文档库 最新最全的文档下载
当前位置:文档库 › 高三文科立体几何专题

高三文科立体几何专题

高三文科立体几何专题
高三文科立体几何专题

1.如图,在四棱锥S ABCD

-中,底面ABCD是正方形,SA⊥底面ABCD,SA AB

=, 点M是SD的中点,AN SC

⊥,且交SC于点N.

(I)求证://

SB平面ACM;

(III)求证:平面SAC⊥平面AMN.

解法一:(综合几何法)

解法二:(空间向量法)2.如图,四棱锥ABCD

P-中,底面ABCD是边长

为2的正方形,CD

PD

BC

PB⊥

⊥,,且2

=

PA,

E为PD中点.

(Ⅰ)求证:⊥

PA平面ABCD;

(Ⅱ)求二面角D

AC

E-

-的大小;

(Ⅲ)在线段BC上是否存在点F,使得点E到平面

PAF的距离为

5

5

2

?若存在,确定点F的位置;若

不存在,请说明理由.

解法一:(综合几何法)

解法二:(空间向量法)

S

N M

D C B

A

S

N

M

D C

B

A

P

A

B C

D

E

P

A

B C

D

E

3.如图,在正方体ABCD—A1B1C1D1中,E为AB 的中点.

(1)求直线B1C与DE所成角的余弦值;

(2)求证:平面EB1D⊥平面B1CD;

(3)求二面角E—B1C—D的余弦值.

解法一:(综合几何法)解法二:(空间向量法)4.如图,四棱锥P ABCD

-中,PA⊥底面ABCD,

PC⊥AD.底面ABCD为梯形,//

AB DC,

AB BC

⊥.PA AB BC

==,点E在棱PB上,且

2

PE EB

=.

(Ⅰ)求证:平面PAB⊥平面PCB;

(Ⅱ)求证:PD∥平面EAC;

(Ⅲ)求二面角A EC P

--的大小.

解法一:(综合几何法)

解法二:(空间向量法)

E

A B

C

D

P

E

A B

C

D

P

5.如图,在直三棱柱111ABC A B C -中,

190,1ABC AB BC BB ∠=?===,

点D 是1A C 的中点. (I )求11A B 与AC 所成的角的大小; (II )求证:BD ⊥平面1AB C ; (III )求二面角1C AB B --的大小. 解法一:

(综合几何法)

解法二:(空间向量法)

6.如图,在三棱锥P ABC -中,PA PB =, PA PB ⊥, 30AB BC BAC ⊥∠=?,,平面PAB ⊥平面ABC .

(Ⅰ)求证:PA PBC ⊥平面 ; (Ⅱ)求二面角P AC B --的大小;

(Ⅲ)求异面直线AB 和PC 所成角的大小. 解法一:(综合几何法)

解法二:(空间向量法)

A

C

B

D

D

1

A

1

C

1

B

A

C

B D

D

1

A 1

C

1

B

D

C

B

A

P

D

C

B

A

P

7.如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,

AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1;

(II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 解法一:(综合几何法)

解法二:(空间向量法)

8.如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD ⊥平面PAB .

(I) 求证:AB ⊥平面PCB ;

(II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的大小. 解法一:(综合几何法)

解法二:(空间向量法)

9.直三棱柱ABC-A 1B 1C 1中,∠ACB=120°,AC=CB=A 1A=1,D 1是A 1B 1上一动点(可以与A 1或B 1重合),过D 1和C 1C 的平面与AB 交于D. (Ⅰ)证明BC ∥平面AB 1C 1; (Ⅱ)若D 1为A 1B 1的中点,求三棱锥B 1-C 1AD 1的体积111B C AD V -;

(Ⅲ)求二面角D 1-AC 1-C 的取值范围. 解法一:(综合几何法)

解法二:(空间向量法)

10.四棱锥P-ABCD 中,PA ⊥底面ABCD,AB // CD, AD =CD=1,120BAD ∠=?

,PA =

90ACB ∠=?.

(I )求证: BC ⊥平面PAC ;

(Ⅱ)求二面角D PC A --的大小; (Ⅲ)求点B 到平面PCD 的距离. 解法一:(综合几何法)

解法二:(空间向量法)

A

B

C

D

A 1

B 1

C 1

D 1

A

B

C

D

A 1

B 1

C 1

D 1

A P

D

C

B

A P

D

C

B

11.已知如图(1),正三角形ABC 的边长为2a ,CD 是AB 边上的高,E 、F 分别是AC 和BC 边上的点,且满足CE CF k CA CB

==,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图(2).

