文档库 最新最全的文档下载
当前位置:文档库 › 铸造凝固过程数值模拟

铸造凝固过程数值模拟

铸造凝固过程数值模拟
铸造凝固过程数值模拟

铸造凝固过程数值模拟

时间:2007-4-11 9:03:44

1.1 概述

在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。

凝固过程数值模拟可以实现下述目的:

1)预知凝固时间以便预测生产率。

2)预知开箱时间。

3)预测缩孔和缩松。

4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。

5)控制凝固条件。

6)为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。

铸件凝固过程数值模拟开始于60年代,丹麦FORSUND把有限差分法第一次用于铸件凝固过程的传热计算。之后美国HENZEL和KEUERIAN应用瞬态传热通用程序对汽轮机内缸体铸件进行数值计算,得出了温度场,计算结果与实测结果相当接近。这些尝试的成功,使研究者认识到用计算数值模拟技术研究铸件的凝固过程具有巨大

的潜力和广阔的前景。于是世界上许多国家都相继开展了铸件凝固过程数据模拟以及与之相关的研究工作。

1.2 数学模型的建立和程序设计

液态金属浇入铸型,它在型腔内的冷却凝固过程是一个通过铸型向环境散热的过程。在这个过程中,铸件和铸型内部温度分布要随时间变化。从传热方式看,这一散热过程是按导热、对流及辐射三种方式综合进行的。显然,对流和辐射的热流主要发生在边界上。当液态金属充满型腔后,如果不考虑铸件凝固过程中液态金属中发生的对流现象,铸件凝固过程基本上看成是一个不稳定导热过程。因此铸件凝固过程的数学模型正是根据不稳定导热偏微分方程建立的。但还必须考虑铸件凝固过程中的潜热释放。

基于分析和计算模型开发相应的程序,即可实现铸造凝固过程温度场的计算。

1.3 温度场的数值模拟

在热模拟中,温度场的数值模拟是最基本的,以三维温度场为主要内容的铸件凝固过程模拟技术已进入实用阶段,日本许多铸造厂采用此项技术。英国的Solstar系统由三维造型,网格自动剖分,有限差分传热计算,缩孔缩松预测,热物性数据库及图形处理等模块组成。

1.4 铸件充型过程的数值模拟

铸件充型过程的数值模拟是通过计算金属液充型过程中的流体流动得出的。充型过程的数值模拟可以分析在给定工艺条件下,金属液在浇注系统中以及在型内的流动情况。包括:流量的分布、流速的分布以及由此导致的铸件温度场分布。

充型过程数值模拟一方面分析金属液在浇冒口系统和型腔中的流动状态,优化浇冒口设计并仿真浇道中的吸气,以消除流股分离和避免氧化,减轻金属液对铸型的侵蚀和冲击;另一方面,分析充型过程中金属液及铸型温度变化,预测冷隔和浇不足等铸造缺陷。

充型过程数值模拟技术由于所涉及的控制方程多而复杂,计算量大而且迭代结果易发散,加上自由表面边界问题的特殊处理要求使其难度更大,国内外学者经过多年研究已开发出了MAGMA软件,Pro CAST等。MAGMA软件可对中等复杂铸件进行三维流场分析,获得比较符合实际情况的初始温度场分布。

铸造充型过程数值模拟技术主要有三种方法:

1 SIMPLE法,即压力连接方程半隐式方法(Semi- Implicit Method for Pressure Linked Equation);

2 SMAC法,即简化标示粒子法(Simplifed Marker and Cell);

3 SOL A- VOF法,即解法(Solu-tion Algorithm)及体积函数法(Volume of Fluid)。

1.5 应力场的数值模拟

铸件热应力的数值模拟是通过对铸件凝固过程中热应力场的计算、冷却过程中残余热应力的计算来预测热裂纹敏感区和热裂纹的。应力场分析可预测铸件热裂及变形等缺陷。

由于三维应力场模拟涉及弹性-塑性-蠕变理论及高温下的力学性能和热物性参数等,研究的难度大。现在研究多着重于建立专门用于铸造过程的三维应力场分析软件包,有些研究是利用国外的通用有限元软件对部分铸件的应力场进行模拟分析,这对优化铸造工艺和提高铸模寿命发挥了重要作用。应力场模拟分析正向实用化发展,但迄今为止还没有一种科学方法准确测量金属铸件各个部位的热应力或残

