文档库 最新最全的文档下载
当前位置:文档库 › Signal ()函数详细介绍 Linux函数

Signal ()函数详细介绍 Linux函数

Signal ()函数详细介绍 Linux函数
Signal ()函数详细介绍 Linux函数

Signal ()函数详细介绍Linux函数

signal()函数理解

在这个头文件中。

signal(参数1,参数2);

参数1:我们要进行处理的信号。系统的信号我们可以再终端键入kill -l查看(共64个)。其实这些信号时系统定义的宏。参数2:我们处理的方式(是系统默认还是忽略还是捕获)。一般有3中方式进行操作。

(1)eg: signal(SIGINT ,SIG_ING );

//SIG_ING 代表忽略SIGINT信号,SIGINT信号代表由InterruptKey产生,通常是CTRL

+C 或者是DELETE 。发送给所有ForeGround Group的进程。

下面我们写个死循环:这时我们保存执行。

按下CTRL _C程序没有反应。这就对了

如果我们想结束该程序可以按下CTRL +\来结束

其实当我们按下CTRL +\组合键时,是产生了SIGQUIT信号(2)eg: signal(SIGINT ,SIG_DFL );

//SIGINT信号代表由InterruptKey产生,通常是CTRL +C或者是DELETE。发送给所有ForeGroundGroup的进程。

SIG_DFL代表执行系统默认操作,其实对于大多数信号的系

统默认动作时终止该进程。这与不写此处理函数是一样的。

我们将上面的程序改成这时就可以按下CTRL +C 来终止该进程了。把signal(SIGINT,SIG_DFL);这句去掉,效果是一样的。

(3)void ( *signal( int sig, void (* handler)( int )))( int );

int (*p)();

这是一个函数指针, p所指向的函数是一个不带任何参数, 并且返回值为int的一个函数.

int (*fun())();

这个式子与上面式子的区别在于用fun()代替了p,而fun()是一个函数,所以说就可以看成是fun()这个函数执行之后,它的返回值是一个函数指针,这个函数指针(其实就是上面的p)所指向的函数是一个不带任何参数,并且返回值为int的一个函数.

void (*signal(int signo, void (*handler)(int)))(int);就可以看成是signal()函数(它自己是带两个参数,一个为整型,一个为函数指针的函数),而这个signal()函数的返回值也为一个函数指

针,这个函数指针指向一个带一个整型参数,并且返回值为void的一个函数.

在写信号处理函数时对于信号处理的函数也是void

sig_fun(int signo);这种类型,恰好与上面signal()函数所返回的函数指针所指向的函数是一样的.void ( *signal() )( int ); signal是一个函数, 它返回一个函数指针,

后者所指向的函数接受一个整型参数且没有返回值, 仔细看, 是不是siganal( int signo, void (*handler)(int) )的第2个参数了,对了,其实他所返回的就是signal的第2个信号处理函数,指向信号处理函数,就可以执行函数了(

signal内部时, signal把信号做为参数传递给handler信号处理函数,接着signal函数返回指针,

并且又指向信号处理函数, 就开始执行它)

那么,signal函数的参数又是如何呢?signal函数接受两个参数:一个整型的信号编号,以及一个指向用户定义的信号处理函数的指针。我们此前已经定义了指向用户定义的信号处理函数的指针sfp:void (*sfp)(int);

linux定时器详解

Linux内核定时器详解 80X86体系结构上,常用的定时器电路 实时时钟(RTC) RTC内核通过IRQ8上发出周期性的中断,频率在2-8192HZ之间,掉电后依然工作,内核通过访问0x70和0x71 I/O端口访问RTC。 时间戳计时器(TSC) 利用CLK输入引线,接收外部振荡器的时钟信号,该计算器是利用64位的时间戳计时器寄存器来实现额,与可编程间隔定时器传递来的时间测量相比,更为精确。 可编程间隔定时器(PIT) PIT的作用类似于微波炉的闹钟,PIT永远以内核确定的固定频率发出中断,但频率不算高。 CPU本地定时器 利用PIC或者APIC总线的时钟计算。 高精度时间定时器(HPET) 功能比较强大,家机很少用,也不去记了。 ACPI电源管理定时器 它的时钟信号拥有大约为3.58MHZ的固定频率,该设备实际上是一个简单的计数器,为了读取计算器的值,内核需要访问某个I/O端口,需要初始化 定时器的数据结构 利用timer_opts描述定时器 Timer_opts的数据结构 Name :标志定时器员的一个字符串 Mark_offset :记录上一个节拍开始所经过的时间,由时钟中断处理程序调用 Get_offset 返回自上一个节拍开始所经过的时间