(Ⅰ) 试判断翻折后直线AB 与平面DEF 的位置关系,并说明理由;

(Ⅱ) 求二面角B -AC -D 的大小; (Ⅲ) 若异面直线AB 与DE 所成角的余弦值为24

求k 的值. 图(1) 图(2) 12.如图,在直三棱柱ABC —A 1B 1C 1中,∠ABC =90, AB =BC =AA 1=2,D 是AB 的中点. (I )求AC 1与平面B 1BCC 1所成角的正切值; (II )求证:AC 1∥平面B 1DC ; (III )

已知E 是A 1B 1的中点,点P 为一动点,记PB 1=x . 点P 从E 出发,沿着三棱柱的棱,按照E →A 1→A 的 路线运动到点A ,求这一过程中三棱锥P —BCC 1的体 积表达式V (x ).

13.如图,梯形ABCD 中,CD//AB ,AB 2

1CB DC AD ===,

E 是AB 的中点,将ADE ?沿DE 折起,使点A 折到点P 的位置,且二面角C DE P --的大小为120°。 (I )求证:DE//平面PBC ; (II )求证:PC DE ⊥;

(III )求直线PD 与平面BCDE 所成角的正弦值。

14.如图,已知平行六面体ABCD -1111D C B A 的底面ABCD 是菱形,且CB C 1∠=CD C 1∠=BCD ∠=ο60. (I) 证明:C C 1⊥BD ;

(II) 假定CD =2,1CC =2

3

,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值;

(III) 当1

CC CD

的值为多少时,能使⊥C A 1平面

BD C 1?请给出证明.

F

E D C B A

F E D C B

A F E D C

B A

C 1

C

D

A

B

D 1

B 1

A 1

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

2015年高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 2 3 (B )3 (C )2 (D )13 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距 P 到平面ABC 的距离为 . 答案: 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的 垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,PC PF == ,可得出1CF =,同 理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC = , PO == (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=, ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是 11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由 MN ?平面NGHM ,于是得到//MN 平面1C DE

(2) E 为BC 中点,ABCD 为菱形且60BAD ∠= DE BC ∴⊥,又 1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又 12,4AB AA ==, 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

2018高考文科立体几何大题

立体几何综合训练1、证明平行垂直 1.如图,AB 是圆O 的直径,PA⊥圆O 所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC; (2)若Q 为PA的中点,G为△AOC 的重心,求证:QG∥平面PBC.2.如图,在四棱锥P﹣ABCD 中,AB ∥ CD,AB⊥AD ,CD=2AB ,平面PAD⊥ 底面ABCD ,PA⊥ AD .E和F分别 是CD 和PC 的中点,求证:(Ⅰ) PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD .

3.如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD ,点E在线段AD 上,且CE∥AB . (Ⅰ)求证:CE⊥平面PAD ; (Ⅱ)若PA=AB=1 ,AD=3 ,CD= , ∠ CDA=45 °,求四棱锥P﹣ABCD 的体4.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形.已知 .M 是PD 的中点. Ⅰ)证明PB∥平面MAC Ⅱ)证明平面PAB⊥平面ABCD Ⅲ)求四棱锥p ﹣ABCD 的体积.

Ⅲ)若M 是PC 的中点,求三棱锥M ﹣ACD 的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD 中,底面ABCD 是直角梯形,AB ∥DC,∠ ABC=45 °,DC=1 ,AB=2 ,PA⊥平面ABCD ,PA=1 . (Ⅰ)求证:AB∥平面PCD; Ⅱ)求证:BC⊥平面PAC;

6.(2011? 辽宁)如图,四边形ABCD 为正方形,QA⊥平面ABCD , PD∥QA, OA=AB= PD. (Ⅰ)证明PQ⊥平面DCQ ; (Ⅱ)求棱锥Q﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值.7.如图,四棱锥P﹣ABCD 的底面ABCD 是边长为 2 的菱形,∠ BAD=60 °,已知 PB=PD=2 ,PA= . (Ⅰ)证明:PC⊥ BD (Ⅱ)若E为PA 的中点,求三棱锥P ﹣ BCE的体积.

