文档库 最新最全的文档下载
当前位置:文档库 › 7.2.1 复数的加、减运算及其几何意义-高一数学新教材配套学案(人教A版2019必修第二册)

7.2.1 复数的加、减运算及其几何意义-高一数学新教材配套学案(人教A版2019必修第二册)

7.2.1 复数的加、减运算及其几何意义-高一数学新教材配套学案(人教A版2019必修第二册)
7.2.1 复数的加、减运算及其几何意义-高一数学新教材配套学案(人教A版2019必修第二册)

7.2 复数的四则运算

7.2.1 复数的加、减运算及其几何意义

【学习目标】 素 养 目 标

学 科 素 养 1. 掌握复数代数形式的加法、减法运算法则;

2. 理解复数代数形式的加法、减法运算的几何意义。 1.数学运算; 2.直观想象

一.复数加、减法的运算法则及加法运算律

1.加、减法的运算法则

设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2= ,z 1-z 2= .

2.加法运算律

对任意z 1,z 2,z 3∈C ,有

① 交换律:z 1+z 2= .

②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3).

二.复数加、减法的几何意义

如图所示,设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )对应的向量分别为OZ 1

→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2

对应的向量是Z 2Z 1→.

【小试牛刀】

思维辨析(对的打“√”,错的打“×”)

(1)复数与向量一一对应. ( )

(2)在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.( )

(3)复数的加法不可以推广到多个复数相加的情形.( )

(4) 复数与复数相加减后结果只能是实数.( )

(5)若复数z 1,z 2满足z 1-z 2>0,则z 1>z 2.( )

(6)复数的减法不满足结合律,即(z 1-z 2)-z 3=z 1-(z 2+z 3)可能不成立.( )

【经典例题】

题型一 复数的加、减法运算

点拨: 两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算。

例1 计算:(5-6i)+(-2-i)-(3+4i)。

【跟踪训练】1已知复数z 满足z +(1+2i)=5-i ,则z =____________.

题型二 复数加、减法的几何意义

点拨:

1.复数的加减运算可以转化为点的坐标或向量运算.

2.复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则. 例2 根据复数及其运算的几何意义,求复平面内的两点Z 1 (x 1 , y 1) ,Z 2 (x 2 , y 2) 间的距离。

【跟踪训练】2 在复平面内,A ,B ,C ,三点分别对应复数1,2+i ,-1+2i.

(1)求AB

→,AC →,BC →对应的复数; (2)判断△ABC 的形状.

【当堂达标】

1. (多选)设复数z 满足z +|z |=2+i ,那么( )

A .z 的虚部为i

B .z 的虚部为1

C .z =-34-i

D .z =34+i

2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2=(

) A .8i B .6

C.6+8i D.6-8i

3.在平行四边形ABCD中,若A,C对应的复数分别为-1+i和-4-3i,则该平行四边形的对角线AC的长度为()

A. 5 B.5

C.2 5 D.10

4.若复数z1=1+3i,z2=-2+a i,且z1+z2=b+8i,z2-z1=-3+c i,则实数a=________,b =________,c=________.

5.A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则△AOB一定是三角形.

6.已知四边形OACB是复平面内的平行四边形,O为原点,点A,B分别表示复数3+i,2+4i,M是OC,AB的交点,如图所示,求点C,M表示的复数.

【参考答案】

【自主学习】

(a +c )+(b +d ) i (a -c )+(b -d )i z 2+z 1

【小试牛刀】

(1) × (2) √ (3) × (4)× (5)× (6)×

【经典例题】

例1 解 原式=(5-2-3)+(-6-1-4)i =-11i.

【跟踪训练】1 4-3i 解析:z =(5-i)-(1+2i)=4-3i.

例2

【跟踪训练】2 解:(1)A ,B ,C 三点分别对应复数1,2+i ,-1+2i.

所以OA

→,OB →,OC →对应的复数分别为1,2+i ,-1+2i(O 为坐标原点), 所以OA

→=(1,0),OB →=(2,1),OC →=(-1,2). 所以AB

→=OB →-OA →=(1,1),AC →=OC →-OA →=(-2,2),BC →=OC →-OB → =(-3,1). 即AB

→对应的复数为1+i ,AC →对应的复数为-2+2i ,BC →对应的复数为-3+i. (2)因为|AB

→|=1+1=2,|AC →|=(-2)2+22=8,|BC →|=(-3)2+1=10, 因为|AB

→|2+|AC →|2=10=|BC →|2.且|AB →|≠|AC →|, 所以△ABC 是以角A 为直角的直角三角形.