余应力。

1.6 铸件微观组织模拟

铸件微观组织数值模拟是计算铸件凝固过程中的成核、生长等,

以及凝固后铸件的微观组织和可能具备的性能。铸件微观组织模拟经过了定性模拟、半定量模拟和定量模拟阶段,由定点形核到随机形核。这一研究存在的问题是很难建立一个相当完善的数学模型来精确计

算形核数,枝晶生长速度及组织转变等。瑞士M Rappaz教授与美国Stefanescu教授在1985年前后同时进行该项目的研究。他们从宏观温度场入手,分别对铝合金及镍基合金和铁的晶粒数,晶粒尺寸分

布及二次臂距进行估算。铸件微观组织模拟研究今后将向定向凝固及单晶方面发展,同时在计算精度、计算速度等方面有很多工作要做。

大中型消失模铸钢件内孔烧结成因及预防

李伟

铜陵有色金属(集团)公司机械总厂安徽铜陵244022

1 前言

我厂采用真空消失模铸造工艺,大中型铸件在安装孔、格子孔以及内角处经常出现粘砂及烧结现象,特别是在厚度>70mm以上的铸钢件较严重,但铸件表面很少有粘结、烧结现象。认为孔眼处型砂紧实度不够,抽负压时:孔眼处有局部形成空洞,涂料层在高温金属液热作用以及浇注静、动压力头作用下,涂料层破裂造成金属液进入孔眼内而形成粘砂烧结。根据经验介绍,采用高铝砂、镁橄榄石砂等混制的树脂砂预埋孔眼,有时粘砂、烧结现象反而更为严重。烧结的孔眼为砂与金属的混合物,常规清理非常困难,需要用电焊、碳弧气刨、气割等手段慢慢修出,对产品的质量、生产效率影响较大,特别对高锰钢铸件质量影响大,因为高锰钢受热碳化物容易析出,材料冲击韧性下降,使用造成铸件产生裂纹、断裂等早期失效。

2粘砂及烧结原因分析

铸件形成过程实质上是金属液与铸型型腔表面壳层相互作用的过程,它们之间是彼此联系并互为条件的。

相互作用十分复杂,主要有热作用、机械作用、物理——化学作用,其中热作用是其它两作用的基础,影响着机械作用和物理——化学作用的程序。

2.1 型芯与铸件金属的热作用

型芯与金属液相互作用最重要特征是铸件与型芯之间的热交换。

T=T初f(X口R口α材口α金口τ)

式中:T——型壁内某层的温度:

T初——液体金属初温,可取凝固终温;

X——该砂层离型腔表面的距离;

R——铸件厚度;

α材——型砂的物理性质,如导温系数等;

α金——铸件金属的物理性质:

τ——加热时间,取决于金属冷却的时间。

液态金属初温高,热容量大,铸件壁厚大,离型腔表面距离近,加热时间长,型砂导温系数高,则该砂层被加热的温度就高。

型芯中的温度场按第四类边界条件计算。

分析表明,仅当Foi≥1时,即当壁厚较小而加热时间很长时,数列之第二项对计算结果才产生一定影响,所以在许多实际情况中只限于使用第一项。从上式中可知,当铸件与铸型接触的持续时间短时(< 1h),温度的传递与铸件的壁厚(<400~500mm)无关。

假定衬板在铸件厚度R=120mm,安装孔尺寸54×54mm2方形,预埋树脂砂。砂型导温系数α2=1.0×10-6m2/s,计算浇注温度1560℃,时间20min时,砂芯中部温度场。

