文档库 最新最全的文档下载
当前位置:文档库 › 均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)
均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)

第一篇:常用均值不等式及证明证明

常用均值不等式及证明证明

这四种平均数满足hn?gn?

an?qn

?、ana1、a2、

?r?,当且仅当a1?a2??

?an时取“=”号

仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用

均值不等式的变形:

(1)对实数a,b,有a

2

22

?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab

(4)对实数a,b,有

a?a-b??b?a-b?

a2?b2?

2ab?0

(5)对非负实数a,b,有

(8)对实数a,b,c,有

a2?

b2?c2?ab?bc?ac

a?b?c?abc(10)对实数a,b,c,有

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序

不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设a≥0,b≥0,则?a?b??an?na?n-1?b

n

注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0

,a+b≥0 (用数学归纳法)。

当n=2时易证;

假设当n=k时命题成立,即

那么当n=k+1时,不妨设ak?1是则设

a1,a2,?,ak?1中最大者,

kak?1?a1?a2???ak?1 s?a1?a2???ak

用归纳假设

下面介绍个好理解的方法琴生不等式法

琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点,

设f?x??lnx,f

?x?为上凸增函数所以,

在圆中用射影定理证明(半径不小于半弦)

第二篇:均值不等式证明

均值不等式证明一、

已知x,y为正实数,且x+y=1求证

xy+1/xy≥17/4

1=x+y≥2√(xy)

得xy≤1/4

而xy+1/xy≥2

当且仅当xy=1/xy时取等

也就是xy=1时

画出xy+1/xy图像得

01时,单调增

而xy≤1/4

∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4

得证

继续追问:

拜托,用单调性谁不会,让你用均值定理来证

补充回答:

我真不明白我上面的方法为什么不是用均值不等式证的法二:

证xy+1/xy≥17/4

即证4(xy)2-17xy+4≥0

即证(4xy-1)(xy-4)≥0

即证xy≥4,xy≤1/4

而x,y∈r+,x+y=1

显然xy≥4不可能成立

∵1=x+y≥2√(xy)

∴xy≤1/4,得证

法三:

∵同理0

xy+1/xy-17/4

=(4x2y2-4-17xy)/4xy

=(1-4xy)(4-xy)/4xy

≥0

∴xy+1/xy≥17/4

试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!

二、

已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0

a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)

于是c-a≤-2√(a-b)*(b-c)即:1/(c-a)≥-1/【2√(a-b)*(b-c)】

那么

1/(a-b)+1/(b-c)+1/(c-a)

≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】

≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=1+1/a2+..+1/an)

证明:

1.sqrt(((a1) +(a2) +..(an) )/n)≥(a1+a2+..an)/n

两边平方,即证((a1) +(a2) +..(an) )≥(a1+a2+..an) /n

(1)如果你知道柯西不等式的一个变式,直接代入就可以了:

柯西不等式变式:

a1 /b1+a2 /b2+...an /bn≥(a1+a2+...an) /(b1+b2...+bn)

当且仅当a1/b1=a2/b2=...=an/bn是等号成立

只要令b1=b2=...=bn=1,代入即可

(2)柯西不等式

(a1 +a2 +...an )*(b1+b2...+bn)≥(a1b1+a2b2+...anbn)

2.(a1+a2+..an)/n≥n次根号(a1a2a

3..an)

(1)琴生不等式:若f(x)在定义域内是凸函数,则nf((x1+x2+...xn)/n)≥f(x1)+f(x2)+...f(xn)

令f(x)=lgx显然,lgx在定义域内是凸函数

nf((x1+x2+...x1a2a3...an

(3)数学归纳法:但要用到(1+x)

>1+nx这个不等式,不予介绍

3.n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)

原不等式即证:n次根号(a1a2a3..an)*(1/a1+1/a2+..+1/an)≥n

左边=n次根号+n次根号++n次根号+...n次根号

由2得和≥n*n次根号(它们的积)所以左边≥n*n次根号(1)=n

所以(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)

