在列的信号总线传输到对应的模拟信号处理器(ASP)及A/D 变换器,转换成相应的数字图像信号输出。行选通单元可以对像素阵列逐行扫描,也可以隔行扫描。隔行扫描可以提高图像的场频,但会降低图像的清晰度。行选通逻辑单元和列选通逻辑单元配合,可以实现图像的窗口提取功能,读出感兴趣窗口内像元的图像信息。

3. CMOS与CCD器件的比较

CCD摄像器件——有光照灵敏度高、噪声低、像素面积小等优点。但CCD光敏单元阵列难与驱动电路及信号处理电路单片集成,不易处理一些模拟和数字功能;CCD阵列驱动脉冲复杂,需要使用相对高的工作电压,不能与深亚微米超大规模集成(VLSI)技术兼容,制造成本比较高。

CMOS摄像器件——集成能力强、体积小、工作电压单一、功耗低、

动态范围宽、抗辐射和制造成本低等优点。目前CMOS单元像素的面积已与CCD相当,CMOS已可以达到较高的分辨率。如果能进一步提高CMOS

器件的信噪比和灵敏度,那么CMOS器件有可能在中低档摄像机、数码相机等产品中取代CCD器件。

§2 光电成像原理

一、光电成像系统的基本结构

1. 光机扫描方式

串联扫描并联扫描串并联混合扫描

2. 电子束扫描方式

3. 固体自扫描方式

上述的分类方法不是绝对的,有的光电成像系统是不同扫描方式的结合。

从目前情况看,光机扫描及固体自扫描方式的光电成像系统占主导地位。

二、光电成像系统的基本技术参数

1. 光学系统的通光口径D和焦距f/

2. 瞬时视场角α、β

3. 观察视场角W H、W V

4. 帧时T f和帧速?F

5. 扫描效率η

f fov T T =

η

6. 滞留时间d τ

对光机扫描系统而言,物空间一点扫过单元探测器所经历的时间称为滞留时间d τ,探测器在观察视场中对应的分辨单元数为:

αβ

V

H W W n =

由d τ的定义,有:

?

=

=

F W W n T V H f d αβη

ητ

光电成像系统的综合性能参数是在以上各基本技术参数的基础上作进一步的综合分析得出的。

§3 红外成像光学系统

红外成像光学系统应满足以下几方面的基本要求:物像共轭位置、成像放大率、一定的成像范围,以及在像平面上有一定的光能量和反映物体细节的能力(即分辨率)。 一、理想光学系统模型

牛顿公式:f f x x /

/=,

/

/

/f x x f y y -=-==β 高斯公式://

111f l l =-,

l l /=β 二、光学系统中的光阑 1. 孔径光阑 2. 视场光阑

3. 渐晕光阑

4. 消杂光光阑

三、红外成像光学系统的主要参数 1. 焦距f ′

决定光学系统的轴向尺寸,f ′越大,所成的像越大,光学系统一般也越大。 2. 相对孔径D/f ′

相对孔径定义为光学系统的入瞳直径D 与焦距f ′之比,相对孔径的倒数叫F

数,

D f F /

=

数。

相对孔径决定红外成像光学系统的衍射分辨率及像面上的辐照度。

衍射分辨率:

///22

.183.3f D D f λ

λπσ=?=

像面中心处的辐照度计算公式为:

2

2

//2/sin n n U L K E ??=π

3. 视场

四、光学系统的像差

光学系统近轴区具有理想光学系统的性质,光学系统近轴区的成像被认为是理想像。

实际光学系统所成的像和近轴区所成的像的差异即为像差。 光学系统对单色光成像时产生单色像差,分为五类:球面像差(球差)、彗形像差(彗差)、像散差(像散)、像面弯曲(场曲)和畸变。

对多色光成像时,光学系统除对各单色光成分有单色像差外,还产生两种色差:轴向色差和垂轴色差(亦称倍率色差)。

五、红外光学系统的特点

由于红外辐射的特有性能,使得红外光学系统具有以下一些特点:

(1)红外辐射源的辐射波段位于1μm以上的不可见光区,普通光学玻璃对μm以上的光波不透明,而在所有有可能透过红外波段的材料中,只有几种材料有必需的机械性能,并能得到一定的尺寸,如锗、硅等,这就大大限制了透镜系统在红外光学系统设计中的应用,使反射式和折反射式光学系统占有比较重要的地位。

(2)为了探测远距离的微弱目标,红外光学系统的孔径一般比较大。

(3)在红外光学系统中广泛使用各类扫描器,如平面反射镜、多面反射镜、折射棱镜及光楔等。

(4)8至14μm波段的红外光学系统必须考虑衍射效应的影响。

(5)在各种气象条件下或在抖动和振动条件下,具有稳定的光学性能。

鉴于上述特点,设计红外光学系统时,应遵循下列原则:

(1)光学系统应对所工作的波段有良好的透过性能。

(2)光学系统在尺寸、像质和加工工艺许可的范围内,应具有尽可能大的相对孔径,以保证系统有高的灵敏度。

(3)光学系统应对背景噪声有较强的抑制能力,提高输入信噪比。

(4)光学系统的形式和组成应有利于充分发挥探测器的效能,如合理利用光敏元面积,保证高的光斑均匀性等。

(5)光学系统及组成元件力求简单。

(6)合理选择扫描方式及扫描器的类型。

六、典型的红外光学系统

红外光学系统主要由红外物镜系统和扫描系统组成。

1. 红外物镜系统

(1)透射式红外光学系统

优点:无挡光,加工球面透镜较容易,通过光学设计易消除各种像差。

缺点:光能损失较大,装配调整比较困难。

(2)反射式红外光学系统

由于红外辐射的波长较长,能透过它的材料很少,因而大都采用反射式红外光学系统。按反射镜截面的形状不同,反射系统有球面形、抛物面形、双曲面形或椭球面形等几种。

牛顿光学系统:

卡塞格伦系统:

格利高利系统:

(3)折反射组合式光学系统施密特系统:

马克苏托夫系统:

红外探测

2. 扫描系统

平行光束扫描

会聚光束扫描

§4 红外成像系统的综合特性

红外成像系统性能的综合量度指标——空间分辨率、温度分辨率空间分辨率——调制传递函数(MTF)

温度分辨率——噪声等效温差(NETD)

最小可分辨温差(MRTD)

最小可探测温差(MDTD)

一、调制传递函数(MTF)

1. 基本概念

红外成像系统可以看作是一个低通线性滤波器,给红外成像系统输入一个正弦信号(即给出一个光强正弦分布的目标),输出仍然是同一频率的正弦信号(即目标成的像仍然是同一空间频率的正弦分

布),只不过像的对比有所降低,位相发生移动。对比降低的程度和位相移动的大小是空间频率的函数,被称为红外成像系统的对比传递函数(MTF )和位相传递函数(PTF ),这个函数的具体形式则完全由红外成像系统的成像性能所决定,因此传递函数客观地反映了成像系统的成像质量,红外成像系统存在一个截止频率,对这个频率,正弦目标的像的对比降低到0。

目标经系统成像后一般都是能量减少,对比降低和信息衰减。 通常所谓的分辩率,是将物体结构分解为线或点,这只是分解物体方法的一种。另一种方法是将物体结构分解为各种频率的谱,即认为物体是由各种不同的空间频率组合而成的。这样红外成像系统的特性就表现为它对各种物体结构频率的反应:透过特性、对比变化和位相推移。

空间频率定义为周期量在单位空间上变化的周期数:

设有亮暗相间的等宽度条纹图案,两相邻条形中心之间距离x T 称为空间周期(mm ),x T 的倒数称为空间频率(单位是线对/毫米,即lp/mm )。在红外成像系统中通常用单位弧度中的周期数来表示(c/mrad ),若观察点O 与图案之间的距离为R (m ),则R T x x /=θ(单位mrad)称为角周期,其倒数即为(角)空间频率x f :x x x T R f //1==θ

线性周期

R(m)

物体的调制度(对比度)定义:

o o b b M 1=

光学系统对某一频率的调制传递函数MTF 为:

o i x M M

f MTF =

)(

f x

2. 红外成像过程中各个环节的调制传递函数

红外成像系统模型如前所述,根据线性滤波理论,对于由一系列具有一定频率特性(空间的或时间的)的分系统所组成的红外成像系统,只要逐个求出分系统的传递函数,其乘积就是整个系统的传递函数。

(1)光学系统的调制传递函数MTF 0

(2)探测器的MTF d (3)电子线路的MTF e (4) 显示器的MTF m (5)大气扰动的MTF om (6)人眼调制传递函数MTF eye

人眼能发现的能量起伏为,即最大能量为1,最低能量是时也能发现,所以人眼能接收感知的极限调制度为,目视仪器各个环节的传递函数值可以以此作为考虑的出发点。 (7)系统的传递函数MTF

红外成像系统总的传递函数为各分系统传递函数的乘积:

eye

om m e d o MTF MTF MTF MTF MTF MTF MTF ?????=

二、噪声等效温差(NETD ) 1. NETD 的定义

用红外成像系统观察标准试验图案,当红外成像系统输出端产生的峰值信号与均方根噪声电压之比为1时的目标与背景之间的温差,称为噪声等效温差(NETD)。NETD 是表征红外成像系统受客观信噪比限制的温度分辨率的一种量度。