资料介绍,树脂砂受热时在500℃左右树脂热分解,树脂膜被烧蚀,树脂砂粘结力降低,强度开始逐渐下降,砂粒间空隙增大。失掉强度后砂粒有可能在压力下自由移动,如同无粘结性原砂,对重金属过滤的毛细管抗力变弱,金属的渗透作用加剧。另一方面,铸件是通过与砂接触的面以及边角效应向外散热冷却,加上消失模负压工艺作用,铸件表层很快凝固成壳。但实验证明,被金属包围的型芯,当其直径或厚度较小时,由于砂芯很快被加热到铸件温度,不能再起冷却作用,对于铸钢件,与型芯接触的这部分铸件表面不能纳入铸件的散热表面。

2.2型芯与铸件金属的机械作用

2.2.1型芯受金属液的浮力作用

P浮=V2·γ2一V l·γl

式中P浮——砂芯受到的浮力,N:

V2——砂芯的体积,cm3;

γ2——砂芯重度,kg/cm3;

V1——砂芯被金属液包围部分体积,cm3;

γ1——金属重度,kg/cm3。

当型芯整体或局部刚度不足时,在金属液浮力和抬力作用下会引起显著变形。严重时涂料层破裂,型芯渗入金属液,造成型芯烧结现象。

2.2.2型芯受金属收缩作用

型芯完全被铸件包围,受热后体积膨胀受到限制,另一方面树脂砂型芯,由于加热时形成坚硬的焦炭骨架,溃散性差。在外加载荷(铸件收缩应力)条件下,型芯内孔边角处,由于边角效应,型芯热量较高,加之涂料层厚度有可能较厚,因应力集中易形成裂纹,使金属液渗入型芯内,造成型芯烧结现象。

2.3型芯与铸件金属的物理——化学作用

金属液与铸型在高温下相互间产生多种复杂的物理——化学作用,如金属液渗入型壁砂粒的孔隙内,金属氧化与铸型材料形成新的化合物等。

2.3.1润湿角

型芯与铸件金属要产生作用,首先看金属能不能对其产生润湿为前提的。

润湿角的大小主要决定于金属液和造型材料的性质,但接触气氛的性能也有很大的影响。如工业纯铁在不同接触气氛中的润湿角见表1,从表l中可看出,在氧化气氛中石英砂比镁砂容易发生机械粘砂。

金属成分对润湿性也有影响,如工业纯铁中氧和锰的含量增加,能使润湿性大为提高。故钢水脱氧不完全或含锰13%的高锰钢容易发生机械粘砂。由于铁水含碳量较高,含氧量较低,又不易被氧关,故铸铁件机械粘砂的倾向比钢小。

2.3.2型芯与铸件金属的物理作

型砂蓄热系数、导热率等对金属处于液态时金属的渗入也有影响。蓄热系数高,金属凝固快,渗入深度小;导热率高,金属凝固快,渗入深度小。某些非金属材料导温系数、吸热系数见表2。

砂型的导热率还受砂型空隙率的影响,空隙率高时型砂导热率低,提高砂型的紧实率可提高砂型的紧实率可提高导热率。可减少减轻粘砂烧结。

因为热量在树脂砂中的传递速度比金属渗透速度低2-3个数量级,而砂壳的形成只需要几分钟的时问。因此在大型铸件时,型砂的松孔特性对粘砂的形成起决定性作用,热活性起从属作用。采用细粒填充砂是预防粘砂的有效方法。

2.3.3型芯与铸件金属的化学作用

化学粘砂是由于金属液和型砂在高温作用下发生化学反应而产生的。产生化学粘砂的先决条件是金属氧化。影响化学粘砂的因素主要是金属氧化物的数量以及与型砂之间的作用程度。但在非石英砂的条件,不形成低熔点化合物,对砂粒滴湿作用小。氧化物层的厚度影响铸件与粘砂层的连接,氧化层的厚度达到或超过某个临界厚度(约10 0μm)时,粘砂层就容易消除,反之不易。

2.4小结

砂型铸造的涂料向铸型内渗入一定的深度,与型砂颗料紧密接触。真空消失模铸造涂层与型砂之间是点接触,涂层外部是无粘结剂的干砂。由于真空消失模铸造工艺形成原理的特殊性如真空、干砂造型等,

相比消失模的涂层更容易被液态金属的压力所挤压而破裂,一旦破裂,液态金属比普通砂型更容易渗入型砂中,即使孔眼采用树脂砂预埋,砂料与涂层松散接触,涂料层一旦开裂,金属渗透缺陷比普通砂型铸造更为严重。