Monotonic_clock :返回自内核初始化开始所经过的纳秒数 Delay:等待制定数目的“循环” 定时插补 就好像我们要为1小时35分34秒进行定时,我们不可能用秒表去统计,肯定先使用计算时的表,再用计算分的,最后才用秒表,在80x86架构的定时器也会使用各种定时器去进行定时插补,我们可以通过cur_timer指针来实现。 单处理器系统上的计时体系结构 所有与定时有关的活动都是由IRQ线0上的可编程间隔定时器的中断触发。 初始化阶段 1. 初始化间,time_init()函数被调用来建立计时体系结构 2. 初始化xtime变量(xtime变量存放当前时间和日期,它是一个timespec 类型的数据结构) 3. 初始化wall_to_monotonic变量,它跟xtime是同一类型的,但它存放将加在xtime上的描述和纳秒数,这样即使突发改变xtime也不会受到影响。 4. 看是否支持高精度计时器HPET 5. 调用select_timer()挑选系统中可利用的最好的定时资源,并让 cur_timer变量指向该定时器 6. 调用setup_irq(0,&irq0)来创建与IRQ相应的中断门。 时钟中断处理程序 1. 在xtime_lock顺序锁产生一个write_seqlock()来保护与定时相关的内核变量,这样防止中断让该进程被阻止。 2. 执行cur_timer定时器对象的mark_offset方法(记录上一个节拍开始所经过的时间,由时钟中断处理程序调用) 3. 调用do_timer_interrupt函数,步骤为 a) 使jiffies_64值增1 b) 调用updata_times()函数来更新系统日期和时间。

fork函数和子进程

Fork函数 函数pid_t fork(void) 正确返回:在父进程中返回子进程的进程号,在子进程中返回0 错误返回:-1 子进程是父进程的一个拷贝。即,子进程从父进程得到了数据段和堆栈段的拷贝,这些需要分配新的内存;而对于只读的代码段,通常使用共享内存的方式访问。fork返回后,子进程和父进程都从调用fork函数的下一条语句开始执行。父进程与子进程的不同之处在于:fork的返回值不同——父进程中的返回值为子进程的进程号,而子进程为0。 以下是fork的两个示例程序: //fork.c #include #include void main () { int pid; //printf("Process [%d] begin",getpid()); //print twice printf("Process [%d] begin\n",getpid()); //print once //由于fork时pc等值的拷贝,子进程只会从fork处开始执行 pid = fork(); if (pid < 0) printf("error in fork!"); else if (pid == 0) printf("I'm child process, my pid is %d\n", getpid()); else printf("I'm parent process, my pid is %d\n", getpid()); printf("Process [%d] end\n",getpid()); return; } 输出结果: 使用printf("Process [%d] begin\n",getpid())时 Process [11155] begin I'm parent process, my pid is 11155

LINUX 内核的几种锁介绍

spinlock(自旋锁)、 mutex(互斥量)、 semaphore(信号量)、 critical section(临界区) 的作用与区别 Mutex是一把钥匙,一个人拿了就可进入一个房间,出来的时候把钥匙交给队列的第一个。一般的用法是用于串行化对critical section代码的访问,保证这段代码不会被并行的运行。 Semaphore是一件可以容纳N人的房间,如果人不满就可以进去,如果人满了,就要等待有人出来。对于N=1的情况,称为binary semaphore。一般的用法是,用于限制对于某一资源的同时访问。 Binary semaphore与Mutex的差异: 在有的系统中Binary semaphore与Mutex是没有差异的。在有的系统上,主要的差异是mutex一定要由获得锁的进程来释放。而semaphore可以由其它进程释放(这时的semaphore实际就是个原子的变量,大家可以加或减),因此semaphore 可以用于进程间同步。Semaphore的同步功能是所有系统都支持的,而Mutex能否由其他进程释放则未定,因此建议mutex只用于保护critical section。而semaphore则用于保护某变量,或者同步。 另一个概念是spin lock,这是一个内核态概念。spin lock与semaphore的主要区别是spin lock是busy waiting,而semaphore是sleep。对于可以sleep 的进程来说,busy waiting当然没有意义。对于单CPU的系统,busy waiting 当然更没意义(没有CPU可以释放锁)。因此,只有多CPU的内核态非进程空间,