NETD 测试图案

2. NETD 的表达式及物理意义

光电成像系统

光电成像系统 [教学目的] 1、掌握CCD的结构和工作原理、光电成像原理、光电成像光学系统; 2、了解微光像增强器件和纤维光学成像原理。 [教学重点与难点] 重点:CCD的结构和工作原理、光电成像原理、光电成像光学系统的组成。 难点:CCD的结构和工作原理、调制传递函数的分析。 成像转换过程有四个方面的问题需要研究: 能量方面——物体、光学系统和接收器的光度学、辐射度学性质, 解决能否探测到目标的问题 成像特性——能分辨的光信号在空间和时间方面的细致程度,对多 光谱成像还包括它的光谱分辨率 噪声方面——决定接收到的信号不稳定的程度或可靠性 信息传递速率方面 (成像特性、噪声——信息传递问题,决定能被传递的信息量大小) 景噪声景 噪 声 声声 光电成像器件是光电成像系统的核心。 §1 固体摄像器件

固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。 固体摄像器件主要有三大类: 电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injenction Device,即CID) 一、电荷耦合摄像器件 电荷耦合器件(CCD)特点)——以电荷作为信号 CCD的基本功能——电荷存储和电荷转移 CCD工作过程——信号电荷的产生、存储、传输和检测的过程1.电荷耦合器件的基本原理 (1)电荷存储 构成CCD的基本单元是MOS(金属-氧化物-半导体)电容器 电荷耦合器件必须工作在瞬态和深度耗尽状态 (2)电荷转移 以三相表面沟道CCD为例 表面沟道器件,即SCCD(Surface Channel CCD)——转移沟道在界面的CCD器件

光电成像

光电测试考试资料整理 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X射线(Roentgen射线)与y射线(Gamma射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4.什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5.反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6.光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1.人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45min,充分暗适应则需要一个多小时。 2.何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3.试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。 [2]特点:眼睛的分辨力与很多因素有关,从内因分析,与眼睛的构造有关(此处不再讨论)。从外因分析,主要是决定于目标的亮度与对比度,但眼睛会随外界条件的不同,自动进行适应,因而可得到不同的极限分辨角。当背景亮度降低或对比度减小时,人眼的分辨力显著地降低。于中央凹处人眼的分辨力最高,故人眼在观察物体时,总是在不断地运动以促使各个被观察的物体依次地落在中央凹处,使被观察物体看得最清楚。 4.简述下列定义:(1)图像信噪比(2)图像对比度(3)图像探测方程 答:[1]图像信噪比:图像信号与噪声之比[2]图像对比度:指的是一幅图像中明暗区 域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。 [3]当关系式成立时,表明图像可探测到,反之将不能探测。

光电成像系统复习

光电成像系统基础理论 第一章: 1. 人眼视觉性能的局限性; (1)灵敏度的限制:光线很差时人的视觉能力很差; (2)分辨力的限制:没有足够的视角和对比度就难以辨识; (3)时间上的限制:变化过去的影像无法存留在视觉上; (4)空间上的限制:离开的空间人眼将无法观察; (5)光谱上的限制:人眼局限于电磁波的可见光区; 因此,眼睛的直观视觉只能有条件地提供图像信息,为了突破人眼的限制催生了光电成像技术这门学科。扩展视见光谱范围、视见灵敏度和时空限制。 2.光电成像系统的分类以及各自的工作方式; (1)直视型光电成像系统 工作方式:①通过外光电效应将入射的辐射图像转换为电子图像;②由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增;③经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。 (2)电视型光电成像系统 工作方式:①接收二维的光学图像或热图像,②利用光敏面的光电效应或热电效应将其转换为二维电荷图像并进行适当时间的存储,③然后通过电子束扫描或电荷耦合转移等方式, 输出一维时间的视频信号。 3.变像管与像增强器的异同。 变像管:接受非可见辐射图像的直视型光电成像器件:红外变像管、紫外变像管和X 射线变像管等。 共同特点:入射图像的光谱和出射图像的光谱完全不同,输出图像的光谱是可见光。像增强器:接受微弱可见光图像的直视型光电成像器件:级联式像增强器、带微通道板的像增强器、负电子亲和势光阴极的像增强器等。 共同特点:输入的光学图像极其微弱,经器件内电子图像的能量增强和数量倍增后通过荧光屏输出可见光学图像。 第二章: 1. 绝对视觉阈、阈值对比度、光谱灵敏度; 人眼的绝对视觉阈 所谓人眼的绝对视觉阈,是在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值(用照度表示,单位lx),在10-9数量级。 人眼的阈值对比度 阈值对比度是指在一定背景下把目标鉴别出来所必须的目标在背景中的衬度(对比度C)。C的倒数成为反衬灵敏度。 人眼的光谱灵敏度 人眼对不同波长的光具有不同的灵敏度响应,不同人的眼睛,对波长灵敏度响应也有差异。 在可见光区域内,任意波长与555 nm波长处的辐射功率之比称为光谱灵敏度,其构成的曲线就称为光谱响应曲线。 2.约翰逊准则对探测水平的分级及其各自的定义;