铸件上由型芯形成的内腔表面,由于金属凝固收缩时产生的压力,比外表面更容易形成粘砂。

浇注温度越高,铸件壁厚越大,则金属液在铸型表面保持的时间,金属液的流动性越好,因而渗入孔隙的金属越多。与此同时,金属液温度较高时,铸型被剧烈加热,渗入孔隙内的金属也不易冷凝,因而渗入的深度也大。反之,如果浇注温度低,铸件壁薄,则机械粘砂的程度小,或者不发生机械粘砂。因此,铸件的厚壁部分或转角等热节部分比较容易产生粘砂。

3预防

烧结是粘砂的特例,是更加严重的粘砂现象。预防烧结可注意以下几方面。

1)加强脱氧,降低浇注温度,以减少金属氧化物形成,或加剧金属氧化达到增加氧化铁层厚度的以减小化学粘砂。

2)保持足够负压时间,并减少搬运砂箱,防止产生过早搬动震动使型芯表层破裂,在铸件没有完全凝固时,金属液渗入型芯内,形成型芯烧结现象。

3)加强型砂冷却速度,使铸件表面形成较厚的凝固层,以抵抗外力作用。

4)提高涂料强度、抗激热开裂的性能。

5)更换润湿角更大的原砂,并提高砂粒细度,减少孔隙,配合型砂振实工艺,提高砂型强度。

4结语

粘砂烧结主要为高温金属液与型芯热作用伴随机械作用的结果,物理化学作用次之。松孔特性对粘砂的形成起决定性作用,热活性起从属作用。金属材料的成分、脱氧程度,型砂的润湿性、导热系数等因素对粘砂及烧结都有影响。可通过提高涂料抗激热开裂性能,型砂的导热系数,增加铸型强度等措施解决。

通过对10t/h冲天炉的改造,将3排小风口冲天炉改为两排大间距结构,用正交设计法试验确定10t冲天炉最佳结构及工艺参数.实验结果表明,10t/h冲天炉采用两排大间距炉型,倒置风口(67/33)、小风口比(2.0)、焦铁比1:10、风量110m3/min的工况下可获得最佳熔化效果.改造后的10t冲天炉比原3排小风口冲天炉的铁水温度提高30~50℃,显著减少了炉前出铁口冻结事故,降低铸件废品率1.92%.

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

铸件充型凝固过程数值模拟

铸件充型凝固过程数值模拟 1 概述 欲获得健全的铸件,必先确定一套合理的工艺参数。数值模拟或称数值试验的目的,就是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。 铸件充型凝固过程数值计算以铸件和铸型为计算域,包括熔融金属流动和传热数值计算,主要用于液态金属充填铸型过程;铸件铸型传热过程数值计算,主要用于铸件凝固过程;应力应变数值计算,用于铸件凝固和冷却过程;晶体形核和生长数值计算,主要用于金属铸件显微组织形成过程和铸件机械性能预测;传热传质传动量数值计算,主要用于大型铸件或凝固时间较长的铸件的凝固过程。数值计算可预测的缺陷主要是铸件形成过程中易发生的冷隔、卷气、缩孔、缩松、裂纹、偏析、晶粒粗大等等,另外可以通过数值计算,提出合理的铸造工艺参数,包括浇注温度、铸型温度、铸件凝固时间、打箱时间、冷却条件等等。目前,用于液态金属充填铸型过程的熔融金属流动和传热数值计算以及用于铸件凝 固过程的铸件铸型传热过程数值计算已经比较成熟,逐渐为铸造厂家在实际生产中采用,下面主要介绍这两种数值试验