linux下的时间转换函数

linux下的时间函数 我们在编程中可能会经常用到时间,比如取得系统的时间(获取系统的年、月、日、时、分、秒,星期等),或者是隔一段时间去做某事,那么我们就用到一些时间函数。 linux下存储时间常见的有两种存储方式,一个是从1970年到现在经过了多少秒,一个是用一个结构来分别存储年月日时分秒的。 time_t 这种类型就是用来存储从1970年到现在经过了多少秒,要想更精确一点,可以用结构struct timeval,它精确到微妙。 struct timeval { long tv_sec; /*秒*/ long tv_usec; /*微秒*/ }; 而直接存储年月日的是一个结构: struct tm { int tm_sec; /*秒,正常范围0-59,但允许至61*/ int tm_min; /*分钟,0-59*/ int tm_hour; /*小时,0-23*/ int tm_mday; /*日,即一个月中的第几天,1-31*/ int tm_mon; /*月,从一月算起,0-11*/ int tm_year; /*年,从1900至今已经多少年*/ int tm_wday; /*星期,一周中的第几天,从星期日算起,0-6*/ int tm_yday; /*从今年1月1日到目前的天数,范围0-365*/ int tm_isdst; /*日光节约时间的旗标*/ };

需要特别注意的是,年份是从1900年起至今多少年,而不是直接存储如2008年,月份从0开始的,0表示一月,星期也是从0开始的,0表示星期日,1表示星期一。 下面介绍一下我们常用的时间函数: #include char *asctime(const struct tm* timeptr); 将结构中的信息转换为真实世界的时间,以字符串的形式显示 char *ctime(const time_t *timep); 将timep转换为真是世界的时间,以字符串显示,它和asctime不同就在于传入的参数形式不一样 double difftime(time_t time1, time_t time2); 返回两个时间相差的秒数 int gettimeofday(struct timeval *tv, struct timezone *tz); 返回当前距离1970年的秒数和微妙数,后面的tz是时区,一般不用 struct tm* gmtime(const time_t *timep); 将time_t表示的时间转换为没有经过时区转换的UTC时间,是一个struct tm结构指针 stuct tm* localtime(const time_t *timep); 和gmtime类似,但是它是经过时区转换的时间。 time_t mktime(struct tm* timeptr); 将struct tm结构的时间转换为从1970年至今的秒数 time_t time(time_t *t); 取得从1970年1月1日至今的秒数。 上面是简单的介绍,下面通过实战来看看这些函数的用法: 下载: gettime1.c 1. /*gettime1.c*/ 2. #include 3. int main()

【IT专家】linux多线程及信号处理

本文由我司收集整编,推荐下载,如有疑问,请与我司联系 linux多线程及信号处理 linux多线程及信号处理Linux 多线程应用中如何编写安全的信号处理函数hi.baidu/yelangdefendou/blog/item/827984efd3af7cd9b21cb1df.html Signal Handling Use reentrant functions for safer signal handling linux信号种类1、可靠信号和不可靠信号“不可靠信号” Linux信号机制基本上是从Unix系统中继承过来的。早期Unix系统中的信号机制比较简单和原始,后来在实践中暴露出一些问题,因此,把那些建立在早期机制上的信号叫做”不可靠信号”,信号值小于SIGRTMIN(Red hat 7.2中,SIGRTMIN=32,SIGRTMAX=63)的信号都是不可靠信号。这就是”不可靠信号”的来源。他的主要问题是:? 进程每次处理信号后,就将对信号的响应配置为默认动作。在某些情况下,将导致对信号的错误处理;因此,用户假如不希望这样的操作,那么就要在信号处理函数结尾再一次调用signal(),重新安装该信号。? 信号可能丢失,后面将对此周详阐述。因此,早期unix下的不可靠信号主要指的是进程可能对信号做出错误的反应连同信号可能丢失。Linux支持不可靠信号,但是对不可靠信号机制做了改进:在调用完信号处理函数后,不必重新调用该信号的安装函数(信号安装函数是在可靠机制上的实现)。因此,Linux下的不可靠信号问题主要指的是信号可能丢失。“可靠信号” 随着时间的发展,实践证实了有必要对信号的原始机制加以改进和扩充。因此,后来出现的各种Unix版本分别在这方面进行了研究,力图实现”可靠信号”。由于原来定义的信号已有许多应用,不好再做改变,最终只好又新增加了一些信号,并在一开始就把他们定义为可靠信号,这些信号支持排队,不会丢失。同时,信号的发送和安装也出现了新版本:信号发送函数sigqueue()及信号安装函数sigaction()。POSIX.4对可靠信号机制做了标准化。但是,POSIX只对可靠信号机制应具备的功能连同信号机制的对外接口做了标准化,对信号机制的实现没有作具体的规定。信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()连同信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。注:不