【当堂达标】

1. BD 解析:设z =x +y i(x ,y ∈R ),则x +y i +x 2+y 2=2+i ,

∴??? x +x 2+y 2=2,y =1,解得????? x =34

,y =1,∴z =34+i.∴z 的虚部为1.

2.B 解析:z 1+z 2=(3+4i)+(3-4i)=(3+3)+(4-4)i =6.

3. B 解析:依题意,AC

→对应的复数为(-4-3i)-(-1+i)=-3-4i ,因此AC 的长度为|-3-4i|=5.

解析 因为复平面内的点Z 1 x 1,y 1 ,Z 2 x 2,y 2 对应的复数分别为

Z 1=x 1+y 1i ,Z 2=x 2+y 2i .

所以Z 1,Z 2之间的距离为 Z 1Z 2 = Z 1Z 2 = Z 1?Z 2

= x 1?x 2 + y 1?y 2

= 12 2 12 2

4. 5 -1 2 解析:z 1+z 2=(1-2)+(3+a )i =-1+(3+a )i =b +8i ,z 2-z 1=(-2-1)+(a -3)i

=-3+(a -3)i =-3+c i ,所以???b =-1,3+a =8,a -3=c ,解得???b =-1,

a =5,c =2.

5. 直角 解析:根据复数加(减)法的几何意义,知以OA

→,OB →为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故△AOB 为直角三角形.

6. 解:因为OA

→,OB →分别表示复数3+i,2+4i , 所以OC →=OA →+O B →表示的复数为(3+i)+(2+4i)=5+5i , 即点C 表示的复数为5+5i.

又OM →=12OC →,所以OM →表示的复数为52+52

i , 即点M 表示的复数为52+52i.

四川省岳池一中数学(人教A)选修2-2学案 复数的几何意义

§3.1.2 复数的几何意义 学习目标 : 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法. 学习重点:复数的几何意义,理解复数相关概念. 学习难点:复数的几何意义,理解复数相关概念的运用. 课前预习案 教材助读: 阅读教材的内容,思考并完成下列问题: 1.复数的几何意义 (1)复平面的定义 建立了直角坐标系来表示复数的平面叫做________,x 轴叫做______,y 轴叫做______.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. (2)复数与点、向量间的对应 ①复数z =a +b i(a ,b ∈R) 复平面内的点______; ②复数z =a +b i(a ,b ∈R) 平面向量___________. 2.复数的模 复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ → 的模叫做复数z 的模,记作|z |,且|z |= _________. 一、新课导学: 探究点一 复数与复平面内的点 问题1:实数可用数轴上的点来表示,类比一下,复数怎样来表示呢? 问题2:判断下列命题的真假: ①在复平面内,对应于实数的点都在实轴上;

②在复平面内,对应于纯虚数的点都在虚轴上; ③在复平面内,实轴上的点所对应的复数都是实数; ④在复平面内,虚轴上的点所对应的复数都是纯虚数; ⑤在复平面内,对应于非纯虚数的点都分布在四个象限. 探究点二复数与向量 问题1:复数与复平面内的向量怎样建立对应关系? 问题2:怎样定义复数z的模?它有什么意义? 二、合作探究 例 1:在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应的点 (1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. 例2:已知复数z=3+a i,且|z|<4,求实数a的取值范围. 三、当堂检测 1. 在复平面内,复数z=i+2i2对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限 2.实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i (1)对应的点在x轴上方;(2)对应的点在直线x+y+4=0上. 四、课后反思 课后训练案 1. 当2 3

复数几何意义的应用学案.

复数几何意义的应用学案 一、复数相关知识 1.复数z a bi (a,b R)的几何意义是什么? 2. I z I的几何意义是什么? 3. 复数z1,z 2差的模I Z1-Z 2 I的几何意义是什么? 二、轨迹问题 (一)圆的定义:平面内到定点的距离等于定长的点的集合(轨迹) 设Z(x,y)以Z0(x0, y0)为圆心,r(r 0)为半径的圆上任意一点,则点 Z(x,y)满足ZZ o r (r0) 1. 该圆向量形式的方程是什么 2. 该圆复数形式的方程是什么 3.该圆代数形式的方程是什么(二)椭圆的定义:平面内与两定点Z1,Z2的距离的和等于常数(大于乙Z2 ) 的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2,y2)为焦点,2a为长轴长的椭圆的上任 意一点,则点Z(x, y)满足ZZ1ZZ22a (2a 乙Z?) 1.该椭圆向量形式的方程是什么

2.该椭圆复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? (三)双曲线的定义:平面内与两定点Z1, Z2的距离的差的绝对值等于 常数(小于乙Z2 )的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2, y2)为焦点,2a为实轴长的椭圆的上 任意一点,则点Z(x, y)满足ZZ1ZZJ 2a (2a 乙Z2) 1.该双曲线向量形式的方程是什么 2.该双曲线复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a 0"那么点Z的轨迹是什么?