《立体几何》专题(文科)

高三文科数学第二轮复习资料 ——《立体几何》专题 一、空间基本元素:直线与平面之间位置关系的小结.如下图: 二、练习题: 1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是 A .平行 B .相交 C .异面 D .平行、相交、异面都有可能 2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A . V 21 B .V 31 C .V 41 D .V 3 2 3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是 A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αγβγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 D 1 B 1

线A C 1上的点,若 a PQ= 2 ,则三棱锥P BDQ -的体积为 A3 B3 C3 D.不确定 5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1 2Q B 2 3 Q C 2 π Q D 2 3π Q 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证: (1)EG∥平面BB1D1D; (2)平面BDF∥平面B1D1H; (3)A1O⊥平面BDF; (4)平面BDF⊥平面AA1C. 7.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形, 侧棱长为 b,侧棱AA’与底面相邻两边AB、AC都成450角,求 此三棱柱的侧面积和体积. 8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积V P-ABC.

高考真题立体几何文科

文科立体几何

4、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且 ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//; (Ⅲ)求三棱锥BGF C -的体积. B C

5、如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分 别为1DD 、DB 的中点. (Ⅰ)求证://EF 平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (III )求三棱锥EFC B V -1的体积. 6、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , 1==DC PD ,E 是PC 的中点,作PB EF ⊥交PB 于点F . (I) 证明: PA ∥平面EDB ; (II) 证明:PB ⊥平面EFD ; (III) 求三棱锥DEF P -的体积. A B D E F A 1 B 1

1 A 1B 1C A B D C 7、 如图, 在三棱柱中,, 1CC ⊥平面ABC ,,,, 点是的中点, (1)求证:; (2)求证:; (3)求三棱锥的体积。 8. 如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点, 且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)求三棱锥D -AEC 的体积; (3)设M 在线段AB 上,且满足AM =2MB ,试 在线段CE 上确定一点N ,使得MN ∥平面DAE. 111ABC A B C -3AC =4BC =5AB =14AA =D AB 1AC BC ⊥11AC CDB 平面11C CDB -

2012—2018高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

2012-2018年新课标全国卷Ⅰ文科数学汇编 立 体 几 何 一、选择题 【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂 直的半径.若该几何体的体积是 28π 3 ,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α 平面ABCD m =, α 平面11ABB A n =,则,m n 所成角的正弦值为( ) A B C D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问 题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的 正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8 【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A .6 B .9 C .12 D .15

高考数学专题复习立体几何题型与方法(文科)

P O A a 高考数学专题复习 立体几何题型与方法(文科) 一、 考点回顾 1.平面 (1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。 (3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (4)证共面问题一般用落入法或重合法。 (5)经过不在同一条直线上的三点确定一个面. 2. 空间直线. (1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。 (2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线) (3)平行公理:平行于同一条直线的两条直线互相平行. (4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (5)两异面直线的距离:公垂线的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点 在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直. (1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”) (3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行.(“线面平行,线线平行”) (4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只 有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .

高考文科立体几何考试大题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°. (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面. 2.如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ∠=,平面PAD ⊥ 平面ABCD ,且 1,2,AB AD E ==.F 分别为PC 和BD 的中点. (1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求四棱锥P ABCD -的体积. 3. 如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形, //AB DC , 45=∠ABC ,1DC =,2=AB ,⊥PA 平面ABCD , 1=PA . (1)求证://AB 平面PCD ; (2)求证:⊥BC 平面PAC ; (3)若M 是PC 的中点,求三棱锥M —ACD 的体积. 4.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点.若3PA AD ==,6CD = . (Ⅰ)求证://AF 平面PCE ; (Ⅱ) 求点F 到平面PCE 的距离; 题型二、体积: 1、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8, AB =2DC =45. (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面 P AD ; (Ⅱ)求四棱锥P -ABCD 的体积. 2、如图,三棱锥BCD A -中,AD 、BC 、CD 两两互相垂直, E F D A C B P A B C D P M