fork函数实验总结

针对fork函数难以理解,根据网上的解释,参考他人代码,做了如下实验,并附以实验分析 2 #include 3 #include 4 #include 5 #include 6 #include 7 8 int main () 9 { 10 pid_t pc,pr; 11 pc=fork(); (gdb) 12 13 if (pc<0) 14 { 15 printf("error fork.\n"); 16 17 } 18 else if (pc==0) 19 { 20 printf("this is pc=%d\n",getpid()); 21 sleep(5); (gdb) 22 printf("5 s over\n"); 23 //exit(0); 24 } 25 pr=fork(); 26 if (pr==0) 27 { 28 printf("this is pr =%d\n",getpid()); 29 } 30 31 else if (pr>0&&pc>0) (gdb) 32 printf("this is main =%d",getpid()); 33 34 35 36 37 38 } (gdb) b 12

Breakpoint 1 at 0x804849d: file /home/lsp/fork3.c, line 12. (gdb) b 19 Breakpoint 2 at 0x80484b7: file /home/lsp/fork3.c, line 19. (gdb) b 24 Breakpoint 3 at 0x80484e4: file /home/lsp/fork3.c, line 24. (gdb) b 26 Breakpoint 4 at 0x80484ec: file /home/lsp/fork3.c, line 26. (gdb) run Starting program: /home/lsp/fork3 Detaching after fork from child process 13200. ---说明pc=fork()函数已经建立子进程 this is pc=13200 Breakpoint 1, main () at /home/lsp/fork3.c:13 13 if (pc<0) (gdb) 5 s over this is pr =13201 --说明pc=fork()进程13200启动了新的子进程pr 其pid=13201 next Breakpoint 3, main () at /home/lsp/fork3.c:25 25 pr=fork(); --父进程停在pr=fork()处, (gdb) next Detaching after fork from child process 13254. this is pr =13254 --此处pr的pid=13254 与上一个pr=13201不同,这说明此处的pr是由main创建的 Breakpoint 4, main () at /home/lsp/fork3.c:26 26 if (pr==0) (gdb) next 31 else if (pr>0&&pc>0) (gdb) next 32 printf("this is main =%d",getpid()); (gdb) next 38 } (gdb) next 0x00a6d5d6 in __libc_start_main () from /lib/libc.so.6 (gdb) next Single stepping until exit from function __libc_start_main, which has no line number information. this is main =13199 ---main函数退出,器pid=13199 Program exited with code 023. (gdb)

linux signal()函数

当服务器close一个连接时,若client端接着发数据。根据TCP协议的规定,会收到一个RST响应,client再往这个服务器发送数据时,系统会发出一个SIGPIPE信号给进程,告诉进程这个连接已经断开了,不要再写了。根据信号的默认处理规则SIGPIPE信号的默认执行动作是terminate(终止、退出), 所以client会退出。 若不想客户端退出可以把SIGPIPE设为SIG_IGN 如: signal(SIGPIPE,SIG_IGN); 这时SIGPIPE交给了系统处理。 服务器采用了fork的话,要收集垃圾进程,防止僵死进程的产生,可以这样处理: signal(SIGCHLD,SIG_IGN);交给系统init去回收。 这里子进程就不会产生僵死进程了。 signal(SIGHUP, SIG_IGN); signal信号函数,第一个参数表示需要处理的信号值(SIGHUP),第二个参数为处理函数或者是一个表示,这里,SIG_IGN表示忽略SIGHUP那个注册的信号。 SIGHUP和控制台操作有关,当控制台被关闭时系统会向拥有控制台sessionID的所有进程发送HUP信号,默认HUP信号的action是exit,如果远程登陆启动某个服务进程并在程序运行时关闭连接的话会导致服务进程退出,所以一般服务进程都会用nohup工具启动或写成一个daemon。 unix中进程组织结构为session 包含一个前台进程组及一个或多个后台进程组,一个进程组包含多个进程。 一个session可能会有一个session首进程,而一个session首进程可能会有一个控制终端。 一个进程组可能会有一个进程组首进程。进程组首进程的进程ID与该进程组ID相等。 这儿是可能会有,在一定情况之下是没有的。 与终端交互的进程是前台进程,否则便是后台进程 SIGHUP会在以下3种情况下被发送给相应的进程: 1、终端关闭时,该信号被发送到session首进程以及作为job提交的进程(即用&符号提交的进程)