光电检测技术介绍

?(一)检测 一、检测是通过一定的物理方式,分辨出被测参数量病归属到某一范围带,以此来 判别被测参数是否合格或参数量是否存在。测量时将被测的未知量与同性质的标准量进行比较,确定被测量队标准量的倍数,并通过数字表示出这个倍数的过程。 在自动化和检测领域,检测的任务不仅是对成品或半成品的检验和测量,而且为了检查、监督和控制某个生产过程或运动对象使之处于人们选定的最佳状况,需要随时检测和测量各种参量的大小和变化等情况。这种对生产过程和运动对象实时检测和测量的技术又称为工程检测技术。 测量有两种方式:即直接测量和间接测量 直接测量是对被测量进行测量时,对以表读数不经任何运算,直接的出被测量的数值,如:用温度计测量温度,用万用表测量电压 间接测量是测量几个与被测量有关的物理量,通过函数关系是计算出被测量的数值。 如:功率P与电压V和电流I有关,即P=VI,通过测量到的电压和电流,计算出功率。 直接测量简单、方便,在实际中使用较多;但在无法采用直接测量方式、直接测量不方便或直接测量误差大等情况下,可采用间接测量方式。 光电传感器与敏感器的概念 传感器的作用是将非电量转换为与之有确定对应关系得电量输出,它本质上是非电量系统与电量系统之间的接口。在检测和控制过程中,传感器是必不可少的转换器件。 从能量角度出发,可将传感器划分为两种类型:一类是能量控制型传感器,也称有源传感器;另一类是能量转换传感器,也称无源传感器。能量控制型传感器是指传感器将被测量的变换转换成电参数(如电阻、电容)的变化,传感器需外加激励电源,才可将被测量参数的变化转换成电压、电流的变化。而能量转换型传感器可直接将被测量的变化转换成电压、电流的变化,不需外加激励源。 在很多情况下,所需要测量的非电量并不是传感器所能转换的那种非电量,这就需要在传感器前面加一个能够把被测非电量转换为该传感器能够接收和转换的非电量的装置或器件。这种能够被测非电量转换为可用电量的元器件或装置成为敏感器。例如用电阻应变片测量电压时,就需要将应变片粘贴到售压力的弹性原件上,弹性原件将压力转换为应变力,应变片再将应变力转换为电阻的变化。这里应变片便是传感器,而弹性原件便是敏感器。敏感器和传感器随然都可对被测非电量进行转换,但敏感器是把被测量转换为可用非电量,而传感器是把被测非电量转换为电量。 二、光电传感器是基于光电效应,将光信号转换为电信号的一种传感器,广泛应用 于自动控制、宇航和广播电视等各个领域。 光电传感器主要噢有光电二极管、光电晶体管、光敏电阻Cds、光电耦合器、继承光电传感器、光电池和图像传感器等。主要种类表如下图所示。实际应用时,要选择适宜的传感器才能达到预期的效果。大致的选用原则是:高速的光电检测电路、宽范围照度的照度计、超高速的激光传感器宜选用光电二极管;几千赫兹的简单脉冲光电传感器、

光电成像技术玉林师范学院期末考试

1.简述: (1)CMOS器件和CCD器件的工作原理上有什么相同点和不同点; 答:CMOS图像传感器的光电转换原理与CCD基本相同,其光敏单元受到光照后产生光生电子。而信号的读出方法却与CCD不同,每个CMOS源像素传感单元都有自己的缓冲放大器,而且可以被单独选址和读出,工作时仅需工作电压信号,而CCD读取信号需要多路外部驱动。 (2)在应用上各自有什么优缺点,以及各自的应用领域是什么 答:优缺点比较:CMOS与CCD图像传感器相比,具有功耗低、摄像系统尺寸小,可将图像处理电路与MOS图像传感器集成在一个芯片上等优点,但其图像质量(特别是低亮度环境下)与系统灵活性与CCD的相比相对较低。灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力,而CCD灵敏度较CMOS高30%~50%。电子-电压转换率表示每个信号电子转换为电压信号的大小,由于CMOS在像元中采用高增益低功耗互补放大器结构,其电压转换率略优于CCD。 运用的领域:CMOS传感器在低端成像系统中具有广泛运用,如数码相机,微型和超微型摄像机。CCD在工业生产中的应用广泛,如冶金部门中的各种管、线轧制过程中的尺寸测量。 (3)全球生产CMOS器件和CCD几件的企业有哪些分别位于哪些国家,并对先关企业进行简要描述。 2、简要概述《光电成像原理与技术》各章的主要内容,并用自己的语言陈述各章之间的联系(文字在1000字以上)。 答: 1.光电成像技术的产生及发展,光电成像对视见光谱域的延伸,光电成像技术的应用范畴,光电成像器件的分类,光电成像器件的特性。 2.] 3.人眼的视觉特性与图像探测:人眼的视觉特性与模型,图像探测理论与图像探测方程,目标的探测与识别。 4.辐射源与典型景物辐射:辐射度量及光度量,朗伯辐射体及其辐射特性,黑体辐射定律,辐射源及其特性。 5.辐射在大气中的传输:大气的构成,大气消光及大气窗口,大气吸收和散射的计算,大气消光对光电成像系统性能的影响。 6.直视型电真空成像器件成像物理:像管成像的物理过程,像管结构类型与性能参数,辐射图像的光电转换,电子图像的成像理论,电子图像的发光显示,光学图像的传像与电子图像的倍增。 7.直视型光电成像系统与特性分析:直视型光电成像系统的原理,夜视光电成像系统的主要部件及特性,直视型夜视成像系统的总体设计,夜视系统的作用距离。 8.电视型电真空成像器件成像物理:电视摄像的基本原理,摄像管的主要性能参数,摄像管的分类,热释电摄像管,电子枪简介。 9.固体成像器件成像原理及应用: CCD的物理基础与工作原理, CDD的结构与特性,CCD 成像原理,增强型(微光)电荷耦合成像器件,CCD的应用,CMOS成像器件及其应用。10.电视型光电成像系统与特性分析:电视系统的组成与工作原理,电视型微光成像系统(微光电视),成像光子计数探测系统。 11.红外热成像器件成像物理:红外探测器的分类,红外探测器的工作条件与性能参数,光电导型红外探测器,光伏型红外探测器,红外焦平面阵列探测器,非制冷红外焦平面陈列探测器,量子阱红外探测器。