复数的几何意义--教案

复数的几何意义 教学目标 1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。 2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。 教学重点 复数的几何意义与复数的加、减法的几何意义。 教学过程 前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。 一、 问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢? 二、 学生活动 知识回顾: ①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。???=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0) 0a b b bi a z 。 ②两个复数相等的充要条件是它们的实部与虚部分别相等 即 ???==?+=+d b c a di c bi a 。 问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?

问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗? 三、 建构数学 师生共同活动: 1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。 2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。 3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。 4. 根据上面的讨论,我们可以得到复数bi a z +=、复平 面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。今后, 常把复数bi a z +=说成点Z 或向量(并且规定相等的 向量表示同一个复数) 5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。 四、数学运用 运用1 (1)例1 在复平面内,分别用点和向量表示下列复数 4,i +2,i -,i 31+-,i 23-

北师大版数学高二-选修1学案 导数的几何意义

第二章 变化率与导数 第三课时 3.2.2 导数的几何意义 一、教学目标: 1、通过函数的图像直观地理解导数的几何意义; 2、理解曲线在一点的切线的概念; 3、会求简单函数在某点处的切线方程。 二、教学重点: 了解导数的几何意义 教学难点:求简单函数在某点出的切线方程 三、教学方法:探析归纳,讲练结合 四、教学过程: 复 习 回 顾 1.平均变化率 . ],[)()()(0)(00000的平均变化率在为函数称时,比值 当及其附近有定义,在点已知函数x x x x f x x f x x f x y x x x x f y ?+?-?+=??≠?== 2.瞬时变化率 . )() ()(0x 000的瞬时变化率在点则这个常数称为函数常数, 时,平均变化率 当x x f x x f x x f →?-?+→? 3.导数的定义 x x f x x f x f y x f x x x f x x x x ?-?+='''=→?=) ()(( lim )(|)()(000 00000,故或记作处的导数在为的瞬时变化率,就定义函数在 4.点斜式直线方程: y-y 0=k(x-x 0) 曲线的切线 y=f(x) y 0=f(x 0), y 1=f(x 1)

当自变量从x0变化到x1时,相应的函数值从f(x0)变化到f(x1) 自变量的增量△x= x1- x0 函数值的增量△y= f(x1)- f(x0) Q(x0+ △x,y0+ △y) △y=f(x0+ △x)-f(x0) 曲线在某一点处的切线的定义 设曲线C是函数y=f(x)的图象,在曲线C上取一点(x0,y0)及邻近一点(x0+△x,y0+△y) 过P,Q两点作割线当点Q沿着曲线无限接近于点P即△x→0时, 如果割线PQ有一个极 限位置PT, 那么直线PT叫做曲线在点P处的切线。

复数的几何意义 说课稿 教案 教学设计

复数的几何意义 一、教学目标: 1.理解复平面、实轴、虚轴等概念. 2.理解并掌握复数的几何意义,并能简单应用. 3.理解并会求复数的模,了解复数的模与实数绝对值之间的区别与联系. 二、教学重点: 重点:理解并掌握复数的几何意义. 难点:复平面内的点(,),,z a b OZ z a bi =+的关系;复数模的问题. 三、教学过程 【使用说明与学法指导】 1.课前用20分钟预习课本P 104-105内容.并完成书本上练、习题及导学案上的问题导学. 2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑. 【问题导学】 1. 复平面? 2.复数的几何意义? 3.复数的模? 4.复平面的虚轴的单位长度是1,还是i? 【合作探究】 问题1:复数与复平面内点的关系 1.复数2z i =对应的点在复平面的( B ) A. 第一象限内 B. 实轴上 C. 虚轴上 D. 第四象限内 2.在复平面内,复数sin 2cos2z i =+对应的点位于( D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.在复平面内表示复数()3z m =-+的点在直线y x =上,则实数m 的值为 9 . 4.已知复数() ()2232z x x x i =--+-在复平面内的对应点位于第二象限,求实数x 的取值范围. 解:23x << 问题2:复数与复平面内向量的关系 1.向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是 0 . 2. 复数43i +与25i --分别表示向量OA 与OB ,则向量AB 表示的复数是68i --.

