文档库 最新最全的文档下载
当前位置:文档库 › 两道数学竞赛题与一个有趣的不等式

两道数学竞赛题与一个有趣的不等式

两道数学竞赛题与一个有趣的不等式

初中数学竞赛专题:几何不等式与极值问题

初中数学竞赛专题:几何不等式与极值问题 17.1.1★ 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值. 解析 考虑这个凸行边形的n 个外角,有4n -个角90?≥,故有()490360n -??,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. P C D B A 解析 易知AB AC PB PC +>+, 又2222AB AC BD CD -=- 22PB PC =-, 故有AB AC PB PC -<-. 评注 读者不妨考虑AD 是角平分线与中线的情况. 17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值. C B O D A 解析 易知 ABO BCO ADO DCO S S BO S DO S == △△△△,故36ABO CDO ADO BCO S S S S ?=?=△△△△. 从而12ABO CDO S S +△△≥, 且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 17.1.4★ 已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+;

(2)求()()2 2BC h AB AC ++-. 解析 () ()2 2 BC h AB AC +-+ 222222BC h BC h AB AC AB AC =++?---?, 由条件,知242ABC BC h S AB AC ?==?△,且222AB AC BC +=, 于是()()2 2 236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 17.1.5★ 设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面 积的最小值. B F C E D A 解析设 BF x =,()4DE y x ==-,则()()()1 1 7101077022ABF ADE ECF S S S x y x y xy ++=++--=+????△△△。 由()2 144 xy x y +=≤。故 ()1 70704332 AEF S -?+=△≥. 当2BF ED ==时达到最小值. 17.1.6★ 设P 是定角A ∠内一定点,过P 作动直线交两边于M 、N ,求证:AMN △面积最小时,P 为MN 的中点. 解析 如图,连结AP ,设MAP α∠=,NAP β∠=,θαβ=+,由 AMP ANP MAN S S S +=△△△,得 sin sin sin AM AP AN AP AM AN αβθ??+??=?。 又 左式2AP ≥,

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

高中数学竞赛_集合 函数 不等式 导数

专题二 集合 函数 不等式 导数 一 能力培养 1,函数与方程思想; 2,数形结合思想; 3,分类讨论思想; 4,运算能力; 5,转化能力. 二 问题探讨 [问题1] 已知{3}A x x a =-≤,2{780}B x x x =+->,分别就下面条件求a 的 取值范围: (I)A B =?;(II)A B B =. [问题2]求函数()a f x x x =+ 的单调区间,并给予证明. [问题3]已知()1x f x e ax =--. (I)若()f x 在定义域R 内单调递增,求a 的取值范围; (II)若()f x 在(,0]-∞上单调递减,在[0,)+∞上单调递增,求a 的值; (III)设2()22g x x x =-++在(II)的条件下,求证()g x 的图象恒在()f x 图象的下方. [问题4]设11()lg 21x f x x x -=+++. (I)试判断()f x 的单调性; (II)若()f x 的反函数为1()f x -,证明1()0f x -=只有一个解; (III)解关于x 的不等式1 1[()]22 f x x -<.

三 习题探讨 选择题 1已知函数()2x f x =,则12(4)f x --的单调减区间是 A,[0,)+∞ B,(,0]-∞ C,[0,2) D,(2,0]- 2已知集合M={01}x x ≤≤,N={01}x x ≤≤,下列法则不能构成M 到N 的映射的是 A,2y x = B,sin y x = C,tan y x = D,y 3已知函数(1)()(1)x x f x x x ≥?=?-?,已知()1f a >,则a 的取值范围为 A,(1,1)- B,(,1)(1,)-∞-+∞ C,(,2)(0,)-∞-+∞ D,(1,)+∞ 6对于函数32()3f x x x =-,有下列命题:①()f x 是增函数,无极值;②()f x 是减函数, 无极值;③()f x 的增区间是(,0)-∞,(2,)+∞,()f x 的减区间是(0,2);④(0)0f =是极 大值,(2)4f =-是极小值.其中正确的命题有 A,一个 B,二个 C,三个 D,四个 填空题 7函数2(2)log x f x =的定义域是 . 8已知2(1cos )sin f x x -=,则()f x = . 9函数2log (252)x y x x =-+-单调递增区间是 . 10若不等式2log 0(0,1)a x x a a -<>≠对满足102 x <<的x 恒成立,则实数

