文档库 最新最全的文档下载
当前位置:文档库 › 悬臂式掘进机行走机构的功能及设计研究 崔学普

悬臂式掘进机行走机构的功能及设计研究 崔学普

悬臂式掘进机行走机构的功能及设计研究 崔学普
悬臂式掘进机行走机构的功能及设计研究 崔学普

悬臂式掘进机行走机构的功能及设计研究崔学普

发表时间:2018-01-18T09:40:26.307Z 来源:《基层建设》2017年第30期作者:崔学普冯彦坤赵岩领

[导读] 摘要:当前,随着工程建设的发展,为提高岩石巷道掘进工作效率,采用机械化作业,可以使掘进的各道工序高质量完成。

中铁工程装备集团隧道设备制造有限公司河南新乡 453000

摘要:当前,随着工程建设的发展,为提高岩石巷道掘进工作效率,采用机械化作业,可以使掘进的各道工序高质量完成。悬臂式掘进机属于分断面掘进机,是一种集截割、转运、行走、喷雾、除尘于一体的综合掘进设备,在工程中得到普遍的应用。基于此,文章就悬臂式掘进机行走机构的功能及设计进行简要的分析,希望可以提供一个有效的借鉴。

关键词:悬臂式掘进机;行走机构;功能;设计

1.悬臂式掘进机行走机构的组成、功能

1.1组成

悬臂式掘进机行走机构中的动力源是根据驱动的实际形式来划分的,主要包含2种形式:电机驱动形式以及液压马达驱动形式。悬臂式掘进机行走机构中的履带板是根据结构形式区分的,主要包括整体式履带板以及滚子式履带板。其中铸造的或者是锻造的整体式履带板在当前应用比较广泛。悬臂式掘进机行走机构中的履带链支承的主要方式为支重轮式和摩擦板式两种。相对来说支重轮式的行走结构比较复杂,并且其支重轮损坏的几率非常高,但是在工作的时候传动的效率高,同时能够在不同的环境下被使用,其中的摩擦板式行走结构虽然相对简单,也不易被损坏,但是其传动效率低。因此须根据不同的环境采用不同的履带链支承。悬臂式掘进机行走机构中履带张紧装置包括2种形式:①机械式张紧装置;②液压张紧装置。在行走机构中履带是负重最大的而且起着特别重要的作用,因此行走机构中的张紧装置所承受的压力是很大的,其设计要求也是最高的。只有张紧装置安全可靠,才能保证行走机构的正常使用。

1.2功能

行走机构是悬臂式掘进机主要的构成部分,是保证和实现隧道基本开挖等一系列工作的必要部件。其功能就是保证设备在隧道中不同位置实现移动并对巷道部分的断面进行截割开挖,对整台掘进机进行支撑,并保证设备在隧道中的开挖行走。同时行走机构能够实现对掘进机行走速度的控制,保证岩石的支护、设备维护维修、以及其他行走过程中的辅助功能等等。

2.悬臂式掘进机行走机构的设计措施

2.1掘进机行走部设计要求

(1)掘进机应满足足够的接地比压:(2)行走部应具有良好的制动能力;(3)掘进机应具有足够的驱动能力和转弯性能;(4)行走部应具有良好的防侧倾功能;(5)履带架应具有良好的导向性,履带板有防侧滑功能。

2.2掘进机主要参数的确定

按照大体的顺序对几个关键的参数进行确定,并列出参数确定的公式,其中几个尺寸相互间关联,确定应根据实际情况进行选取,经过反复验证后方可确定。

(1)掘进机牵引力的确定

掘进机在工作状态中,其需要最大牵引力的工况是掘进机在爬最大坡度时转弯所需要的牵引力,其单边牵引力

式中G———掘进机整机重量;

f———履带板组与地面的滚动阻力系数;

μ———履带板组与地面之间的转向阻力系数;

L———单边履带板组接地长度;

B———2条履带中心距;

n———掘进机重心与履带行走部接地形心的纵向偏心距。

(2)掘进机接地比压的确定

在掘进机设计中接地比压指的是掘进机整机重量与2条履带板接地面积的比值,转载机的重量作用于掘进机和刮板机上,所以为了更接近掘进机的实际接地比压,接地比压的重量应更改为掘进机的重量加上1/2的二运重量,在实际设计中也有将掘进机的总重默认为整机重量加上转载机的重量,其比压