3.1.2复数的几何意义(学、教案)

3. 1.2复数的几何意义 课前预习学案 课前预习: 1、复数与复平面的点之间的对应关系 1、复数模的计算 2、共轭复数的概念及性质 4、 提出疑惑: 通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 学习目标: 1. 理解复数与复平面的点之间的一一对应关系 2.理解复数的几何意义 并掌握复数模的计算方法 3、理解共轭复数的概念,了解共轭复数的简单性质 学习过程 一、自主学习 阅读 课本相关内容,并完成下面题目 1、复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是 的 2、 叫做复平面, x 轴叫做 ,y 轴叫做 实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示 3、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数 ←???→一一对应复平面内的点 ←???→一一对应 平面向量 4、共轭复数 5、复数z =a +bi (a 、b ∈R )的模 二、探究以下问题 1、实数与数轴上点有什么关系?类比实数,复数是否也可以用点来表示 吗? 2、复数与从原点出发的向量的是如何对应的? 3、复数的几何意义你是怎样理解的? 4、复数的模与向量的模有什么联系? 5、你能从几何的角度得出共轭复数的性质吗? 三、精讲点拨、有效训练 见教案

反思总结 1、你对复数的几何意义的理解 2、复数的模的运算及含义 3共轭复数及其性质 当堂检测 1、判断正误 (1) 实轴上的点都表示实数,虚轴上的点都表示纯虚数 (2) 若|z 1|=|z 2|,则z 1=z 2 (3) 若|z 1|= z 1,则z 1>0 2、()12m z i =当<时,复数+m-1在复平面上对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、已知a ,判断z=i a a a a )22()42(22+--+-所对应的点在第几象限 4、设Z 为纯虚数,且|z+2|=|4-3 i |,求复数Z

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

第二讲 复数的模及其几何意义

第二讲 复数的模及其几何意义 (一)复数模的运算 复数()R b a bi a ∈+,的模:z = ; 例1. 已知84z z i +=-,求复数z 。 例2. 已知复数12cos ,sin z i z i θθ=-=+,求12z z ?的最值。 运算律: ; ; ; 例1:已知()()() 2321331i i i z --+=,则—z = 例2:复数()()()223321i a i a i z ---=,则3 2=z ,则a =

(二)复数的几何意义 1. 复数加法,减法的运算的几何意义满足 ; 2. 21z z -表示复平面上 ; 例1:复平面内,说出下列复数z 对应的点的集合构成的图形; (1)1z = (2)1z i -+=(3)4z i z i ++-= (4)|1|||z z i +=- 例2:(1)若 2=z ,则i z +-1的取值范围为 。 (2)已知C z ∈,且132=--i z ,求cos sin z i θθ--?的最大值和最小值。 (3)若 622=-++i z i z ,则i z 5-的取值范围为 。 (4)复平面内,曲线11=+-i z 关于直线x y =的对称曲线方程为 。

例3:已知1z =,设2 1u z i =-+,求u 的取值范围。 例4:已知123,5z z ==,126z z +=,求12z z -的值。 (三)综合问题 例1. 已知复数z 的实部大于零,且满足)()cos sin z i R θθθ= +∈,2z 的虚部为2. (1)求复数z ; (2)设22 z z z z -、、在复平面上的对应点分别为,,A B C ,求AB AC ? 的值.

17.3复数的几何意义和三角形式学习资料

南京商业学校教案 授课日期2015年月日第周时数课型新课课题§17.3复数的几何意义和三角形式 教学目标知识目标:了解复平面的概念;掌握复数的几何表示和向量表示; 理解复数的模、辐角及辐角主值的概念;掌握复数的 三角形式及其特征。 能力目标:会在复平面内描出表示复数的点及向量;会求复数的模和辐角、和辐角主值(特殊角);会进行复数的三 角形式与代数形式的互化。 情感目标:培养学生数形结合的数学思想和辩证唯物主义思想。 教学重点用复平面上的点、向量和三角形式表示复数;复数的模和辐角、辐角主值的概念。 教学难点复数几何表示法的理解;复数几种表示形式的互化;复数辐角的求法。 教学资源课本,教学参考书,学习指导书,网络 教法与学法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 学情分析(含更新、补充、删节内容) 复数的几何表示和向量表示是复数的两种常见形式,复数的向量表示学生不易理解的,教学时要充分揭示复数与向量之间的关系,并借助向量进一步加强学生对复数的理解。 板书设计 17.3复数的几何意义和三角形式 1. 复平面例1 例3 2. 复数的几何表示 3.复数的向量表示例2 4.复数的三角形式