Linux中直接IO机制的介绍

Linux 中直接 I/O 机制的介绍https://www.wendangku.net/doc/cc2486037.html,/developerworks/cn/linux/l-cn-...

https://www.wendangku.net/doc/cc2486037.html,/developerworks/cn/linux/l-cn-...

当应用程序需要直接访问文件而不经过操作系统页高速缓冲存储器的时候,它打开文件的时候需要指定 O_DIRECT 标识符。 操作系统内核中处理 open() 系统调用的内核函数是 sys_open(),sys_open() 会调用 do_sys_open() 去处理主要的打开操作。它主要做了三件事情:首先,它调用 getname() 从进程地址空间中读取文件的路径名;接着,do_sys_open() 调用 get_unused_fd() 从进程的文件表中找到一个空闲的文件表指针,相应的新文件描述符就存放在本地变量 fd 中;之后,函数 do_?lp_open() 会根据传入的参数去执行相应的打开操作。清单 1 列出了操作系统内核中处理 open() 系统调用的一个主要函数关系图。 清单 1. 主要调用函数关系图 sys_open() |-----do_sys_open() |---------getname() |---------get_unused_fd() |---------do_filp_open() |--------nameidata_to_filp() |----------__dentry_open() 函数 do_?ip_open() 在执行的过程中会调用函数 nameidata_to_?lp(),而 nameidata_to_?lp() 最终会调用 __dentry_open()函数,若进程指定了 O_DIRECT 标识符,则该函数会检查直接 I./O 操作是否可以作用于该文件。清单 2 列出了 __dentry_open()函数中与直接 I/O 操作相关的代码。 清单 2. 函数 dentry_open() 中与直接 I/O 相关的代码 if (f->f_flags & O_DIRECT) { if (!f->f_mapping->a_ops || ((!f->f_mapping->a_ops->direct_IO) && (!f->f_mapping->a_ops->get_xip_page))) { fput(f); f = ERR_PTR(-EINVAL); } } 当文件打开时指定了 O_DIRECT 标识符,那么操作系统就会知道接下来对文件的读或者写操作都是要使用直接 I/O 方式的。 下边我们来看一下当进程通过 read() 系统调用读取一个已经设置了 O_DIRECT 标识符的文件的时候,系统都做了哪些处理。函数read() 的原型如下所示: ssize_t read(int feledes, void *buff, size_t nbytes) ; 操作系统中处理 read() 函数的入口函数是 sys_read(),其主要的调用函数关系图如下清单 3 所示: 清单 3. 主调用函数关系图 sys_read() |-----vfs_read() |----generic_file_read() |----generic_file_aio_read() |--------- generic_file_direct_IO()

Linux的fork、exec、wait函数的分析

Linux 的fork 、exec 、wait 函数分析 I 数学与计算机学院 课程设计说明书 课 程 名 称: 操作系统原理-课程设计 课 程 代 码: 8404061 题 目: Linux 的fork 、exec 、wait 函数的分析 年级/专业/班: 学 生 姓 名: 学 号: 3 开 始 时 间: 2010 年 12 月 12 日 完 成 时 间: 2011 年 01 月 09 日 课程设计成绩: 指导教师签名: 年 月 日