几何不等式

中国计量学院 吴跃生 几何问题中出现的不等式称为几何不等式.证明几何不等式的方法大致可分为三种方法:几何方法、代数方法和三角方法. 记号约定:在ABC V 中,,,a b c 表示三边长;,,A B C 表示对应角;s 表示半周长;,,a a a h t m 分别表示a 边上的高、内角平分线长、中线长;R 和r 分别表示ABC V 的外接圆半径和内接圆半径;S 表示ABC V 的面积.设P 是ABC V 内任意一点,记123,,PA R PB R PC R ===;点P 到三边,,BC CA AB 的距离分别记为123,,r r r ;记,,BPC CPA ABC αβγ∠=∠=∠=;,,BPC CPA ABC ∠∠∠的内角平分线长分别记为123,,w w w . 一、距离不等式与化直法 仅仅涉及线段长度的几何不等式称为距离不等式. 1. 设,,a b c 是ABC V 的边长,求证: 2a b c b c c a a b ++<+++. 2. 已知:在ABC V 中,c 是最小边,P 是ABC V 内任意一点,求证: PA PB PC a b ++<+. (冷岗松) 加强:在ABC V 中,c 是最小边,P 是ABC V 内任意一点,求证:存在(01)p p λλ<<,使得 (1)[min(,)]p PA PB PC a b a b c λ++<+---. (鱼儿) 3. 设a 是ABC V 的最大边,O 是ABC V 内任意一点,设直线AO BO CO 、、与ABC V 的三边分别交于点P Q R 、、,证明: OP OQ OR a ++<. 二、托勒密(Ptolemy)定理及其应用 托勒密定理:在凸四边形ABCD 中,有 AB CD AD BC AC BD ?+?≥?, 当且仅当四边形ABCD 是圆内接四边形时等号成立. 下面各例中的不等式的等号成立的条件,请读者自行判明,不再赘述. 1. 242b c m m a bc ≤+(1993年,陈计) 对偶式:22242449b c m m a b c bc ≥--+.(1992年,陈计)

第13讲 几何不等式 深圳中学 周峻民

·竞赛专题 几何不等式 深圳中学 周峻民 一、知识与方法 几何不等式,顾名思义是研究几何图形中有关元素的数量不等关系,较多的涉及到三角形或多边形的边长、面积等方面的不等式.处理方法一般分为纯几何方法和转化为代数方法、三角方法加以解决,可寻找解题规律,但没有固定的解题模式,要善于抓住主要矛盾解决问题。其知识往往涉及到平面几何的重要定理、公式,代数(三角)的基本等式和不等式以及相关知识。 1.将几何问题转为代数问题 (1)利用三角形三边关系化为代数式:若三角形三边长为,,a b c ,则b c a +>, c a b +>,a b c +>,由此,可设2y z a += ,2z x b +=,2 x y c +=,即x a b c =-++ 0>,0y a b c =-+>,0z a b c =+->,将含有边长,,a b c 的不等式(三角形几个重要 元素,如,外接圆半径R 、内切圆半径r 、面积、中线、高线、角平分线等)化为含有正数 ,,x y z 的代数不等式. (2)利用正弦定理:2sin ,2sin ,2sin ,a R A b R B c R C ===将含有边长,,a b c 的不等式化为三角函数不等式.在化为三角函数不等式时应注意以下等式的应用: 2 2 2 cos cos cos 2cos cos cos 1A B C A B C +++=; 222222444 2(sin sin sin sin sin sin )sin sin sin B C C A A B A B C ++--- 2 2 2 64sin sin sin A B C =; tan tan tan tan tan tan A B C A B C ++=; cot cot cot cot cot cot 1B C C A A B ++= 等等。 2.几何方法 利用纯粹的平面几何知识来证明几何不等式:

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

常见不等式的几何直观

常见不等式的几何直观 数学与统计学院2008级1212408087 陈小丽 研究不等式的出发点是实数的大小关系。我们知道,数轴上的点与实数一一对应,因此可以利用数轴上点的左右位置关系来规定实数的大小: 设a,b是两个实数,它们在数轴上所对应的点分别是A,B。那么,当点A 在点B 的左边时,ab(图1)。 图1 不等式的基础性质也可以通过作图来表示:用线段AB的长表示a,线段BA表示-a;线段CD表示b,线段DC表示-b。如: (1)如果a>b,b>c,那么a>c。 画图2表示: 绝对值|a|表示数a到原点的距离。即若a>0, |a|=a;若a<0, |a|=-a;若a=0, |a|=0。 对于任意的两个实数a,b,设它们在数轴上的对应点分别是A,B,那么|a-b|的几何意义是数轴上A,B两点之间的距离。 为了在直观上刻画绝对值,我们做函数y=x,y=-x,y=|x|,y=-|x|的图像。图3

图3-1 图3-2 图3-3 由图易得-|x|≤x≤|x|,于是对每个实数a,有-|a|≤a≤|a|。绝对值的几何意义是我们认识绝对值不等式的重要工具。实际上,我们可把“距离大小”作为研究绝对值不等式的基本出发点,解决相应的问题。 把|a|+|b|≥|a+b|,等号成立当且仅当ab≥0中a,b 用向量α,β代替,可以很明显地看出其几何意义。 当向量α,β不共线时,那么由向量加法的三角形法则,向量α,β,α+β构成三角形,因此我们有向量形式的不等式|α|+|β|≥|α+β|,它的几何意义就是三角形的两边之和大于第三边。所以我们称该不等式为绝对值三角不等式。 如|x|≤1的解如图4:

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

竞赛均值不等式专题讲解

均值不等式专题讲解 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。. 二、用均值不等式求最值 利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。 例1:下列命题中正确的是【 】 A 、x x 1 + 的最小值为2; B 、x x -+2 2的最小值为2; C 、b a a b +的最小值为2; D 、θθcot tan +的最小值为2。 点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。 例2:你能指出下列推导过程错在哪里吗? ⑴若0>x ,则221213x x x x x ++=+≥332 23123?=???x x x ; ⑵若?? ? ??∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=?x x ; ⑶若R x ∈,则 ( ) 4 144 144 1)4(4 52 22 2 2 2 2 2 2 ++ += +++= +++= ++x x x x x x x x ≥2。