教后记

教学程序和教学内容(包括课外作业和板书设计) 师生活动 一、引入新课 根据复数的定义,复数表示为)(R b ,a bi a z ∈+=的形式,我们把这种形式叫做复数的代数形式,复数还有其他表现形式吗?这些表示形式之间有什么关系? 二、讲授新课 1.复平面 在平面上建立直角坐标系xOy ,横轴、纵轴上的坐标分别表示复数的实部和虚部,这样的平面叫做复平面,其中横轴叫做实轴,纵轴叫做虚轴。 2.复数的几何表示 有序实数对()b ,a 与直角坐标系内的点一一对应的,由复数代数形式bi a z +=可以知道,任何一个复数)(R b ,a bi a z ∈+=,都可以有一个有序的实数对(b ,a )唯一确定,即复数 图1 bi a z +=与有序实数对(b ,a )之间一一对应。由此可知,复数bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的(如图1所示),即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。我们把这种表示形式叫做复数的几何表示。 想一想:实数、纯虚数、虚数表示的点分别在复平面的什么位置? (复平面内,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示非纯虚数的点分别在四个象限内.) 3. 复数的向量表示 直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。 r 学生思考并回答 图2 y Z(b ,a ) O x b a

第三章 §3.1 3.1.2 复数的几何意义(优秀经典公开课比赛教案)

[A 组 学业达标] 1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z =-1-2i 对应点Z (-1,-2),位于第三象限. 答案:C 2.已知复数z =(m -3)+(m -1)i 的模等于2,则实数m 的值为( ) A .1或3 B .1 C .3 D .2 解析:依题意可得 (m -3)2+(m -1)2=2,解得m =1或3,故选A. 答案:A 3.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3) 解析:由题意知????? m +3>0,m -1<0, 即-3

5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B.34-i C .-34-i D.34+i 解析:设z =a +b i(a ,b ∈R),由复数相等的充要条件,得????? a +a 2+ b 2=2,b =1,解得??? a =34,b =1, 即z =34 +i. 答案:D 6.在复平面内,复数z =sin 2+cos 2i 对应的点位于________象限. 解析:由π2<2<π,知sin 2>0,cos 2<0 ∴复数z 对应点(sin 2,cos 2)位于第四象限. 答案:第四 7.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________. 解析:复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i. 答案:-2+3i 8.已知在△ABC 中,AB →,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的 复数为________. 解析:因为AB →,AC →对应的复数分别为-1+2i ,-2-3i ,所以AB →=(-1,2),AC →= (-2,-3),又BC →=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的 复数为-1-5i. 答案:-1-5i

(浙江专版)201X年高中数学 第三章 数系的扩充与复数的引入 3.1.2 复数的几何意义学案 新人

3.1.2 复数的几何意义 预习课本P104~105,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出? (2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数? [新知初探] 1.复平面 2.复数的几何意义 . 3.复数的模 (1)定义:向量OZ ―→ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2 +b 2 (r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系 实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是

z =0+0i =0,表示的是实数. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 答案:(1)√ (2)× (3)× 2.已知复数z =i ,复平面内对应点Z 的坐标为( ) A .(0,1) B .(1,0) C .(0,0) D .(1,1) 答案:A 3.向量a =(1,-2)所对应的复数是( ) A .z =1+2i B .z =1-2i C .z =-1+2i D .z =-2+i 答案:B 4.已知复数z 的实部为-1,虚部为2,则|z |=________. 答案: 5 复数与点的对应关系 [典例] 求实数a 分别取何值时,复数z =a +3 +(a 2 -2a -15)i(a ∈R)对应的点Z 满足下列条件: (1)在复平面的第二象限内. (2)在复平面内的x 轴上方. [解] (1)点Z 在复平面的第二象限内, 则????? a 2 -a -6a +3<0,a 2-2a -15>0, 解得a <-3. (2)点Z 在x 轴上方, 则? ?? ?? a 2 -2a -15>0,a +3≠0, 即(a +3)(a -5)>0,解得a >5或a <-3. [一题多变]

模式一1.1.3导数的几何意义

1. 1.3导数的几何意义 课前预习学案 一. 预习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。 二. 预习内容 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时, 即0→?x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00 ()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时, n k 无限趋近于切线PT 的斜率k ,即k = = 2.导数的几何意义 函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0()f x '= . 三.提出疑惑 疑惑点 疑惑内容 课内探究学案 一. 学习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题 二. 学习过程 (一)。复习回顾 1.平均变化率、割线的斜率 2。瞬时速度、导数 (二)。提出问题,展示目标 我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在