高中文科数学:立体几何专题

高三文科数学:立体几何专题 一.选择题: 1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r= (A)1 (B) 2 (C) 4 (D) 8 2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A)6 (B)9 (C)12 (D)18 3.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为 4.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为 (A)6π(B)43π(C)46π(D)63π 5.若m,n是两条不同的直线,α,β是两个不同的平面,则下列命题不.正确的是() A.若α∥β,m⊥α,则m⊥βB.若m∥n,m⊥α,则n⊥α C.若m∥α,m⊥β,则α⊥βD.若α∩β=m,且n与α,β所成的角相等,则m⊥n

二.填空题: 6.已知正四棱锥O ABCD 的体积为322 ,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________。 7.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底 面面积是这个球面面积的316 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 8.已知平面α,β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α∥β.当满足条件________时,有m ⊥β.(填所选条件的序号) 三、解答题: 9.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD. (Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC=120°,AE ⊥EC ,三棱锥 E —ACD 的体积为 3 6,求该三棱锥的侧面积

高考文科立体几何考试大题题型

文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台ABCD A1B1C1D1 中,D1D 平面ABCD ,底面ABCD 是平行四边 形,AB=2AD ,A D=A 1B1 ,BAD= 60°. (Ⅰ)证明:A A BD ; 1 (Ⅱ)证明:C C ∥平面A BD . 1 1 2.如图,四棱锥P ABCD 中,四边形ABCD 为矩形,PAD 为等腰三角形,APD 90 , 平面PAD 平面ABCD ,且AB 1, AD 2,E .F 分别为PC和B D P 的中点. E (1)证明:E F / / 平面PAD ; D (2)证明:平面PDC 平面PAD ; (3)求四棱锥P ABCD 的体积. C F A B

1

3.如图,已知四棱锥P ABCD中,底面ABCD是直角梯形,AB // DC ,ABC 45 , DC 1,AB 2,PA 平面ABCD,PA 1. P (1)求证:AB // 平面PCD ;[ 来源:https://www.wendangku.net/doc/cf11131361.html,] (2)求证:BC 平面PAC ; (3)若M是PC的中点,求三棱锥M—ACD的体积. M A B D C 4. 如图,四棱锥P ABCD中,PA 平面ABCD,四边形ABCD 是矩形,E 、F分别 是AB 、P D 的中点.若PA AD 3,CD 6 . (Ⅰ)求证:AF // 平面P CE ; (Ⅱ)求点F 到平面PCE 的距离;

2

题型二、体积: 1、如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD,AB∥DC ,△PAD 是等边三角形,已知BD=2AD =8, AB =2DC = 4 5 . (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P-ABCD 的体积. 2 、如图,三棱锥A BCD 中,AD 、BC 、CD 两两互相垂直,且A B 1 3 , BC 3, CD 4 , M 、N分别为AB 、A C 的中点. (Ⅰ)求证:BC // 平面MND ; (Ⅱ)求证:平面MND 平面ACD ; (Ⅲ)求三棱锥 A MND 的体积. 3

高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2、2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 就是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积、 O D 1 B 1 C 1 D A C A 1 3、(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o 、(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图、(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积、

4、 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD,且AB=1,AD=2,E 、F 分别为PC 与BD 的中点. (1)证明:EF ∥面PAD; (2)证明:面PDC ⊥面PAD; (3)求四棱锥P —ABCD 的体积. 5、(2013年高考广东卷(文))如图4,在边长为1的 等边三角形ABC 中,,D E 分别就是 ,AB AC 边上的点,AD AE =,F 就是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =、 (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -、 图 4G E F A B C D 图 5D G B F C A E

2020年高考立体几何大题文科(供参考)

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积. 2、(2017新课标Ⅱ文)(12分) 如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. 3、(2017新课标Ⅲ文数)(12分) 如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 4、(2017北京文)(本小题14分) 如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (Ⅰ)求证:PA ⊥BD ; (Ⅱ)求证:平面BDE ⊥平面PAC ; (Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积.

5、(2017山东文)(本小题满分12分) 由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1; (Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6、(2017江苏)(本小题满分14分) 如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A , D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 7、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的 等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. (第19题图) (Ⅰ)证明:平面PAB ; (Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 8、(2017天津文)(本小题满分13分) 如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥, PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD ⊥平面PBC ; (II )求直线AB 与平面PBC 所成角的正弦值. //BC AD //CE

相关文档
相关文档 最新文档