几何不等式讲解

几何不等式的证明及应用 一、1.定义:几何问题中出现的不等式称为几何不等式. 常常表现为角的大小,线段的长短,面积的多少等. 在几何不等式的证明中,将综合运用到我们所学的很多知识,但最首要的是要注意运用几何中基本的不等关系和一些重要定理.证明不等式,视其论证过程中,以运用何种知识为主,大致分为三种方法:几何方法;三角方法;代数方法。 2.证明几何不等式常用方法(1)代数方法:利用变量代换、因式分解、配方等手段将几何问题转为代数问题,其思路是:适当地引入变量,将几何问题化为代数问题,特别是二次函数;恰当选择变量为关键;利用重要的几何不等式及代数不等式当证明涉及三角形不等式时,注意应用:①三边长的固有不等关系;②海伦公式;③边长的大小顺序关系与对应角的大小顺序关系相同,而与对应高、中线及分角线长的顺序相反. (2)三角方法:利用三角函数来反映几何图形的变化规律,从而将几何问题转化为三角问题,这时最常用的三角知识是:三角恒等变形:这主要是应用和、差、倍、半角公式,积化和差及和差化积公式等,制造出便于应用已知不等式的形式,以完成命题的证明;边角互换:这主要是利用三角函数定义、正弦定理、余弦定理等,把一个关于角(边)的不等式转化成边(角)的不等式. (3)几何方法:即指用纯粹的平面几何知识来证明几何不等式,这时最常用的平面几何知识是:抓住几何图形的特征,挖掘几何图形中最基本的几何不等关系.事实上,一些最基本的几何不等关系在有关几何不等式的论证中异常活跃,常常成为解决问题的钥匙;与面积有关的几何不等式也占有重要地位.其内容丰富,涉及面宽,富于智巧.证明这类不等式大都需要利用面积的等积变换、面积公式及面积比的有关定理等知识. 3.几个著名代数不等式:柯西不等式,排序不等式,算术平均不等式等. 4.几个著名的几何不等式 (1)托勒密定理的推广:在凸四边形ABCD 中,一定有:BD AC BC AD CD AB ?≥?+?,等号成立时四边形 ABCD 是圆内接四边形. 证明1:取点E ,使ACD ABE CAD BAE ∠=∠∠=∠,则ABE ?∽ACD ? ∴ CD BE AC AB =,AD AE AC AB = ∴BE AC CD AB ?=? (1) 又DAE BAC ∠=∠ ∴ABC ?∽AED ? ∴ AD AC DE BC = ∴DE AC AD BC ?=? ∴BD AC DE BE AC DE AC BE AC AD BC CD AB ?≥+?=?+?=?+?)(

几何不等式测试题

几何不等式测试题 1.在△ABC中,M为BC边的中点,∠B=2∠C,∠C的平分线交AM于D。 证明:∠MDC≤45°。 2.设NS是圆O的直径,弦AB⊥NS于M,P为弧上异与N的任一点,PS交AB于R,PM的延长线交圆O于Q,求证:RS>MQ。 3.在△ABC中,设∠A,∠B,∠C的平分线交外接圆于P、Q、R。 证明:AP+BQ+CR>BC+CA+AB。 4.过△ABC内一点O引三边的平行线,DE∥BC,FG∥CA,HI∥AB,点D、E、F、G、I都在△ABC的边上,表示六边形DGHEFI的面积,表示△ABC的面积。 求证:。 5.求证:△ABC的内心I到各顶点的距离之和不小于重心G到各边距离之和的2倍。 6.凸四边形ABCD具有性质:(1)AB=AD+BC,(2)在其内部有点P,P点到CD的距离 为h,并使AP=h+AD,BP=h+BC,求证:。 7.设H为锐角△ABC的垂心,A1,B1,C1,分别为AH,BH,CH与△ABC外接圆的交点。 求证:。其中等号当且仅当△ABC为正三角形时成立。 8.一凸四边形内接于半径为1的圆。证明:四边形周长与其对角线之和的差值u,满足0AC,直线EF交BC 于P,过点D且平行于EF的直线分别交AC、AB于Q、R。N是BC上的一点,且∠NQP+∠NRP <180°,求证:BN>CN。 参考答案 【同步达纲练习】 1.设∠B的平分线交AC于E,易证EM⊥BC作EF⊥AB于F,则有EF=EM, ∴AE≥EF=EM,从而∠EMA≥∠EAM,即90°-∠AMB≥∠EAM。又 2∠MDC=2(∠MAC+∠ACD)=2∠MAC+∠ACM=∠MAC+∠AMB, ∴90°≥∠AMD+∠MAC=2∠MDC,∴∠MDC≤45°。 2.连结NQ交AB于C,连结SC、SQ。易知C、Q、S、M四点共圆,且CS是该圆的直径,于是CS>MQ。再证Rt△SMC≌Rt△SMR,从而CS=RS,故有RS>MQ. 3.设的内心为I,由IA+IB>AB,IB+IC>BC, 即2(AP-IP+BQ-IQ+CR-IR)>AB+BC+CA (1) 连AR,∵∠AIR=∠IAR,∴IR=AR,又AR=BR,