0x x =附近的变化情况,导数0()f x '的几何意义是什么呢? (三)、合作探究 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? (2)如何定义曲线在点P 处的切线? (3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (4)切线PT 的斜率k 为多少? 说明: (1)当0→?x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的; 如不存在,则在此点处无切线; 3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义 (1)函数)(x f y =在0x x =处的导数的几何意义是什么? (2)将上述意义用数学式表达出来。 (3)根据导数的几何意义如何求曲线在某点处的切线方程? 3.导函数 (1)由函数)(x f y =在0x x =处求导数的过程可以看到,当0x x =时,0()f x '是一个确定的数,那么,当x 变化时, ()f x '便是x 的一个函数,我们叫它为)(x f 的导函数. 注: 在不致发生混淆时,导函数也简称导数. (2)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系是什么? 区别: 联系: (四)。例题精析 例1 求曲线1)(2+==x x f y 在点)2,1(P 处的切线方程. 解: 变式训练1 求函数23x y =在点(1,3)处的切线方程. 例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++, 根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解: 我们用曲线()h t 在0t 、1t 、2t 处的切线, 刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 的斜率 , 所以,在0t t =附近曲线比较平坦,几乎没有升降.

3.1.2复数的几何意义 教案.doc教学设计

第三章数系的扩充与复数的引入 【课题】:3.1.2 复数的几何意义 【学情分析】: 教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,所以本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了. 【教学目标】: (1)知识与技能: 了解复数的几何意义,会用复平面的点和向量来表示复数; (2)过程与方法: 在解决问题中,通过数形结合的思想方法,加深对复数几何意义的理解; (3)情感态度与价值观: 培养学生用联系的观点分析、解决问题的能力。 【教学重点】: 复数的代数形式和复数的向量表示. 【教学难点】: 复数的向量表示. 【课前准备】: powerpoint课件

六、 作业 1、在复平面内,复数 2)31(1i i i +++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-= i i z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+= +=2,23,32,214321 对应的点 4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论. 解:因为 ︱1z ︱=52122= +,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5, 所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上. 4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置: (!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0. 解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方 5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上? 解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3) 6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+ = 则.432 2=+ a 解得 ±=a 1. 所以 .31i z +±=

3.3复数的几何意义 学案(含答案)

3.3复数的几何意义学案(含答案) 3.3复数的几何意义学习目标 1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴.虚轴.模等概念. 3.理解向量加法.减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢答案任何一个复数zabi,都和一个有序实数对a,b一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数知识点二复数的几何意义1复数与点.向量间的对应关系2复数的模复数zabia,bR,对应的向量为,则向量的模叫做复数zabi的模或绝对值,记作|z|或|abi|.由模的定义可知|z||abi|.知识点三复数加.减法的几何意义思考1复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗答案如图,设,分别与复数abi,cdi对应,且,不共线,则a,b,c,d,由平面向量的坐标运算,得ac,bd,所以与复数acbdi 对应,复数的加法可以按照向量的加法来进行思考2怎样作出与复数z1z2对应的向量答案z1z2可以看作z1z2因为复数的加法可以按照向量的加法来进行所以可以按照平行四边形法则或三角形

法则作出与z1z2对应的向量如图图中对应复数z1,对应复数 z2,则对应复数z1z 2.梳理1复数加减法的几何意义复数加法的几何意义复数 z1z2是以,为邻边的平行四边形的对角线所对应的复数复数减法的几何意义复数z1z2是从向量的终点指向向量的终点的向量所对应的复数2设z1abi,z2cdia,b,c,dR,则|z1z2|,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离1原点是实轴和虚轴的交点2在复平面内,对应于实数的点都在实轴上3在复平面内,虚轴上的点构对应的复数都是纯虚数4复数的模一定是正实数类型一复数的几何意义例1实数x分别取什么值时,复数zx2x6x22x15i对应的点Z在1 第三象限;2直线xy30上解因为x是实数,所以x2x6, x22x15也是实数1当实数x满足即当3x2时,点Z在第三象限 2zx2x6x22x15i对应点的坐标为Zx2x6,x22x15,当实数x满足 x2x6x22x1530,即当x2时,点Z在直线xy30上引申探究若本例中的条件不变,其对应的点在1虚轴上;2 第四象限解1当实数x满足x2x60,即当x3或2时,点Z在虚轴上2当实数x满足即当2x5时,点Z在第四象限反思与感悟按照复数和复平面内所有点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部.虚部的取