Linux 的fork 、exec 、wait 函数分析 II 目 录 1 引 言 ................................................................. 1 1.1 问题的提出 ...................................................................................................................... 1 1.2国内外研究的现状 ........................................................................................................... 1 1.3任务与分析 ....................................................................................................................... 1 2代码分析结果 ............................................................ 2 2.1 数据结构 ......................................................................................................................... 2 2.1.1 struct task_struct ............................................................................................. 2 2.1.2 task ......................................................................................................................... 3 2.1.3 tarray_freelist ................................................................................................... 3 2.1.4 struct--linux_binprm ......................................................................................... 3 2.1.5进程状态 .................................................................................................................. 4 2.2常量和出错信息的意义 .................................................................................................. 4 2.3调用关系图 ...................................................................................................................... 4 2.4各模块/函数的功能及详细框图 .................................................................................... 5 2.4.1 do_fork 模块 .......................................................................................................... 5 2.4.2 get_pid 模块 .......................................................................................................... 8 2.4.3 do_execve 模块 ........................................................................................................ 10 3.4.4 do_exit 模块 ........................................................................................................ 14 3.4.5 sys_wait4模块 .................................................................................................. 18 3 总结与体会 ............................................................ 20 4 参考文献 .. (20)

实验四 Linux进程互斥

实验四 Linux进程互斥 一、实验目的 熟悉Linux下信号量机制,能够使用信号量实现在并发进程间的互斥和同步。 二、实验题目 使用共享存储区机制,使多个并发进程分别模拟生产者-消费者模式同步关系、临界资源的互斥访问关系,使用信号量机制实现相应的同步和互斥。 三、背景材料 (一)需要用到的系统调用 实验可能需要用到的主要系统调用和库函数在下面列出,详细的使用方法说明通过“man 2 系统调用名”或者“man 3 函数名”命令获取。 fork() 创建一个子进程,通过返回值区分是在父进程还是子进程中执行; wait() 等待子进程执行完成; shmget() 建立一个共享存储区; shmctl() 操纵一个共享存储区; s hmat() 把一个共享存储区附接到进程内存空间; shmdt() 把一个已经附接的共享存储区从进程内存空间断开; semget() 建立一个信号量集; semctl() 操纵一个信号量集,包括赋初值; semop() 对信号量集进行wait和signal操作; signal() 设置对信号的处理方式或处理过程。 (二)模拟生产者-消费者的示例程序 本示例主要体现进程间的直接制约关系,由于使用共享存储区,也存在间接制约关系。进程分为服务进程和客户进程,服务进程只有一个,作为消费者,在每次客户进程改变共享存储区内容时显示其数值。各客户进程作为生产者,如果共享存储区内容已经显示(被消费),可以接收用户从键盘输入的整数,放在共享存储区。 编译后执行,第一个进程实例将作为服务进程,提示: ACT CONSUMER!!! To end, try Ctrl+C or use kill. 服务进程一直循环执行,直到用户按Ctrl+C终止执行,或使用kill命令杀死服务进程。 其他进程实例作为客户进程,提示: Act as producer. To end, input 0 when prompted. 客户进程一直循环执行,直到用户输入0。 示例程序代码如下: #include #include #include #include #include #include #include #include

进程创建之fork系统调用

4 进程创建 (1) 4.1 实验内容及要求 (1) 4.2 实验目的 (1) 4.3 实验环境 (1) 4.4 实验思路 (1) 4.5 实验代码 (2) 4.6 运行结果 (3) 4.7 实验心得 (3) 4 进程创建 4.1 实验内容及要求 利用fork()系统调用创建进程。要求如下: 编制一段程序,使用系统调用fork( )创建两个子进程,这样在此程序运行时,在系统中就有一个父进程和两个子进程在活动。每一个进程在屏幕上显示一个字符,其中父进程显示字符A,子进程分别显示字符 B和字符C。试观察、记录并分析屏幕上进程调度的情况。 4.2 实验目的 了解进程的创建过程,进一步理解进程的概念,明确进程和程序的区别。 4.3 实验环境 Ubuntu 18.04.1 LTS 64位,编译器gcc 7.3.0 (Ubuntu 7.3.0-16ubuntu3) 4.4 实验思路 (1)可用fork()系统调用来创建一个新进程。 系统调用格式:pid=fork() fork()返回值意义如下: =0:若返回值为0,表示当前进程是子进程。 >0:若返回值大于0,表示当前进程是父进程,返回值为子进程的pid值。