式中b———掘进机单块履带板宽度;

g———转载机重量。

一般中型掘进机要求接地比压p≤0.14MPa,对于重型掘进机由于结构限制要求也可以略大于0.14MPa。

(3)行走中心距的确定

行走中心距主要是在设计时考虑掘进机的侧倾能力和转弯功能,行走中心距

B=(3.5~4.5)b中心距越大,整机的防侧倾能力越大,其转弯所需牵引力越小。

2.3掘进机行走机构的改进设计

掘进机要想移动、转弯,必须依靠行走机构,行走机构几乎承担着掘进机的整个重量。为进一步提高掘进机的适应性,应对掘进机的

悬臂式掘进机介绍

目录 一·概述 §1-1·掘进机的用途 §1-2·掘进机的发展历程 §1-3·掘进机的技术发展趋势 §1-4·悬臂式掘进机产品形式 §1-5·悬臂式掘进机产品型号编制 二·悬臂式掘进机的技术特点 §2-1·悬臂式掘进机的基本组成 §2-2·悬臂式掘进机技术特点 §2-3·EBZ160(J1C)掘进机结构特征和工作原理三·悬臂式掘进机主要生产企业及其产品

一·概述 随着回采工作面机械化程度的提高,回采速度大大加快,巷道掘进和回采工作也必须加快。靠钻爆法掘进巷道已经满足不了要求,采用掘进机法,使破落煤岩、装载运输、喷雾灭尘等工序同步进行,是提高掘进速度的有效措施。 按照工作机构切割工作面的方式,掘进机可分为部分断面巷道掘进机和全断面巷道掘进机两大类。 部分断面巷道掘进机主要用于煤和半煤岩巷道的掘进,其工作机构一般由一悬臂及安装在悬臂上的截割头所组成。工作时,机构上下左右摆动,截割头旋转完成煤岩的破碎。全断面巷道掘进机主要用于掘进岩石巷道,其工作机构沿整个工作面同时进行连续推进。全断面巷道掘进机目前在煤矿上没有广泛应用。 本着以高新技术改造煤矿机械,率先促使所经营的产品升级换代至世界一流水平的三一重型装备有限公司在掘进机产品领域主要以悬臂式巷道掘进机作为开发的主导产品。下面就请大家一起来了解我司的掘进机产品。 §1-1·掘进机的用途 悬臂式巷道掘进机是一种综合掘进设备属于部分断面巷道掘进机,它集切割、行走、装运、喷雾灭尘于一体,包含多种机构,具有多重功能。悬臂式掘进机作业线主要由主机与后配套设备组成。主机把岩石切割破落下来,转运机构把破碎的岩渣转运至机器尾部卸下,由后配套转载机、运输机或梭车运走。悬臂式掘进机的切割臂可以上

掘进机截割部设计

2.1.2 各部件的结构型式的确定 2.1.2.1 切割机构 (3)行星减速器 主要由箱体、减速齿轮、二级行星轮架、输入、输出轴构成。太阳轮与行星轮相啮合,此行星轮通过两个轴承装在星轮轴上,两端装有孔用弹性挡圈,星轮装在第一级行星架相应的轴孔内,内轮与箱体组成一体并与行星轮啮合带动第一级行星架,实现第一级减速[7]。 第二级的太阳轮与第一级行星架为渐开县花键联结,太阳轮与第二行星轮啮合,此行星轮装在第二级的轮轴,此轮轴装在第二级行星架相应轴孔内。这里内轮与减速器壳体组成一体与行星轮啮合,此星轮不仅自转还绕太阳轮公转,从而实现第二级减速器。 图2-1 EBZ200E掘进机的截割部行星减速器结构 Fig.2-1 EBZ200E roadheader in Jiamusi Coal Mine Machinery Co. Ltd. 2.2.4 截割机构技术参数的初步确定 2.2.4.3 电动机的选择 根据行业标准MT477-1996YBU系列掘进机用隔爆型三相异步电动机选择,确定截割功率为200kw,额定电压AC1140 /660 V,转速1500rpm

表2-2电动机的基本参数[13] 功率/kW 效率η/% 功率因数 /cos?堵转转矩堵转电流最小转矩最大转矩冷却水流 量/31 m h- ? 额定转矩额定电流额定转矩额定转矩 200 92 0.85 2.0 6.5 1.2 2.6 1.3

3悬臂式掘进机截割机构方案设计 3.1截割部的组成 掘进机截割部主要由截割电动机、截割机构减速器、截割头、悬臂筒组成。见图3-1.截割部是掘进机直接截割煤岩的装置,其结构型式、截割能力、运转情况直接影响掘进机的生产能力、掘进效率和机体的稳定性,是衡量掘进机性能的主要因素和指标。因此,工作部的设计是掘进机设计的关键。 1 截割头 2 伸缩部 3 截割减速机 4 截割电机 图3-1 纵轴式截割部 ?3.2 截割部电机及传动系统的选择 切割电机的选择应根据工作条件选取,由设计要求可知,所设计的掘进机可截割硬度为小于85Mpa的中硬岩,查表2-1可知应该选取功率为200KW的截割电动机。电机动力经传动系统传向截割头进行截割,且机体为焊接结构,前端与行星减速器相联,后端联接回转台。电机输出力矩,通过花键套传递给减速器,再由花键套传到主轴,主轴通过内花套键与截割头相联,把力(矩)传递到割头上,截割头以此方式进行工作。 3.5 传动方案设计 悬臂式掘进机的传动方式为电机输出轴通过联轴器将转矩传递给减速器的输入轴,减速器输出轴通过联轴器将转矩传递给主轴,主轴带动截割头转动。