高三数学一轮复习 导数定义及几何意义学案及作业

导数定义及其几何意义、函数求导学案 一. 基础知识 1.的导数为函数)(x f y = =')(x f 0 lim →?x __________________ 2.导数 )(0x f '的几何意义:_________________________________________ 3.初等函数的导数公式 __________)(,ln )()8(__________)(),1,0(log )()7(__________ )(,)()6(_____ )(,)()5(_ __________)(,cos )()4(______)(,sin )()3(__________)(),()()2(,__________)(),()()1(='=='≠>=='=='=='=='=='∈=='=x f x x f x f a a x x f x f e x f x f a x f x f x x f x f x x f x f Q x x f x f c c x f a x x 则则且则则则则则则为常数αα 4.导数的运算法则:_______________])()([='±x g x f _______________________])()([='?x g x f _______________]) () ([='x g x f 5. 函数单调性与导数:设函数)(x f y =在区间(a,b )内有导数,如果____,则)(x f y =是这个区 间内_____;如果在这个区间内___,则)(x f y =是这个区间内_____. 6.求单调区间的方法: 二.例题1.若,2)(0='x f 则___________) ()(lim 000 =--→h x f h x f k 练习:(1)若,2)(0='x f 则___________2) ()(lim 000 =-+→h x f h x f k (2)若,2)(0='x f 则___________2) 3()(lim 000=--→h h x f x f k (3)若,2)(0='x f 则000 ()(3) lim h f x h f x h h →+--=_______________ 2.求下列函数的导数(1)x x y x x y e y x 23log )3(sin 4cos 3)2(2+=-== x x y e x y x n sin cos )5()4(= = 3.已知函数3 () 2f x x x (1)在0p 处的切线平行于直线41y x ,求0p 点的坐标 (2)求函数)(x f 在点(1,0)处的切线方程。 (3)若在P 处的切线垂直于直线x=3,求此切线方程。 4.下列各图为导函数)(x f y '=的图象,试画出原函数)(x f y =的图象。 导数定义及其几何意义、函数求导作业 E A x D x C x B

7.1.2 复数的几何意义

7.1.2复数的几何意义 课标要求素养要求 理解复数的代数表示及其几何意义,掌 握用向量的模表示复数模的方法,理解 共轭复数的概念. 通过复数代数形式及其几何意义的理 解、复数模的运用,共轭复数的概念的 理解,体会数学抽象及数学运算素养. 教材知识探究 19世纪末20世纪初,著名的德国数学家高斯在证明代数 基本定理时,首次引进“复数”这个名词,他把复数与平 面内的点一一对应起来,创立了复平面,依赖平面内的点 或有向线段(向量)建立了复数的几何基础. 复数的几何意义,从形的角度表明了复数的“存在性”, 为进一步研究复数奠定了基础. 问题实数可用数轴上的点来表示,类比一下,复数怎样来表示呢? 提示任何一个复数z=a+b i,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应. 1.复平面复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部 2.复数的几何意义 (1)复数z=a+b i(a,b∈R)复平面内的点Z(a,b). (2)复数z=a+b i(a,b∈R)平面向量OZ → . 3.复数的模

(1)定义:向量OZ → 的模叫做复数z =a +b i(a ,b ∈R )的模或绝对值. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 如果b =0,那么z =a +b i 是一个实数,它的模就等于|a |(a 的绝对值). 4.共轭复数 一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭 复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z - __表 示,即如果z =a +b i ,那么z - =a -b i. 教材拓展补遗 [微判断] 1.在复平面内,对应于实数的点都在实轴上.(√) 2.在复平面内,虚轴上的点所对应的复数都是纯虚数.(×) 3.复数的模一定是正实数.(×) 4.两个共轭复数的和是实数.(√) 5.两个复数互为共轭复数是它们的模相等的必要条件.(×) 提示 1.在复平面内对应于实数的点都在实轴上是正确的. 2.原点在虚轴上,但不是纯虚数. 3.复数的模可以为0. 4.根据共轭复数的定义可知正确. 5.应该是充分条件. [微训练] 1.向量a =(1,-2)所对应的复数的共轭复数是( ) A.1+2i B.1-2i C.-1+2i D.-2+i 解析 因为复数与向量一一对应,所以向量a =(1,-2)的复数形式为z =1-2i , 所以z - =1+2i. 答案 A 2.已知复数z 的实部为-1,虚部为2,则|z |=________.