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

初中数学竞赛专题复习第二篇平面几何第17章几何不等式与极值问题试题新人教版

第17章 几何不等式与极值问题 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值. 解析 考虑这个凸行边形的n 个外角,有4n -个角90?≥,故有()490360n -??,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. 解析 易知AB AC PB PC +>+, 又2222AB AC BD CD -=- 22PB PC =-, 故有AB AC PB PC -<-. 评注 读者不妨考虑AD 是角平分线与中线的情况. 17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值. 解析 易知ABO BCO ADO DCO S S BO S DO S == △△△△,故36ABO CDO ADO BCO S S S S ?=?=△△△△. 从而12ABO CDO S S +=△△≥, 且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+; (2)求()()2 2 BC h AB AC ++-. 解析 () ()2 2 BC h AB AC +-+ 222222BC h BC h AB AC AB AC =++?---?, 由条件,知242ABC BC h S AB AC ?==?△,且222AB AC BC +=, 于是()()2 2 236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值. 解析设 BF x =, () 4DE y x ==-,则 ()()()11 7101077022ABF ADE ECF S S S x y x y xy ++=++--=+????△△△。 由()2 144 xy x y +=≤ 。故 ()1 70704332 AEF S -?+=△≥.

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

不等式高中数学竞赛标准教材

第九章不等式(高中数学竞赛标准教材) 第九章不等式 一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0 ac>bc;(5)a>b, c<0 acb>0, c>d>0 ac>bd; (7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ; (9)a>0, |x|a x>a或x<-a; (10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab; (12)x, y, z∈R+,则x+y≥2 , x+y+z 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立; -|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为 |a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥ ,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)= (a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥ ,等号当且仅当x=y=z时成立。二、方法与例题 1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1 设a, b, c∈R+,试证:对任意实数x, y, z, 有x2+y2+z2 【证明】左边-右边= x2+y2+z2 所以左边≥右边,不等式成立。例2 若alog(1-x)(1-x)=1(因为0<1-x2<1,所以 >1-x>0, 0<1-x<1). 所以 |loga(1+x)|>|loga(1-x)|. (2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,

证明几何不等式证法举例

证明几何不等式证法举例 四川省广元市宝轮中学 唐明友 几何不等式的证明是初中数学一个难点,所用知识不外乎有:三角形两边之和大于第三边,两边之差小于第三边;同一三角形中,大角对打边,大边对大角以及三角形内角和定理等知识,下面就其证明思路进行分析。 一.中线加倍法 例1.如图,AD 是△ABC 中BC 边上的中线,求证:A D<2 AC AB + 证明:延长AD 至E ,使DE=DA ,连接CE ∵DA=DE,DC=DB,∠1=∠2,∴△AB D ≌△EC D ,∴AB=EC 在△ACE 中AEAD+BC 证明:分别取AB 、CD 的中点E 、F ,连接OE 、OF 、EF ∵A C ⊥BD ,点E 、F 分别是AB 、CD 的中点∴OE 、OF 分别是Rt △ABO 、Rt △CDO 斜边上的中线,即OE= 21AB,OF=2 1CD, 又EF 是梯形ABCD 的中位线,可得EF=2 BC AD + 在△OEF 中,OE+OF>EF ,即21AB+21CD>2 BC AD + ∴AB+CD>AD+BC 评注:由结论的右边AD+BC 可联想到梯形的中位线,确定取AB 、CD 的中点E 、F,再由A C ⊥BD 可得一些直角三角形,根据“直角三角形斜边上的中线等于斜边的一半”这个性质,便迎刃而解了。 四.平移法 例4.如图,在△ABC 中,E 、F 分别是AB 、AC 边上的点,BE=CF ,求证:EF

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

相关文档
相关文档 最新文档