掘进机行走机构减速器设计(开题分析方案)

一、课题名称 132型掘进机行走减速器设计 二、课题研究背景 掘进机分为两种:开敞式掘进机和护盾式掘进机。价格一般在上亿元人民币。英文:roadheader用于开凿平直地下巷道的机器。主要有行走机构、工作机构、装运机构和转载机构组成。随着行走机构向前推进,工作机构中的破碎头不断破碎岩石,并将碎岩运走。有安全、高效和成巷质量高等优点,但造价大,机构复杂,损耗也较大。 近年来随着我国煤炭行业的迅速发展,与之唇齿相依的煤机行业也日益受到重视。在煤炭行业纲领性文件《关于促进煤炭工业健康发展的若干意见》中,在全国煤炭工业科学技术大会上以及国家发改委出台的煤炭行业结构调整政策中,都涉及到发展大型煤炭井下综合采煤设备等内容。 掘进和回采是煤矿生产的重要生产环节,国家的方针是:采掘并重,掘进先行。煤矿巷道的快速掘进是煤矿保证矿井高产稳产的关键技术措施。采掘技术及其装备水平直接关系到煤矿生产的能力和安全。高效机械化掘进与支护技术是保证矿井实现高产高效的必要条件,也是巷道掘进技术的发展方向。随着综采技术的发展,国内已出现了年产几百万吨级、甚至千万吨级超级工作面,使年消耗回采巷道数量大幅度增加,从而使巷道掘进成为了煤矿高效集约化生产的共性及关键性技术。 我国煤巷高效掘进方式中最主要的方式是悬臂式掘进机与单体锚杆钻机配套作业线,也称为煤巷综合机械化掘进,在我国国有重点煤矿得到了广泛应用,主要掘进机械为悬臂式掘进机。 我国煤巷悬臂式掘进机的研制和应用始于20世纪60年代,以30~50kW的小功率掘进机为主,研究开发和生产使用都处于实验阶段。80年代初期,我国淮南煤机厂<现重组为凯盛重工)引进了奥地利奥钢联公司AM50型掘进机、佳木斯煤机厂<现隶属于国际煤机)引进了日本三井三池制作所S-100型掘进机,通过对国外先进技术的引进、消化、吸收,推动了我国综掘机械化的发展。但当时引进的掘进机技术属于70年代的水平,设备功率小、机重轻、破岩能力低及可靠性差,仅适合在条件较好的煤巷中使用,加之国产机制造缺陷,在使用中暴露了很多问题。国内进一步加强对引进机型的消化吸收工作,积极研制开发了适合我国地质条件和生产工艺的综合机械化掘进装备。经过近30年的消化吸收和自主研发,目前,我国已形成年产1000余台的掘进机加工制造能力,研制生产了20多种型号的掘进机,其截割功率从30kW 到200kW ,初步形成系列化产品,尤其是近年来,我国相继开发了以EBJ-120TP型掘进机为代表的替代机型,在整体技术性能方面达到了国际先进水平。基本能够满足国内半煤岩掘进机市场的需求,半煤岩掘进机以中型和重型机为主,能截割岩石硬度为f=6~8,截割功率在120kW以上,机重在 35t以上。煤矿现用主流半煤岩巷悬臂式掘进机以煤科总院太原研究院院生产的EBJ-120TP型、EBZ160TY型及佳木斯煤机厂生产的S150J型三种机型为主,占半煤岩掘进机使用量的80%以上。 然而,国内目前岩巷施工仍以钻爆法为主,重型悬臂式掘进机用于大断面岩巷的掘进在我国处于实验阶段,但国内煤炭生产逐步朝向高产、高效、

掘进机总体设计及行走部设计

中国矿业大学本科生毕业设计 姓名: ** 学号:****** 学院:应用技术学院 专业:机械工程及自动化 设计题目:掘进机总体设计及行走部设计专题:行走减速器与机架连接的改进指导教师: **** 职称:副教授 20**年6 月徐州

中国矿业大学毕业设计任务书 学院应用技术学院专业年级学生姓名 ** 任务下达日期:20**年 3 月8 日 毕业设计日期20** 年 3 月9 日至20** 年 6 月13 日毕业设计题目:掘进机总体设计及行走部设计 毕业设计专题题目:行走减速器与机架的连接改进 毕业设计主要内容和要求: 一、主要设计参数: 机身长:8-8.5m 机身宽:2~2.2m 机身高:1.5~1.65m 卧底深度: 245mm 装机功率:190kW 截割功率:120kW 经济截割煤岩硬度:≤60MPa 可掘巷道断面:18~20m2 最大可掘高度:3.75~4m 最大可掘宽度:5m 龙门高度:350~400mm 刮板速度:0.9~1.0m/s 运输形式:双边链履带宽度:2×500mm 行走速度:4.5m/min(工作)9m/min(调动) 额定电压:1140/660v 二、设计要求 1、查阅有关资料、完成履带式半煤岩掘进机总体方案的设计; 2、完成底盘总体传动及结构设计及减速器的设计; 3、主要部件、组件、零件图设计; 4、编写完成整机设计计算说明书 院长签字:指导教师签字:

指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

悬臂式掘进机设计

机械、液压 部分

一、概述 1.1 产品特点 EBZ-125XK是西安煤矿机械厂与科研院校合作开发的中型悬臂式掘进机。该机主要特点是:1)结构紧凑、适应性好、机身矮、重心低、操作简单、检修方便;2)炮头采用具有36把镐型截齿、齿座呈螺旋线形排布的球微锥形截割头;3)有低速大扭矩液压马达直接驱动的第一运输机;4)有星轮与低速大扭矩马达连接成一体的弧形三齿星轮装料装置;5)有马达+减速机构形式的行走部;6)有滑动式行走结构上用的耐磨板;7)有为液压锚杆钻机及二运输机留的液压接口;8)电气系统有失压、短路、过载、温度、瓦斯断电等保护功能。 1.2 主要用途、适用范围 EBZ-125XK型悬臂式掘进机主要是为煤矿综采及高档普采工作面采掘巷道掘进服务的机械设备。主要适用于煤及半煤岩巷的掘进,也适用于条件类似的其它矿山及工程巷道的掘进。该机可经济切割单向抗压强度≤60MPa的煤岩,可掘巷道最大宽度(定位时)5m,最大高度3.75m,可掘任意断面形状的巷道,适应巷道坡度±160。该机后配套转载运输设备可采用桥式胶带转载机和可伸缩式带式输送机,实现连续运输,以利于机器效能的发挥。 1.3 产品型号、名称及外形 产品型号、名称为EBZ-125XK型掘进机,外形参见图l。 1.4型号的组成及其代表意义 设计代号 截割机构功率(KW) 纵轴式截割机构 悬臂式掘进机 掘进设备

二、主要技术参数 2.1总体参数 机长8.6m 机宽 2.1m 机高 1.55m 地隙250mm 截割卧底深度240mm 接地比压0.14MPa 机重35t 总功率190kW 可经济截割煤岩硬度≤60MPa 可掘巷道断面9~18m2 最大可掘高度 3.75m 最大可掘宽度 5.0m 适应巷道坡度±160 机器供电电压660/l140V 2.2 截割都 电动机型号YBU-125 功率125kW 转速1470 r/min 截割头转速55 r/min 截齿镐形 最大摆动角度上420 下3l0 左右各390 2.3 装载部 装载形式三爪转盘

掘进机检修工艺

掘进机检修工艺标准 掘进机上井之后,其检修的主要内容为: 1、对掘进机的截割部、铲板部、第一运输机、行走装置等上井冲洗、分解、清洗、检修、修理或更换; 2、各种油缸全部分解、清洗、检查、修理,对镀层有锈蚀、划痕或碰伤超过标准的,应重新电镀,更换全部密封件并做打压试验; 3、阀类备件全部分解、清洗、更换损坏的零部件,更换全部密封件,按规定做打压试验,逐个调整安全阀的压力。逐条检查高压胶管,更换全部密封件和不合规格的高压胶管; 4、对掘进机电气部分,全部分解、检查、修理或更换; 5、作好检修记录。 根据掘进机维修的工艺流程图(见下页),设计掘进机的检修工序为: 第一道工序:清洗掘进机 1、掘进机上井后进入厂房,打扫掘进机各部件上的浮矸,浮煤等杂物,以便冲洗。 2、用天车分别吊起掘进机各部件(除电气部分),用高压水(压力达到30Mpa)冲洗各部件。 3、将清洗干净的各部件码放整齐,清洗场地。 第二道工序:截割部分检修 掘进机截割部分检修前分解成以下几个部分:截割头、伸缩部、切割减速机、截割电机等。

2、截割头的质量标准: (1)截割头不得有裂纹,不得损坏喷嘴螺纹。 (2)滚筒端面齿座径向齿座应完整无缺,其孔磨损不得超过1㎜,补焊齿座角度应符合技术文件要求。 3、检修过程: (1)截割头要达到质量标准,对有裂纹或开焊的要报废,喷嘴损坏的要更换。 (2)齿座应仔细检查,对磨损较严重的必须切除,在焊接时注意角度。 (3)检查内花键,键齿厚的磨损量不得超过原齿厚的5%,否则更换。 二、切削减速机的检修