光电成像技术

2014-2015 第一学期 光电成像技术 ——红外热成像技术的发展及其应用 院系电子工程学院光电子技术系 班级光信1104 姓名王凯 学号05113123 班内序号14 考核成绩

红外热成像技术的发展及其应用 摘要:用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。 关键字:红外线,红外热成像技术,发展及其应用 一、引言 1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 二、红外热成像技术 我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。红外热成像仪大致分为致冷型和非致冷型两大类。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。 1、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感谢为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

光电成像原理与技术部分答案(北理工)

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点?在光电成像系统性能评价方面通常从哪几方面考虑? 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差;分辨力的限制,没有足够的视角和对比度就难以辨认;时 间上的限制,变化过去的影像无法存留在视觉上;空间上的限制,隔开的空间人眼将无法观察;光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些?答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G1 ,光电灵敏度:或者: 8.怎样评价光电成像系统的光学性能?有哪些方法和描述方式?答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不变性成像条件的光电成像过程,完全可以用光学传递函数来定量描述其成像特性。 第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度)景物细节对光电成像系统接受孔径的张角;景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型?答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1 ; 灰体,<1, 与波长无关;选择体,<1 且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。答:普朗克公式:普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。斯蒂芬- 波尔滋蔓公式:表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T 的四次方成正比。 维恩位移定律:他表示当黑体的温度升高时,其光谱辐射的峰值波长向短波方向移动。 最大辐射定律:一定温度下,黑体最大辐射出射度与温度的五次方成正比。 第五章 1、像管的成像包括哪些物理过程?其相应的理论或实验依据是什么? (1 )像管的成像过程包括 3 个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图像 B 、使电子图像聚焦成像并获得能量增强或数量倍增 C、将获得增强后的电子图像转换成可见的光学图像 (2) A 过程:外广电效应、斯托列夫定律和爱因斯坦定律 B 过程:利用的是电子在静电场或电磁复合场中运动规律来获得能量增强;或者利用微通道板中二次电 子发射来增加电子流密度来进行图像增强 C 过程:利用的是荧光屏上的发光材料可以将光电子动能转换成光能来显示光 学图像

光电总复习介绍

第一章 紫外区 0.01μm~0.38μm 可见光区 0.38μm~0.78μm 红外区 0.78μm~1000μm 光学谱区0.01μm~1000μm 光子能量公式 ()eV c h h λ λ νε24 .1= ?= ?= 可见光光子的能量范围为3.2~1.6eV ;太赫兹波30~3000μm 辐射度学是一门研究电磁辐射能测量的科学,辐射度量是用能量单位描述光辐射能的客观物理量。 光度学是一门研究光度测量的科学,光度学量是描述光辐射能为平均人眼接收所引起的视觉刺激大小的强度。 电磁波(Emission ) --辐射度量, Xe 可见光(Visible light )--光度量, Xv 1.辐射能Qe 以辐射的形式发射、传播或接受的能量。单位: J 2.辐射通量Φe 单位时间内通过某截面的所有波长的总电磁辐射量,又称辐射功率,是辐射能的时间变化率。单位:W [J/s ] dt dQ e e = Φ 3.辐射强度 在给定方向上的立体角元内,辐射源发出的辐射通量与立体角元之比 ()Ω Φ= d d I e e ?θ, 立体角:一个锥面所围成的空间部分称为“立体角”。以锥体的顶点为心作球面,锥体在球表面上所截得的表面积和球半径平方之比度量。 2r S =Ω 计算辐射强度时注意三种情况: a.所有方向上辐射强度都相同的点辐射源,有限立体角内发射的辐射通量为:Ω?=Φe e I b.所有方向上辐射强度都相同的点辐射源,在空间所有方向上发射的辐射通量:e e I π4=Φ c. 各向异性的辐射源,其辐射强度随方向而变化,即 ()θ?,e e I I = , 点辐射源 在整个空间发射的辐射通量为:()()θθθ??θ?π π d I d d I e e e sin ,,20 ? ??= Ω=Φ. 4.辐射出度Me 与辐射亮度Le 5. 辐射出度Me :单位面发出的辐射通量 6. 辐射亮度Le :垂直辐射方向上单位面积、单位立体角发出的辐射通量 光谱辐射量是该辐射量在波长λ处的单位波长间隔内的大小,又叫辐射量的光谱密度,是辐射量随波长的变化率。 d d e e ΦM S = () θθ?θcos d d d cos d d ,e 2e e ??= ==ΩS ΦS I L