证毕

特例:sqrt(a +b /2)≥(a+b)/2≥sqrt(ab)≥2/1/a+1/b

证明:

1.sqrt(a +b /2)≥(a+b)/2两边平方a +b ≥(a+b) /4即证(a/2-b/2) ≥0显然成立

2.(a+b)/2≥sqrt(ab)移项即证(sqrt(a)-sqrt(b))≥0显然成立

此不等式中a+b可以表示一条直径的两部分,(a+b)/2=rsqrt(ab)就是垂直于直径的弦,而r≥弦的一半

3.sqrt(ab)≥2/1/a+1/b两边同时乘上1/a+1/b即证sqrt(ab)*(1/a+1/b)≥2而sqrt(ab)*(1/a+1/b)=sqrt(a/b)+sqrt(b/a)≥2。

第四篇:均值不等式及证明

一、均值不等式(一)概念:

第五篇:均值不等式的证明方法

柯西证明均值不等式的方法by zhangyuong(数学之家)

本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。一般的均值不等式我们通常考虑的是an?gn: 一些大家都知道的

条件我就不写了

x1?x2? (x)

n

?

x1x2...xn

我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:

二维已证,四维时:

a?b?c?d?(a?b)?(c?d)?2ab?2cd?4八维时:

(a?b?c?d)?(e?f?g?h)?4abcd?4efgh?8abcdefgh

abcd

?4abcd

这样的步骤重复n次之后将会得到

x1?x2? (x2)

2

n

?

2

n

x1x2...x2n

令x1?x1,...,xn?xn;xn?1?xn?2? (x2)

n

x1?x2? (x)

n

?a

由这个不等式有a?

na?(2?n)a

2

nn

?

2

n

x1x2..xna

2?n

n

?(x1x2..xn)2a

n

1?

n2

n

即得到

x1?x2? (x)

n

?

n

x1x2...xn

这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:

例1:

n

若0?ai?1(i?1,2,...,n)证明?

i?1

11?ai

?

n

1?(a1a2...an)n

例2:

n

若ri?1(i?1,2,...,n)证明?

i?1

1ri?1

?

n

1?(r1r2...rn)n

这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的

归纳法:

给出例1的证明:

当n?2时11?a1

?

11?a2

?

?(1?

?a1?a2)?2(1?a1)(1?a2)

设p?a1?a2,q?

?(1?q)(2?p)?2(1?p?q)

?p?2q?pq?2q?p(1?q)?2q(q?1)?p?2q,而这是2元均值不等式因此11?a1? ?

11?a22

n

?

11?a3

?

11?a4

??

此过程进行下去

n

?

i?1

1?ai

1?(a1a2...a2n)2

n

令an?1?an?2?...?a2n?(a1a2...an)n?g n

有?

i?1n

11?ai

11?ai

?(2?n)

n

11?g

?

n

n2?n

n

?

n

1?(gg

?

n

)

n

1?g

即?

i?1

例3:

已知5n个实数ri,si,ti,ui,vi都?1(1?i?n),记r?t? n

1n

n

?r,s

ii

?

1n

n

?s

i

i

1n

n

ii

?

1n

n

?u

i

i

,v?

1n

n

?v,求证下述不等式成立:

ii

?

i?1

(

risitiuivi?1risitiuivi?1

)?(

rstuv?1rstuv?1

)

n

要证明这题,其实看样子很像上面柯西的归纳使用的形式

其实由均值不等式,以及函数f(x)?ln因此e?1e?1

x

x

是在r上单调递减

rstuv?

?

(

rstuv?1rstuv?1

)?

n

我们要证明:

n

?(rstuv

i?1

iii

i

risitiuivi?1

i

?1

)?

证明以下引理:

?(x

i?1

xi?1

i

x2?1x2?1

n

?1

)?

n?2时,?(令a?

x1?1x1?1

)(

)?2

?a(x1x2?1?x1?x2)?(x1?x2?1?x1x2)

?2a(x1x2?x1?x2?1)?a(x1x2?1?x1?x2)?(1?x1x2?x1?x2)?2a(x1x2?1?x1?x 2)

?(a?1)(x1x2?1)?2a(x1x2?1)显然成立

2?n

n

n

此?(

xi?1xi?1 n

)?(

g?1g?1 )

2?n

n

?( gggg

n

n

n

n

?1?1 2?n2

n

),g?

n

?(

g?1g?1 n

因此?(

i?1

xi?1xi?1

n

)?