2、质量标准: (1)轴的质量标准:轴不得有裂纹,严重腐蚀或损伤,直线度应符合技术文件的要求,轴颈加工减小量不得超过原轴颈的5%。轴与轴孔的配合应符合技术文件的要求,超差时,允许采用涂、镀、电镀或喷涂工艺进行修复。 (2)滚动轴承的质量标准:轴承允许不得有裂纹、伤痕、锈斑、剥落、点蚀和变色,保持架应完整无变形,转动灵活, 无异响。轴承内圈与轴颈、轴承外圈与轴承座的配合应符合技术文件要求。滚动轴承径向最大磨损间隙应符合文件要求。装配轴承时不得冲嘛面或加垫,轴颈的表面粗糙度不得大于0.8,轴承座孔的表面粗糙度不得大于1.8。轴承应紧贴在轴间隔套上,不得有间隙,轴承装配后应按规定加注适量的润滑脂或润滑油,用于转动时轴承应能轻快灵活转动,运行时无异响和异常振动。 (3)齿轮的质量标准: ①齿轮不得断齿,齿面不得有裂纹和剥落等现象。 ②齿面的点蚀情况达到下列之一时,必须更换。 A点蚀区高度为齿高的100%。 B点蚀区高度为齿高的30%,长度为齿长的40%。 C点蚀区高度为齿高的70%,长度为齿长的100%。 ③齿面不得有严重胶合(即胶合达到齿高的1/3,齿长的1/2)。 ④齿面的磨损不得超过下列规定: A硬齿面齿轮、齿面磨损可继续使用,但不得超过下列规定。 B软齿面磨损量达到齿厚的5%。 C开式齿轮齿厚磨损达原齿厚的10%。 ⑤圆柱齿轮副啮合时,齿表中心线应对准,偏差不得大于1㎜。圆锥齿轮副啮合时,端面偏差不得大于1.5㎜。 ⑥圆柱齿轮副装配时,其中心距极限偏差、最小侧隙应符合技术文件要求。 ⑦齿轮副侧隙的检查:用压铅丝法检查齿轮的侧隙时,在齿面沿齿两端平行放置两天铅丝,铅丝直径约为该齿轮规定侧隙的4倍,圆锥齿轮、弧锥齿轮不超过侧隙的3倍。转动齿轮挤压后,测量铅丝最薄处厚度,即为新测的侧隙。 ⑧齿轮装完后,用人力盘动检查,转动应灵活、平稳并无异响。 (4)机壳的质量标准: ①机壳不得有裂纹或变形,允许焊补修复,铸铁、机壳只能在非主要受力部位焊补修复,并应有防止变形和消除内应力的措施。 ②盖板不得有裂纹或变形,接合面应平整严密,平面度不得超过0.3㎜。 ③减速器轴孔磨损后,允许孔镶套修复,但与其对应轴孔的平行度,两锥齿轮的垂直度应符