<0:若返回值小于0,表示进程创建失败。 如果fork()调用成功,它向父进程返回子进程的pid,并向子进程返回0,即fork()被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork()父进程的副本,称为子进程。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。 (2)编译和执行的方法: 编译:在shell提示符下输入gcc 源文件名 -o 可执行文件名 运行:在shell提示符下输入 ./可执行文件名 4.5 实验代码 #include #include #include int main(void) { pid_t p1=fork();pid_t p2=fork(); //迭代调用fork(),创建三个新进程printf("this is parent, pid = %d\n", getpid()); //父进程 if(p1<0||p2<0){ //fork()失败 printf("fork failed with p1=%d, p2=%d\n", p1, p2); exit(1); }if(p1==0&&p2==0){ //子进程B创建的子进程D,即孙进程 printf("D in grandson Damson, pid = %d\n", getpid()); }if(p1==0&&p2>0){ //父进程创建的子进程B printf("B in child Blueberry, pid = %d\n", getpid()); }if(p1>0&&p2==0){ //父进程创建的子进程C printf("C in child Carambola, pid = %d\n", getpid()); }if(p1>0&&p2>0){ //父进程 printf("A in parent Apple, pid = %d\n", getpid()); }return 0; }

linux通讯

线程+定时实现linux下的Qt串口编程 2010-06-26 10:49 转: 线程+定时实现linux下的Qt串口编程 作者:lizzy115 时间:2010,5,14 说明:本设计采用的是线程+定时实现linux下的Qt串口编程,而非网上资料非常多的Qt编写串口通信程序全程图文讲解系列,因为Qt编写串口通信程序全程图文讲解系列是很好实现,那只是在windows下面的,可是在linux 下面实现串口的通信并非如此,原因在于QextSerialBase::EventDriven跟QextSerialBase::Polling这两个事件的区别,EventDriven属于异步,Polling 属于同步,在windows下面使用的是EventDriven很容易实现,只要有数据就会触发一个串口事件,网上说linux下面需要的是Polling,可是还是不行的,只要串口有数据的时候他会在QByteArray temp = myCom->readAll(); 这句一直读取数据,没能退出,直到断掉串口的时候才能把接受到的串口数据通过 ui->textBrowser->insertPlainText(temp);打印在界面上,一直没能解决这个问题,所以只好采用线程+定时实现linux下的Qt串口编程进行设计。 一、安装环境: 系统平台:Ubuntu-8.04,内核2.6.24-27-generic,图形界面 二、软件需求及下地地址: Qt版本 qt-linux-SDK-4.6.2 注意:此处使用的是qt-linux-SDK-4.6.2版本,编译通过了,之后需要把他移植到qt-embedded-linux-opensource-src-4.5.3.tar.gz,通过qte编译后移植到开发板中,采用的测试开发板为Micro2440, 下载地址:略 三、程序编写过程 程序编程流程: 先新建一个工程空白工程,再建立Ui文件,通过designer进行Ui 界面设计,设计完保存,编译生成ui_mainwindow.h头文件,编写线程头文件及线程处理.cpp文件,建立串口处理头文件及 .cpp文件,最后完成main.cpp 文件。

linux下获取系统时间的方法

linux下获取系统时间的方法 时间:2009-11-11 13:45:04 来源:Linux联盟作者:可以用localtime 函数分别获取年月日时分秒的数值。 Linux下获得系统时间的C语言的实现方法: 1. 可以用localtime 函数分别获取年月日时分秒的数值。 #include //C语言的头文件 #include //C语言的I/O void main() { time_t now; //实例化time_t结构 struct tm *timenow; //实例化tm结构指针 time(&now); //time函数读取现在的时间(国际标准时间非北京时间),然后传值给now timenow = localtime(&now); //localtime函数把从time取得的时间now换算成你电脑中的时间(就是你设置的地区) printf("Local time is %sn",asctime(timenow)); //上句中asctime函数把时间转换成字符,通过printf()函数输出 } 注释:time_t是一个在time.h中定义好的结构体。而tm结构体的原形如下: struct tm { int tm_sec;//seconds 0-61 int tm_min;//minutes 1-59 int tm_hour;//hours 0-23 int tm_mday;//day of the month 1-31 int tm_mon;//months since jan 0-11 int tm_year;//years from 1900 int tm_wday;//days since Sunday, 0-6 int tm_yday;//days since Jan 1, 0-365 int tm_isdst;//Daylight Saving time indicator }; 2. 对某些需要较高精准度的需求,Linux提供了gettimeofday()。