所以原题目也证毕了

这种归纳法威力十分强大,用同样方法可以证明jensen: f(x1)?f(x2)

?f(

x1?x2

),则四维:

f(x1)?f(x2)?f(x3)?f(x4)?2f(

x1?x2

)?2f(

x3?x4

)?4f(

x1?x2?x3?x4

)

一直进行n次有

f(x1)?f(x2)?...?f(x2n)

n

x1?x2? (x2)

n

),

令x1?x1,...,xn?xn;xn?1?xn?2? (x2)

n

x1?x2? (x)

n

n

?a

f(x1)?...?f(xn)?(2?n)f(a)

n

n

?f(

na?(2?n)a

n

)?f(a)

所以得到

f(x1)?f(x2)?...?f(xn)

n

?f(

x1?x2? (x)

n

)

所以基本上用jensen证明的题目都可以用柯西的这个方法来证明

而且有些时候这种归纳法比jensen的限制更少

其实从上面的看到,对于形式相同的不等式,都可以运用归纳法证明这也是一般来说能够运用归纳法的最基本条件

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

对数平均数

高考又见对数平均数 在历年的高考压轴题中我们总是能见到对数平均数的影子。2018年高考理科数学全国Ⅰ卷的压轴题最后一问,实际上就是对数平均数不等式的应用。加强对对数平均数的理解,无疑能对我们解决压轴题有很大的帮助。 对于a>b>0,我们把 b a b a ln ln --称作a 与 b 的对数平均数,并且有: 算术平均数>对数平均数>几何平均数,即: 2b a +>b a b a ln ln -->a b 证明方法Ⅰ(几何证明):如图,分别过A(a,0)、B(b,0)、C( 2b a +,0)、D(ab ,0)作x 轴的垂线,与函数y=x 1 交于F 、G 、E 、H 四点,过E 作函数的切线,分别与BG 、AF 交于M 、N 两点。 比较曲边四边形GBAF 的面积S 1与梯形MBAN 的面积S 2,得S 1>S 2,其中: S 1=?a b dx x 1 =ln a-ln b ,

S 2= 2AN BM +?AB=CE ?AB=b a +2 ?(a-b) ∴ ln a-ln b>b a +2 ?(a-b) 即:2b a +>b a b a ln ln --……① 比较梯形GBDH 的面积S 3与曲边四边形GBDH 的面积S 4,得S 3>S 4,其中: S 3=21 (GB+HD)?BD=21(b 1+ab 1)(ab -b)=ab b a 2- S 4=?ab b dx x 1=ln ab -ln b= 2ln ln b a +-ln b=2 ln ln b a - ∴ ab b a 2->2ln ln b a - 即: b a b a ln ln -->a b ……② 综合①②,得:2b a +>b a b a ln ln -->a b (a>b>0) 证明方法Ⅱ(函数证明): 令f(x)= 2ln x +1 2 +x -1 (x>1),则有: f`(x)=x 21 -2 )1(1+x =22)1(24)1(+-+x x x x =22)1(2)1(+-x x x >0 ∴ f(x)>f(1)=0,即: 2ln x +1 2 +x -1>0, 令x=b a ,代入整理得: 2ln ln b a ->b a b a +- 即:2b a +>b a b a ln ln --……① 令g(x)=x-2?ln x-x 1 (x>1),则有: g`(x)=1-x 2+21x =22 )1(x x ->0 ∴ g(x)>g(1)=0,即x-2?ln x-x 1 >0, 令x= b a ,代入整理得:ab b a ->ln a-ln b

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

对数平均不等式学生

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二) ()0ln ln b a b a b a ->>-的应用 例 2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.