悬臂式掘进机行走机构的功能及设计研究 崔学普

悬臂式掘进机行走机构的功能及设计研究崔学普 发表时间:2018-01-18T09:40:26.307Z 来源:《基层建设》2017年第30期作者:崔学普冯彦坤赵岩领 [导读] 摘要:当前,随着工程建设的发展,为提高岩石巷道掘进工作效率,采用机械化作业,可以使掘进的各道工序高质量完成。 中铁工程装备集团隧道设备制造有限公司河南新乡 453000 摘要:当前,随着工程建设的发展,为提高岩石巷道掘进工作效率,采用机械化作业,可以使掘进的各道工序高质量完成。悬臂式掘进机属于分断面掘进机,是一种集截割、转运、行走、喷雾、除尘于一体的综合掘进设备,在工程中得到普遍的应用。基于此,文章就悬臂式掘进机行走机构的功能及设计进行简要的分析,希望可以提供一个有效的借鉴。 关键词:悬臂式掘进机;行走机构;功能;设计 1.悬臂式掘进机行走机构的组成、功能 1.1组成 悬臂式掘进机行走机构中的动力源是根据驱动的实际形式来划分的,主要包含2种形式:电机驱动形式以及液压马达驱动形式。悬臂式掘进机行走机构中的履带板是根据结构形式区分的,主要包括整体式履带板以及滚子式履带板。其中铸造的或者是锻造的整体式履带板在当前应用比较广泛。悬臂式掘进机行走机构中的履带链支承的主要方式为支重轮式和摩擦板式两种。相对来说支重轮式的行走结构比较复杂,并且其支重轮损坏的几率非常高,但是在工作的时候传动的效率高,同时能够在不同的环境下被使用,其中的摩擦板式行走结构虽然相对简单,也不易被损坏,但是其传动效率低。因此须根据不同的环境采用不同的履带链支承。悬臂式掘进机行走机构中履带张紧装置包括2种形式:①机械式张紧装置;②液压张紧装置。在行走机构中履带是负重最大的而且起着特别重要的作用,因此行走机构中的张紧装置所承受的压力是很大的,其设计要求也是最高的。只有张紧装置安全可靠,才能保证行走机构的正常使用。 1.2功能 行走机构是悬臂式掘进机主要的构成部分,是保证和实现隧道基本开挖等一系列工作的必要部件。其功能就是保证设备在隧道中不同位置实现移动并对巷道部分的断面进行截割开挖,对整台掘进机进行支撑,并保证设备在隧道中的开挖行走。同时行走机构能够实现对掘进机行走速度的控制,保证岩石的支护、设备维护维修、以及其他行走过程中的辅助功能等等。 2.悬臂式掘进机行走机构的设计措施 2.1掘进机行走部设计要求 (1)掘进机应满足足够的接地比压:(2)行走部应具有良好的制动能力;(3)掘进机应具有足够的驱动能力和转弯性能;(4)行走部应具有良好的防侧倾功能;(5)履带架应具有良好的导向性,履带板有防侧滑功能。 2.2掘进机主要参数的确定 按照大体的顺序对几个关键的参数进行确定,并列出参数确定的公式,其中几个尺寸相互间关联,确定应根据实际情况进行选取,经过反复验证后方可确定。 (1)掘进机牵引力的确定 掘进机在工作状态中,其需要最大牵引力的工况是掘进机在爬最大坡度时转弯所需要的牵引力,其单边牵引力 式中G———掘进机整机重量; f———履带板组与地面的滚动阻力系数; μ———履带板组与地面之间的转向阻力系数; L———单边履带板组接地长度; B———2条履带中心距; n———掘进机重心与履带行走部接地形心的纵向偏心距。 (2)掘进机接地比压的确定 在掘进机设计中接地比压指的是掘进机整机重量与2条履带板接地面积的比值,转载机的重量作用于掘进机和刮板机上,所以为了更接近掘进机的实际接地比压,接地比压的重量应更改为掘进机的重量加上1/2的二运重量,在实际设计中也有将掘进机的总重默认为整机重量加上转载机的重量,其比压 式中b———掘进机单块履带板宽度; g———转载机重量。 一般中型掘进机要求接地比压p≤0.14MPa,对于重型掘进机由于结构限制要求也可以略大于0.14MPa。 (3)行走中心距的确定 行走中心距主要是在设计时考虑掘进机的侧倾能力和转弯功能,行走中心距 B=(3.5~4.5)b中心距越大,整机的防侧倾能力越大,其转弯所需牵引力越小。 2.3掘进机行走机构的改进设计 掘进机要想移动、转弯,必须依靠行走机构,行走机构几乎承担着掘进机的整个重量。为进一步提高掘进机的适应性,应对掘进机的

掘进机行走部总体结构设计

目录 1 绪论 (1) 1.1概述 (1) 1.2掘进机的发展 (1) 1.2.1国外掘进机的发展 (1) 1.2.2我国掘进机的发展 (1) 1.3履带式掘进机行走机构的工作原理 (2) 1.4研究掘进机行走机构的意义 (2) 1.5EPJ-120TP型掘进简介 (3) 1.5.1EPJ-120TP型掘进机简述 (3) 1.5.2J─120TP主要技术参数 (5) 2 总体结构设计 (5) 2.1掘进机的总体结构 (5) 2.2掘进机各部分的选型 (6) 2.2.1工作机构 (6) 2.2.2装载机构 (6) 2.2.3运输机构 (7) 2.2.4转载机构 (7) 2.2.5行走机构 (7) 2.2.6除尘装置 (8) 2.3掘进机各部分基本结构设计 (8) 3 掘进机行走部总体结构设计 (14) 3.1掘进机行走部设计要求 (14) 3.2传动方案的设计 (14) 3.3行走机构基本参数设计 (14) 3.3.1履带及相关部分设计 (14) 3.3.2履带链轮的设计 (15) 3.3.3张紧装置和导向轮的设计 (16) 3.3.4单侧履带行走机构牵引力的计算确定 (16) 3.3.5单侧履带行走机构输入功率的计算确定 (16) 3.3.6液压马达、液压泵与电机型号的选择 (16) 4 掘进机行走部减速器设计 (17) 4.1传动方案的设计 (17) 4.2总传动比的计算 (18) 4.3行星齿轮减速器的设计 (19) 4.3.1已知条件 (19) 4.3.2配齿计算 (19) 4.3.3初步计算齿轮的主要参数 (19) 4.3.4啮合参数的计算 (20) 4.3.5几何尺寸的计算 (21) 4.3.6装配条件的验算 (24) 4.3.7传动效率的计算 (24) 4.3.8齿轮强度验算 (25)