fock()函数问题

#include #include #include int main() { pid_t pid1; pid_t pid2; pid1 = fork(); pid2 = fork(); printf("pid1:%d, pid2:%d\n", pid1, pid2); } 输出: pid1:3411, pid2:3412 pid1:0, pid2:3413 pid1:3411, pid2:0 pid1:0, pid2:0 1. 基础知识: 1)fork函数总是“调用一次,返回两次”,在父进程中调用一次,在父进程和子进程中各返回一次。fork在子进程中的返回值是0,而在父进程中的返回值则是子进程的id。 2)子进程在创建的时候会复制父进程的当前状态(PCB信息相同,用户态代码和数据也相同)。 3)程序运行的结果基本上是父子进程交替打印,但这也不是一定的,取决于系统中其它进程的运行情况和内核的调度算法。 2. 第一个fork: 子进程A被创建,之后从fork函数往下执行与父进程相同的代码,即后一个fork和printf 会被父进程和子进程A分别执行一次: 父进程打印的pid1和pid2是两个子进程的pid,即结果的第一行:pid1:3411, pid2:3412 子进程A打印的pid1和pid2是这个fork在子进程A中的返回(0)和子进程A中调用fork返回的pid,即结果的第二行:pid1:0, pid2:3413 3. 第二个fork: 这个fork会被父进程和子进程A都执行一遍。假设子进程B被主进程创建,子进程C被子进程A创建。子进程A也可以说是子进程C的父进程,为了避免混淆,我这里改叫主进程而不再使用父进程的概念。 子进程B的打印即结果的第三行:pid1:3411, pid2:0。其中,其中,pid1为复制的主进程的数据,pid2为该fork在子进程B中的返回。 子进程C的打印,即结果的最后一行:pid1:0, pid2:0。其中,pid1为复制的进程A的数据,pid2为该fork在子进程C内部的返回。

linux基础操作

玩过Linux的人都会知道,Linux中的命令的确是非常多,但是玩过Linux的人也从来不会因为Linux的命令如此之多而烦恼,因为我们只需要掌握我们最常用的命令就可以了。当然你也可以在使用时去找一下man,他会帮你解决不少的问题。然而每个人玩Linux的目的都不同,所以他们常用的命令也就差异非常大,而我主要是用Linux进行C/C++和shell程序编写的,所以常用到的命令可以就会跟一个管理Linux系统的人有所不同。因为不想在使用是总是东查西找,所以在此总结一下,方便一下以后的查看。不多说,下面就说说我最常用的Linux 命令。 1、cd命令 这是一个非常基本,也是大家经常需要使用的命令,它用于切换当前目录,它的参数是要切换到的目录的路径,可以是绝对路径,也可以是相对路径。如: [plain]view plain copy print? 1.cd /root/Docements # 切换到目录/root/Docements 2.cd ./path # 切换到当前目录下的path目录中,?.?表示当前目录 3.cd ../path # 切换到上层目录中的path目录中,?..?表示上一层目录 2、ls命令 这是一个非常有用的查看文件与目录的命令,list之意,它的参数非常多,下面就列出一些我常用的参数吧,如下: [plain]view plain copy print? 1.-l :列出长数据串,包含文件的属性与权限数据等 2.-a :列出全部的文件,连同隐藏文件(开头为.的文件)一起列出来(常用) 3.-d :仅列出目录本身,而不是列出目录的文件数据 4.-h :将文件容量以较易读的方式(GB,kB等)列出来 5.-R :连同子目录的内容一起列出(递归列出),等于该目录下的所有文件都会显示出来 注:这些参数也可以组合使用,下面举两个例子: [plain]view plain copy print? 1.ls -l #以长数据串的形式列出当前目录下的数据文件和目录 2.ls -lR #以长数据串的形式列出当前目录下的所有文件 3、grep命令 该命令常用于分析一行的信息,若当中有我们所需要的信息,就将该行显示出来,该命令通常与管道命令一起使用,用于对一些命令的输出进行筛选加工等等,它的简单语法为 [plain]view plain copy print? 1.grep [-acinv] [--color=auto] '查找字符串' filename 它的常用参数如下: [plain]view plain copy print?

相关文档