(三) ()02ln ln a b b a b a b a +->>>-的应用 例3. 设数列{}n a 的通项111123n a n =++++L ,证明:()ln 21n a n <+. (四) ()2011ln ln b a b a b a a b ->>>-+的应用 例4. (2010年湖北)已知函数()()0b f x ax c a x =++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略) (3)证明:()() ()1111ln 11.2321n n n n n ++++>++?+L (五) )0ln ln b a b a b a ->>>-的应用 例5. (2014福建预赛)已知1()ln(1)311f x a x x x =++ +-+. (1)(略) (2)求证:()222223411ln 21411421431414 n n n +++++>+?-?-?-?-L 对一切正整数n 均成立. 强化训练 1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0. (1)(2)(略)(3)证明:()()12ln 212*.21 n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x x λ+=+-+.

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.wendangku.net/doc/2813215760.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.wendangku.net/doc/2813215760.html,) 原文地址: https://www.wendangku.net/doc/2813215760.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

对数平均数的不等式链的几何解释及应用

对数平均数的不等式链的几何解释及应用 中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是: 设,0,,a b a b >≠则2ln ln a b a b ab a b +->>-,其中ln ln a b a b --被称之为对数平均数. 童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地 探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解. 1 对数平均数的不等关系的几何解释 反比例函数()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,,T ab ab ?? ???作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形, 所以 ()12 ln ln ,b a dx b a b a x a b =->-+ò ① 又1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形, ()11 ln ln 22ABQP b a S = -=曲边梯形, () 11111 222AUTP ABCD b a S ab a S a ab ab 骣-÷?=+ -=?÷?÷?桫梯形梯形,

根据右图可知,AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b a b a ab --<, ② 另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln ,2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+, 即()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 2 不等式链的应用 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. 2.1 ()0ln ln b a b a a b a -> >>-的应用 例1(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++ 与()n f n -的大小,并加以证明. 解析(3)因为()1x g x x = +, 所以()()()121111223123 1n g g g n n n n ??+++= +++=-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++ 与()n f n -的大小,即只需比较 1 1 3121++++n 与()ln 1n +的大小即可. 根据0b a >>时,ln ln b a b b a ->-,即()1ln ln , b a b a b -<- 令,1,a n b n = =+则 ()1 ln 1ln ,1 n n n <+-+ 所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1 , ln(1)ln 1 n n n <+-+ ,

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

不等式的证明测试题与答案

不等式的证明 班级 _____ _____ 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+b a B . 111≥+b a C . 21 1<+b a D . 21 1≥+b a 4.已知a 、 b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37-,26-= c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

对数平均不等式 - 学生

对 数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x |||| 轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+??处的切线分别与 ,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二)()0ln ln b a b a b a ->>-的应用 例2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+. (三) ()02ln ln a b b a b a b a +->>>-的应用

(完整版)极值点偏移问题专题——对数平均不等式

极值点偏移——对数平均不等式(本质回归) 笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数,,且,定义为,的对数平均值,且 ,即几何平均数<对数平均数<算术平均数,简记为. 先给出对数平均不等式的多种证法. 证法1(对称化构造) 设 ,则, ,构造函数,则.由得,且在上,在上,为的极大值点.对数平 ,等价于,这是两个常规的极值点偏移问题,留给读者尝试. 证法2(比值代换) 令,则 ,构造函数可证. 证法3(主元法) 不妨设 , 1 1 1ln 2e e 2ln b a b a a a b b ab ab b a b a b a b a b b b a a a ---??-+?? < <<<<< ? ?+ -?? ??a b a b ≠ln ln a b a b --a b ln ln 2 a b a b a b -+< -()()(),,,G a b L a b A a b <<0 ln ln a b R a b -= >-ln ln k a k b a b -=-ln ln k a a k b b -=-()ln f x k x x =-()()f a f b =()1k f x x '= -()0f k '=()f x ()0,k Z (),k +∞]x k =()f x 2a b k +<< 2 2a b k ab k +>??()()11ln ln 2ln 2 b t b t a b a b a b t -+-+<

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

相关文档 最新文档