掘进机行走机构设计

摘要 掘进机是一种较先进的井下掘进设备。行走机构由履带、支重轮、托链轮、引导轮、驱动轮、张紧装置、行星齿轮减速器、液压马达和履带架等部分组成。 按照掘进机行走部及行走减速器的工作原理进行初步设计。在此基础上通过对此题目的分析以及对一些相关书籍和文献的查阅,进一步研究掘进机行走部的设计及行走减速器的设计原理。设计重点应在于行走部的履带行走机构设计及行走减速器的行星传动设计。首先阐述行走部的履带行走机构的一般结构,简易的叙述总体方案设计,其次对减速器进行细致的设计,包括行星减速器的选择、计算、校核。 通过研究掘进机行走部及行走减速器的基本原理,获得了大量有关设计掘进机行走部及行走减速器的要领。 关键词:掘进机;行走机构;减速器

Abstract Boring machine is a more advanced underground boring equipment. Travel agencies from the track, supporting wheels, asked sprocket, guide wheel, driving wheel, tensioning device, planetary gear reducer, hydraulic motors and track aircraft components. In accordance with the driving and walking to walking part reducer preliminary design works. Based on this analysis and through this topic a number of books and documents on access, further driving to walking part of the design and running gear reducer design principles. Design should focus on running the Department of Design and crawler running gear reducer planetary transmission design. First, the Department set to walk the general structure of crawler, a simple description of the overall program design, followed by a careful design of the reducer, planetary reducer selection, calculation and check. Department of walking through the tunnel boring machine and the basic principles of running reducer to obtain a lot of walking part of the design driving and walking reducer essentials. Key words:Boring machine; Travel agencies; Reducer

掘进机设计

部分断面掘进机(横轴式) 1. 概述 巷逍掘进机是一种能够完成截割、装载、转载煤岩,并能自己行走,具有喷雾火尘等功能的巷道掘进联合机组,根据工作方式的不同可分为全断而掘进机和部分断而掘进机。前者可一次截割出所需断面,且断面形状多为圆形,主要用于工程涵洞及隧道的岩石掘进;后者一次仅能截割断而一部分,需工作机构上下左右多次摆动、移动,逐渐截割才能掘出所需断而,断而形状可以是矩形、梯形、拱形等,英中悬臂式断而掘进机在煤矿中使用很普遍。 1.1国内外的发展、现状、水平 1.1.1国外掘进机的发展概况 早在上世纪30年代,徳国、前苏联、英国、美国等就开始了煤矿巷道掘进机的研制,但巷逍觉仅仅得到较广泛工业性应用还是在第二次世界大战之后。1948年,匈牙利开始研制F系列煤巷掘进机。1949年生产的F2型掘进机,是世界上的第一台悬臂式掘进机,不过当时还未能实现悬臂式掘进机的全部功能。1951年匈牙利研制了采用履带行走机构的F4型悬臂式掘进机,这种机型除采用横轴截割方式和调动灵活的履带行走机构外,还采用了铲板和星轮装载机构,并采用了刮板运输机转运物料。这种机型已经具备了现代悬臂式掘进机的雏形。F系列掘进机是目前悬臂式横轴掘进机的原始机型。 1971年奥地利ALPINE公司在匈牙利F系列掘进机的基础上,研制了AM—50型掘进机, 并在此基础上逐步形成了AM系列掘进机。在此基础上,徳国EICK-H0FF公司自行研制出了EVA系列掘进机。1973年WESTFALIA公司成功研制了WAV—170和WAV—200型掘进机,并在此基础上发展为WAV系列型掘进机。F系列、AM系列和WAV系列掘进机均采用的是横轴截割机构。 1956年前苏联生产了首台纵轴悬臂式掘进机。1960—1964年,英国从前苏联引进,并同时开始了悬臂式掘进机的研制。1963年D0SC0公司通过改变截割头截齿配列和更换电气系统,研制岀了D0SC0系列掘进机。1968年徳国EICKH0FF公司在引进的D0SC0掘进机基础上研制开发出了EV-100型掘进机。后来徳国PAURAT公司又研制出了ET系列掘进机,使纵轴悬臂式掘进机逐步形成系列化。 经过半个多世纪的发展,目前,国外掘进机主要生产国有:英、徳、俄罗斯、奥地利、日本等国,所生产的掘进机已被广泛用于硬度低于8半煤岩的采准巷道掘进,并扩大到岩巷。重型机不移位截割断面达35~42〃,,多数机型能在纵向±16、横向8的斜坡上可靠工作,截割功率在132~300kw,机重在50-100(,切割岩石硬度f为12。部分机型截割速度已降至lm/s以下,牵引速度采用负载反馈调节,以适应不同岩石硬度;一些机型除设有后支撑外, 还在履带前后安装了卡爪式液压扎脚机构,以便在切割岩石时锚固宦位。机电一体化己成为掘进机发展趋势,新推岀的掘进机可以实现推进方向和断面监控、电动机功率自动凋肖、离机遥控操作及工况监测和故障诊断,部分掘进机实现PLC控制,实现回路循环检测。 1.1.2国内掘进机的发展概况 我国悬臂式掘进机的发展大体分为三个阶段。第一阶段是上世纪60年代初期到70年代末,这一阶段主要是已引进国外掘进机为主,在引进的同时,我们的技术人员开始尝试进行消化吸收,但研究水平较低,主要以切割煤的轻型机为主。