方法。 1.1 数学模型 熔融金属充型与凝固过程为高温流体于复杂几何型腔内作有阻碍和带有自由表面的流动及向铸型和空气的传热过程。该物理过程遵循质量守恒、动量守恒和能量守恒定律,假设液态金属为常密度不可压缩的粘性流体,并忽略湍流作用,则可以采用连续、动量、体积函数和能量方程组描述这一过程。 质量守恒方程 ? u/? x+? v/? y+? w/? z= 0 (2-1) 动量守恒方程 ?(ρ u)/? t+u?(ρ u)/? x+v?(ρ u)/? y+w?(ρ u) /?z = -? p/? x+μ(?2u/? x2+?2v/?y2+? 2w/? z2)+ρ g x (2-2a) ?(ρ v)/? t+u?(ρ v)/? x+v?(ρ v)/? y+w?(ρ v) /?z = -? p/?y+μ (?2u/?x2+?2v/?y2+? 2w/? z2)+ρ

铸造工艺的数值模拟优化

! 收稿日期:2006-01-16;修回日期:2006-07-19 作者简介:胡红军(1976-),男,重庆工学院讲师,主要研究铸造CAD/CAE软件研究和开发。E-mail:hhj@cqit.edu.cn。 铸造工艺的数值模拟优化 胡红军,杨明波,龚喜兵,李国瑞 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:为了研究和预测铸造工艺对铸件质量的影响,设置合理的军用汽车转向臂的铸造浇冒口系统和工艺参数。应用铸 造模拟软件对转向臂的三种不同工艺方案进行凝固模拟,根据凝固模拟结果显示的缺陷及内部缩松情况,提出改进工艺方案并对其进行凝固模拟,选择最佳方案应用于生产。研究表明,3#是最合理的浇冒口布置方式,最优的浇注温度825℃,浇注时间15s,采用水平分型。应用表明,铸造模拟软件能够准确地预测充型凝固过程中可能产生的缺陷,从而辅助工艺人员进行工艺优化。 关键词:凝固模拟;军用汽车转向臂;铸造工艺优化;浇冒口系统;缩孔;铸造模拟软件中图分类号:TG250.6 文献标识码:A 文章编号:1004-244X(2006)06-0051-03 Optimizationofcastingprocessesbasedoncomputernumericalsimulation HUHong-jun,YANGMing-bo,GONGXi-bing,LIGuo-rui (ChongqingInstituteofTechnology,Chongqing400050,China) Abstract:Inordertostudyandpredicttheinfluenceofcastingprocessoncastingsquality,therationalpouringsystemandprocessparametersareset.Threekindssolidificationsimulationschemehavebeenappliedwiththehelpofsimulationsoftware.Re-sultsandappearancedefectsandinnershrinkageporosityofthecastingsintrialproductionhavebeenbasedupontobringfor-warddifferenttechnologyimprovementsandselectanoptimalprojectusedinbatchproduction.Researchresultsshowthatno.3castingsstructureisreasonable,themostreasonablepouringtemperatureis825℃,pouringtimeis15s.Theapplicationshowsthatthesoftwarecanhelptechnologiststooptimizecastingprocessbyforecastingcastingdefectsduringmoldfillingandsolidi-ficationprocessesandinstructtheproductionofcasting. Keywords:solidificationsimulation;steeringarmcomponentusedinheavymilitarytruck;castingprocessoptimization;pour-ingandrisersystem;shrinkage;castingsimulationsoftware 铸造数值模拟是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。为技术人员设计较合理的铸件结构和确定合理的工艺方案提供了有效的依据,从而避免传统的依靠经验进行结构设计和工艺制定的盲目性,节约试制成本[1-4]。 1 铸造过程充型数值模拟方法 军用汽车转向臂的几何实体造型采用UG软件建 立,在得到三维几何数据后,利用UG软件的反向出模模块,通过设定铝合金收缩率、铸件起模斜度、浇注系统的位置和分型面等,作为凝固模拟的几何模型。由于金属液充型过程数值模拟技术所涉及的控制方程多而复杂,需要根据连续性方程、动量方程及能量方程,并进 行速度场、压力场的反复迭代,计算量大而且迭代容易发散,致使其难度很大。通过不断完善数值计算方法,如有限差分法和SOLA-VOF体积函数法,开发出一些实用软件。该产品的凝固模拟就是采用MAGMA软件。作为整个模拟的核心部分,CAE的数值模拟效果最终将影响模拟的真实与否。在液态金属浇注过程中,热传导过程计算是数值模拟的主要内容。处理热传导问题采用傅里叶定律(式1),式2是根据能量守恒定律推导的方程[5-8]。 q=-λ !t !n (1)ρc!t!τ=!!x(λ!t!x)+!!y(λ!t!y)+!!z(λ!t !z)+qv (2)其中q为热流密度,λ为导热系数,t为温度(函数), n为温度传递方向上的距离,Τ 为温度,ρ为密度,c为质! 2006年11月兵器材料科学与工程 ORDNANCEMATERIALSCIENCEANDENGINEERING Vol.29No.6Nov.,2006 第29卷第6期