3.3 复数的几何意义 学案(苏教版高中数学选修2-2)

3.3 复数的几何意义学案(苏教版高中数学选 修2-2) 3.3复数的几何意义复数的几何意义学习目标 1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴.虚轴.模等概念. 3.理解向量加法.减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢答案任何一个复数zabi,都和一个有序实数对a,b一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数知识点二 复数的几何意义1复数与点.向量间的对应关系2复数的模复数zabia,bR,对应的向量为OZ,则向量OZ的模叫做复数zabi 的模或绝对值,记作|z|或|abi|.由模的定义可知|z||abi|a2b 2.知识点三 复数加.减法的几何意义思考1复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗答案如图,设OZ1,OZ2分别与复数abi,cdi对应,且OZ1,OZ2

不共线,则OZ1a,b,OZ2c,d,由平面向量的坐标运算,得 OZ1OZ2ac,bd,所以OZ1OZ2与复数acbdi对应,复数的加法可以按照向量的加法来进行思考2怎样作出与复数z1z2对应的向量答案z1z2可以看作z1z2因为复数的加法可以按照向量的加法来进行所以可以按照平行四边形法则或三角形法则作出与z1z2对应的向量如图图中OZ1对应复数z1,OZ2对应复数z2,则Z2Z1对应复数z1z 2.梳理1复数加减法的几何意义复数加法的几何意义复数 z1z2是以OZ1,OZ2为邻边的平行四边形的对角线OZ所对应的复数复数减法的几何意义复数z1z2是从向量OZ2的终点指向向量OZ1的终点的向量Z2Z1所对应的复数2设z1abi,z2cdia,b,c,dR,则|z1z2|ac2bd2,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离1原点是实轴和虚轴的交点2在复平面内,对应于实数的点都在实轴上3在复平面内,虚轴上的点所对应的复数都是纯虚数4复数的模一定是正实数类型一复数的几何意义例1实数x分别取什么值时,复数zx2x6x22x15i对应的点Z在1 第三象限;2直线xy30上解因为x是实数,所以x2x6, x22x15也是实数1当实数x满足x2x60,x22x150,即当3x0, x22x150,即当2x0,m23m280,解得m5,7m 4.即7m

《导数的概念与几何意义》导学案

第1课时 导数的概念与几何意义 1.理解导数的概念,能利用导数的定义求函数的导数. 2.理解函数在某点处的导数的几何意义是该函数图像在该点的切线的斜率,并利用其几何意义解决有关的问题. 3.掌握应用导数几何意义求解曲线切线方程的方法. 4.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法. 如图,当点P n (x n ,f (x n ))(n=1,2,3,4)沿着曲线f (x )趋近点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么? 问题1:根据创设的情境,割线PP n 的变化趋势是 . 问题2:导数的概念与求法: 我们将函数f (x )在x=x 0处的瞬时变化率称为f (x )在x=x 0处的导数, lim Δx→0 f (x 0+Δx )?f (x 0)Δx 即有f'(x 0)==,所以求导数的步骤为:lim Δx→0Δy Δx lim Δx→0f (x 0+Δx )?f (x 0)Δx (1)求函数的增量:Δy=f (x 0+Δx )-f (x 0); (2)算比值:=; Δy Δx f (x 0+Δx )?f (x 0)Δx (3)求极限:y'=. | x =x 0lim Δx→0Δy Δx 问题3:函数y=f (x )在x=x 0处的导数,就是曲线y=f (x )在x=x 0处的切线的斜率k=f'(x 0)= 相应的切线方程是: . 问题4:曲线上每一点处的切线斜率反映了什么?直线与曲线有且只有一个公共点时,直

线是曲线的切线吗? 它反映的是函数的 情况,体现的是数形结合,以曲代直的思想. 不一定是,有些直线与曲线相交,但只有一个公共点.相反,有些切线与曲线的交点 . 1.下列说法正确的是( ). A.曲线的切线和曲线有且只有一个交点  B.过曲线上的一点作曲线的切线,这点一定是切点  C.若f'(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线  D.若y=f(x)在点(x0,f(x0))处有切线,则f'(x0)不一定存在 2.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( ). A.f'(x0)>0 B.f'(x0)<0 C.f'(x0)=0 D.f'(x0)不存在 3.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标 为 . 4.函数y=3x+2上有一点(x0,y0),求该点处的导数f'(x0). 三,课后反思:

相关文档
相关文档 最新文档