履带式掘进机的行走装置及液压系统毕业设计

摘要 本次设计参照了太原煤科院研制生产的EBJ-120TP型掘进机,这是一种中型悬臂式掘进机,主要用于中型煤巷及半煤岩巷的掘进作业。它结构紧凑、适应性好、机身矮、重心低、操作简单、检修方便。我的设计主要针对掘进机的行走部进行结构及液夜系统相关设计。设计中采用履带式行走部,驱动动力由液压马达提供,利用液压马达转动方向变化实现行走部前进、后退和转向。在行走部传动设计中,采用高速直联液压马达接一级圆柱直齿轮传动再接3K(Ⅱ)型行星传动的设计方案,通过制动器并将它和液压马达联结,制动器内圈悬浮,既起到制动功能又起联轴器作用,源头制动使制动性能更可靠。本设计的创新点:用制动器替代了联轴器。减速器安装时左右两侧的减速器对调180度错开布置。充分利用空间,使结构紧凑。 掘进机的总体方案设计对于整机的性能起着决定性的作用。因此,根据掘进机的用途、作业情况及制造条件,合理选择机型,并正确确定各部结构型式,对于实现整机的各项技术指标、保证机器的工作性能具有重要意义。 关键词:悬臂式掘进机;行走部;行星减速器;制动器;行星齿轮

ABSTRACT This design References the EBJ-120TP tunneling machine which is designed by Coal Science Research Institute in Taiyuan. It is one kind of medium cantilever tunneling machine which is mainly used in the medium coal lane and the half coal crag lane digging the tunnels, its structure compact, the compatibility good, the fuselage short, the center of gravity low, the operation simple, the overhaul is convenient. My design mainly aims at the tunneling machine’s walks-organization. I try to carry on the design of its structure and transmission.It uses marching walks organization, the actuation power provides by the oil motor, using the change of the oil motor’s rotation direction to make the walks-organization advance, retrocede, and turn. In the transmission design of the walks organization, using High-speed hydraulic motor to connect a pair of cylindrical Gear then connect a 3 K (II) type planetary gear, and uses the brake to link hydraulic motors Brake Inner Ring suspended can brake and link, and the source of more reliable braking performance. The innovation in designing: Use braking instead of coupling; when reducer is installed ,at each side of the reducer reversed 180 degrees staggered layout. Make full use of space and compact structure. Keywords:Cantilever tunneling machine; Walks-organization; Planet reduction gear; Brake, Planetary gear

悬臂式掘进机伸缩部件的结构设计

目录 目录 (1) 第1章绪论 (3) 1.1课题研究目的和意义 (3) 1.2悬臂式掘进机国内外的发展现状及趋势 (4) 1.2.1 国外发展现状及发展趋势 (4) 1.2.2 国内发展现状及发展趋势 (5) 1.2.3 发展前景及展望 (6) 1.3主要研究内容 (7) 第2章截割头的设计 (9) 2.1截割头简介 (9) 2.2截割头体形状确定 (9) 2.3选择掘齿类型 (9) 2.3.1 截齿受力对比 (10) 2.3.2 齿尖受力对比 (11) 2.3.3 安装方式对比 (11) 2.4截齿在截割头上分布的方式 (12) 2.5本章小结 (13) 第3章减速机的结构设计 (14) 3.1选择电动机类型及参数 (14) 3.2减速机参数确定 (14) 3.3分配传动比及选择材料 (15) 3.4高速级齿轮参数计算 (16) 3.4.1 确定齿数 (16) 3.4.2 确定齿轮模数、中心距 (16) 3.4.3 确定齿轮几何参数 (17) 3.5低速级齿轮参数计算 (17) 3.5.1 确定齿数 (17) 3.5.2 确定齿轮模数、中心距 (17) 3.5.3 确定齿轮几何参数 (18) 3.6校核计算 (18) 3.6.1 重合度计算 (18) 3.6.2 齿根弯曲强度校核 (19) 1

3.6.3 键强度、轴刚度校核 (21) 3.7本章小结 (22) 第4章伸缩臂的结构设计及分析 (23) 4.1伸缩臂的基本结构 (23) 4.2整机的受力分析 (24) 4.2.1 轴向钻进工况下的受力分析 (25) 4.2.2 向上摆动工况下的受力分析 (25) 4.2.3 向下摆动工况下的受力分析 (26) 4.2.4 左右摆动工况下的受力分析 (26) 4.3内伸缩截割臂的受力分析 (27) 4.3.1 向上摆动工况下的受力分析 (27) 4.3.2 向下摆动工况下的受力分析 (29) 4.3.3 左右摆动工况下的受力分析 (30) 4.4内伸缩臂刚度校核 (31) 4.5本章小结 (31) 结论 (32) 致谢 (33) 参考文献 (34) 2

相关文档