光电成像系统探测能力分析

光电成像系统探测、识别能力分析 【摘要】本文从光电成像的系统原则、辨别原则入,手较为全面的分析了影响光电成像系作通用能力的因素,并描述了该类系统主要参数的选择方法与经验数值。 【关键词】CCD 红外 光电成像 探测能力 1 引言 随着信息技术在侦察情报装备中的广泛应用,具有图像侦察获取能力的传感器种类和数量越来越多,图像情报的应用也越加广泛,因此光电成像技术成了战场情报综合处理的重要组成部分,由于CCD摄像机、红外热成像系统所具有的各种突出优点,所以其发展速度惊人。近10年来,CCD摄像机、红外成像的应用已深入到各个领域,可以说是跨行业、跨专业多方面应用的一种光电产品。并产生出巨大的军事效益。本文针对该领域对光电成像系统的要求,叙述了该系统主要参数的选择方法。 2 评估光电成像系统探测与识别的基本原则 2.1系统的原则 目标成像到接收器表面的整个传递过程中,有很多因素制约着成像质量的好坏,中间影响图像质量的信息传输环节如图1所示。

图1 光电成像传输环节 在图像传递过程中主要发生了三种传递作用:一是视角的传递,即远处的目标通过光学系统后,对人眼张角必须>1′,人眼才能看清物体;二是亮度的传递,远处物体辐射的光通过大气的衰减、吸收,到达CCD靶面上的亮度必须大于CCD的感光度;三是对比度的传递,对比度是目标的亮度与背景的亮度之比,当目标逐渐变远时,目标与周围背景之间的亮度对比会逐渐变小,直至目标看不清。 因此在设计光电成像系统时要首先要从系统的角度考虑产品各部件的参数选择,才能达到满意的使用效果。 2.2辨别原则 在军事应用中中对目标探测的判定常常借鉴Johnson判则,它把目标分为四大类:探测、取向、识别和确认。也就是根据目标所反射的光线通过光学镜头后,在CCD传感器像面上所能覆盖像元素的数量来初步确定光学镜头的参数,判据如下: 辨别等级 含义 最小尺寸上的周数探测 存在一个目标把目标从背景中区分出来 1 取向 目标是近似的不对称,可大致区分正面或侧面 2 识别 识别目标是哪一类(人、坦克) 4

光电成像器件的类型及特点

光电成像器件 利用光电效应将可见或非可见的辐射图像转换或增强为可观察、记录、传输、存储以及可进行处理的图像的器件系列的总称。其目的在于弥补人眼在灵敏度、响应波段、细节的视见能力以及空间和时间上的局限等方面的不足。最早的一种光电成像器件──光电析像管出现于1931年。目前,各种类型的光电成像器件已广泛应用于天文学、空间科学、X 射线放射学、夜间观察、高速摄影以及科学实验中。 按工作原理,光电成像器件可分为像管、摄像管和固体成像器件。 1、像管 各种类型的变像管、像增强器的电子照相管的总称。它将可见或非可见的辐射图像转换或增强为可直接观察或记录的图像。其工作原理是将投射在光电阴极上的辐射图像转换为电子图像,电子光学系统将此图像尽可能真实地转移到荧光屏上产生一个增强的光学图像(如变像管和像增强器)或记录在对高速电子敏感的胶片上(如电子照相管)。 a、变像管 一种把非可见(红外或紫外)辐射图像转换成可见光图像的器件。图1a[变像管]示出了利用银氧铯光电阴极的红外变像管,它通常用于主动红外夜视中。图1b[变像管]为一种用于高速摄影的变像管。 图1 变像管

b、像增强器 一种将微弱的光学图像增强为高亮度的可见光图像的器件。它广泛用于微光夜视中。其光敏面通常采用钠钾铯锑多碱光电阴极。获得高亮度增益的方式有级联和使用电子倍增器两种。 实现级联的方式也有两种:一种是在同一管壳内用薄的云母片作为支撑体,其两侧分别制作光电阴极和荧光屏,形成夹心倍增屏结构,以实现各级像管之间的耦合。磁聚焦像增强器大都采用这种方式。另一种是采用纤维光学面板将单个静电聚焦型像增强管耦合在一起,如纤维光学耦合三级级联像增强器,它通常称为第一代像增强器,如图2[ 纤维光 学耦合三级级联像增强器]所示。25/25毫米第一代像增强器的典型性能是:放大率 =0.85,分辨率 28线对/毫米,亮度增益5×10,等效背景照度2×10勒克斯。 图2 纤维光学耦合三级级联像增强器 在管内获得电子倍增的一条途径是在单级像增强管中插入电子倍增器,曾用过氯化钾薄膜,目前均使用微通道板电子倍增器,微通道板(MCP)是由数以百万计的微型通道电子倍增器的通道紧密排列而成的二维阵列器件。光电子进入通道后,由于多次倍增过程,使电子急剧增多,在输出端可获得10~10的电子增益,如图3a[微通道板电子倍增器]所示。图3b[微通道板电子倍增器]是微通道板二维阵列示意图。目前,微通道板的典型性能是:通道直径10~12微米,通道中心

光电成像原理与技术考试要点

光电成像原理与技术考试要点 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以 捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3. 光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4. 什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5. 反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6. 光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f 噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1. 人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3 min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45 min,充分暗适应则需要一个多小时。 2. 何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3. 试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。

光电成像原理

光电成像原理论文 院系:物理学系 专业:光信息科学与技术 姓名:王世明 学号:2007113143

嵌入式光电成像系统及高分辨率的实现 王世明 (西北大学2007级陕西西安 710069) 摘要:自上世纪初人类揭示光电效应的本质以来,光电成像技术一直是成像领域的热点技术,并得到了迅速的发展。目前,光电成像技术已广泛应用于国防、航天、生物科学、化工检测、工业监控乃至日常消费等领域。本论文分析了目前光电成像系统结构和性能上的优势和不足,从提高系统移动性和集成度、突破传输受限和增强系统实时处理和分析三个方面出发,设计了一套新型的光电成像系统,并详细分析了这套系统的整体构造、软硬件设计和实现形式、调试技术和实验结果。 嵌入式技术的引入,可以大大减小光电成像系统的体积,降低功耗,提高便携性,从而扩展光电成像技术的应用领域。本论文将该系统应用于图像采集,得到了理想的实验结果。论文最后,总结了设计过程中所做的工作和创新点,同时对于系统的进一步完善和开发进行了展望。本文主要介绍了光电成像原理的发展过程及其在实际生活中的运用,为我们介绍了具体的应用及未来的发展前景。 实现成像系统的超高分辨是光电探测领域中探索和追求的重要目标。 对提高天文观测、空间侦察和资源探铡的信息容量及精度具有重要意义。 归纳总结了近年来国内外从光学系统结构、光电探测器及软件重建等方面对提高系统分辨能力所进行的部分研究和进展.结合本实验室在这一领城开展的研究,时其中的一些理论及工程方法探索进行了阐述和分析,旨在为进一步实现超高分辨光电成像系统的研究提供建设性参考意见。 关键词:光电成像、嵌入式系统、ADS调试、图像采集 一.光电成像系统的发展 现代人类是生活在信息时代,获取图像信息是人类文明生存和发展的基本需要,据统计,在人类接受的信息中,视觉信息占到了60%。但是由于视觉性能的限制,通过直接观察所获得的图像信息是有限的。首先是灵敏度的限制,在照明不足的情况下人的视觉能力很差;其次是分辨力的限制;还有时间上的限制,已变化过的景象无法留在视觉上。总之,人的直观视觉只能有条件地提供图像信息。在很久以前,人们就已经开始为开拓自身的视觉能力而探索,望远镜、显微镜、胶片照相机等的应用,为人类观察和保留事物景象提供了方便。直到上世纪20年代,爱因斯坦完善了光与物质内部电子能态相互作用的量子理论,人类从此揭开了内光电效应的本质。同时,随着半导体理论发展和随之研制出来的各种光电器件,内光电效应得到了广泛的应用。而在外光电效应领域,1929年科勒制成了第一个实用的光电发射体一银氧铯光阴极,随后成功研制了红外变像管,实现了将不可见的红外图像转换为可见光图像。随之而来的是紫外变像管和X射线变像管,人类的视觉光谱范围获得了很大的扩展。上世纪30年代,人类又开始为扩展视界而致力于电视技术的研究。以弗兰兹沃思开发的光电析像器为起端,伴随而来的是众多摄像器件的诞生,超正析像管、分流摄像管、视像管、热释电摄像管等。1976年,美国贝尔实验室发现电荷通过半导体势阱发生转移的现象,利用

光电信息技术介绍

光电信息技术是由光学、光电子、微电子等技术结合而成的多学科综合技术,涉及光信息的辐射、传输、探测以及光电信息的转换、存储、处理与显示等众多的内容。光电信息技术广泛应用于国民经济和国防建设的各行各业。近年来,随着光电信息技术产业的迅速发展,对从业人员和人才的需求逐年增多,因而对光电信息技术基本知识的需求量也在增加。 光电信息技术以其极快的响应速度、极宽的频宽、极大的信息容量以及极高的信息效率和分辨率推动着现代信息技术的发展,从而使光电信息产业在市场的份额逐年增加。在技术发达国家,与光电信息技术相关产业的产值已占国民经济总产值的一半以上,从业人员逐年增多,竞争力也越来越强。 在信息科技领域,电子学在20世纪做出了巨大的贡献,但由于其信息属性的局限性,使其无论在速度、容量还是在空间相容性上都受到很大限制。而光是生命的源泉,它为人类提供青山绿水的生活环境和丰富的衣食住行的资源,并使我们目睹五彩缤纷的世界。因此,光(光学)是人们获取信息的最基本的和最有效的手段之一,以光子或光波作为信息载体的光电信息技术则表现出巨大的发展潜力和明显的优越性。如在信息处理速度上,电子器件的响应时间最快也只能达到1011s,而光子器件则可达到1013~1015s,比电子器件快了103~104倍。并且,光子在通常情况下互不干涉,具有并行处理信息的能力,在光计算中可大幅度提高信息的处理速度。此外,在存储能力、传播速度、抗干扰能力等很多方面,光子器件弥补了电子器件的很多不足。尤其光电信息技术在高技术战争中扮演着十分重要的角色,如在预警、监视、侦察、观察、瞄准、通信、精确打击、作战效果评估、电子对抗等方面都发挥了极其重要的作用,使作战方式、部队编制和后勤供应都发生了重大变化。因此,光电信息技术不仅全面继承与兼容电子技术,而且具有微电子无法比拟的优越性能与更广阔的应用范围,从而成为人类进入信息时代的具有巨大冲击力的高新技术。 光电信息技术是由光学、光电子、微电子、微计算机、微材料等科学技术相结合而成的多学科综合的高新技术,涉及光信息的辐射、探测、变换、传输、处理、存储与显示等众多的内容。它以极快的响应速度、极宽的频宽、极大的信息容量、极高的存储密度、极快的处理速度、极高的信息效率和分辨率,以及微型化、集成化等特点,推动着现代信息技术的发展,以适应现代信息社会以Tbit/s (1 Tbit/s = 1012 bit/s)为起点呈现超越摩尔定律的爆炸性增长的信息量的要求,从而使光电信息产业在市场的份额逐年增加。在发达国家,与光电信息技术相关产业的产值已占国民经济总产值的一半以上,对从业人员和人才的需求逐年增多,竞争力也越来越强。为适应现代信息技术的发展,迫切需要培养一大批掌握光电信息技术的专门人才,也迫切需要普及光电信息技术方面的基础知识,虽然不少高等学校相继增设了光电信息类专业或院系,但现行出版的光电信息技术或光电技术等教材的信息流程的内容不全、不新,而不能满足目前光电信息方面人才的需求。基于这样的形势,作者为满足新增光电信息类专业的教学需求,在参考国内外有关文献资料与书籍,并借鉴以前所编教材《光电技术》、《光电检测技术》、《光电检测技术习题与实验》及《光电信息实用技术》经验的基础上编写了本教材。 以上是我从网上找的,网上没有具体的对这个的介绍,网上都是一本一本的书关于这个技术的,没有内容看不了,有目录必须购买才能看,上面的内容有的是书籍的介绍,我剪下来的,你自己看看吧,我也不知道有用没用。。。。。。

光电产品产品及零件简介

OSA產品及零件簡介
Maxim Ma Component/Source Photonics
Source Photonics Confidential and Proprietary

Content
(1) OSA簡介 (2) OSA的分类 (3) 相關元器件介紹 (4) OSA製程注意事項
Source Photonics Confidential and Proprietary

(1) OSA簡介
>
OSA 的位置
?
Transceiver的組成
1. OSA 2. IC 3. PCB 4. 殼件 ? Transceiver的成本 OSA佔TRx的成本普遍> 70%
Source Photonics Confidential and Proprietary

縮略語
> > > > > > > > > > > > > > > > >
TOSA: Transmitting Optical Sub-Assembly, 光发射组件 ROSA: Receiving Optical Sub-Assembly, 光接收组件 BOSA: Bi-Directional Optical Sub-Assembly, 光发射接收组件 LD: Laser Diode, 激光二极管 PD: Photo-Diode, 光电二极管 FP: Fabry-Perot, 法布里-珀罗激光二极管 DFB: Distributed Feedback Laser, 分布反馈式激光二极管 VCSEL: Vertical Cavity Surface Emitting Laser, 垂直腔面发射激光器 PIN: Positive Intrinsic Negative, 同质PN结光电二极管 APD: Avalanche Photo-Diode, 雪崩光电二极管 TIA: Transimpedance Amplifier, 跨阻放大器 TO-can: A kind of package method for active component OLT: Optical Line Termination光线路终端 ONU: Optical Network Unit光网络单元 SDH: Synchronous Digital Hierarchy, 同步数字体系 SONET: Synchronous Optical Network, 光同步网络 GBE: Gigabit Ethernet, 千兆以太网
Source Photonics Confidential and Proprietary

相关文档
相关文档 最新文档