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

铸造数值模拟

铸造过程数值模拟 摘要:铸造过程数值模拟技术是当今公认材料科学的重要前沿领域。铸造过程的数值模拟是本学科发展的前沿之一,包含铸件充型、凝固过程、缩松缩孔的预测、应力场、热裂、微观组织的计算机模拟以及计算机模拟软件开发等研究内容。 关键词:数值模拟;充型过程;微观组织;应力;热裂; 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科,是公认的材料科学的前沿领域。 一、铸件充型过程数值模拟的研究概况 液态金属的充型过程是铸件形成的第一个阶段, 许多铸造缺陷, 如卷气、夹渣、浇不足、冷隔及砂眼等都是在充型不利的情况下产生的。然而由于本身的复杂性, 与凝固过程相比, 充型过程计算机数值模拟技术的起步较晚。长期以来人们对充型过程的把握和控制主要是建立在大量的试验基础上的经验准则。从20世纪80年代开始, 在此领域进行了大量的研究, 在数学模型的建立、算法的实现、计算效率的提高以及工程实用化方面均取得了重大突破。 许多铸造缺陷如卷气、夹杂、缩孔等都与液态金属的充型过程有关。为了控制充型顺序和流动方式,对充型过程进行数值模拟非常必要。其研究多数以SOLA—VOF法为基础,引人体积函数处理自由表面,并在传热计算和流量修正等方法进行研究改进。有的研究在对层流模型进行大量实验验证之后,用K一£双方程模型模拟铸件充型过程紊流现象。 目前,虽然已研究了许多算法,如并行计算法、三维有限单元法等,但最好的算法仍然没有找到。常用的网格划分为矩形单元(2D)或正交平行六面体(3D)。日本的I.Ohnaka等人提出了无结构非正交网格,这种技术是通向较高精度充型模拟的可能途径之一。砂型铸造的充型模拟研究在铸造过程计算机模拟中占主导地位,然而消失模铸造、金属型铸造等充型模拟的研究工作已经开始。充型模拟的另一发展趋势是浇注系统辅助设计,R.McDavid和J.Dantzig在这方面进行了尝试,并取得了一定的成果。 二、缩松和缩孔预测的数值模拟研究概况 铸件缩松、缩孔形成的模拟预测是铸件充型凝固过程模拟软件的主要功能之一。目前国内外常用的凝固模拟软件中均提供了多种判据用于铸件缩松、缩孔的预测.但是,大多数判据均是在用于铸钢件或不含石墨的铸造合金时比较有效。由于石墨铸铁凝固时析出比体积较大的石墨。因此其体积变化较铸钢等复杂得多,必须采用专门的判据。 铸钢件缩松、缩孔预测判据经过多年的发展,从最初的定性温度场热节法,发展到后来的E.Niyama提出的G/R1/2法,再到后面的流导法、固相率梯度法等定量预测方法,无论从精度还是从使用范围看,均达到了较高的水平,可以有效地预测铸件钢中的缩松、缩孔。 而铸铁件,特别是球墨铸铁件缩松、缩孔的预测一直缺乏可靠有效的判据。1994年,李嘉荣等在大量试验的基础上提出了球墨铸铁缩松、缩孔形成预测的“收缩膨胀动态叠加法(DECAM)”,该法基于Fe—C平衡相图,用杠杆原理计算凝固过程中收缩和膨胀量,将收缩和膨胀量进行叠加,可以预测球墨铸铁件缩松、缩孔的形成.李文珍等在进行球墨铸铁微观

凝固模拟实验

凝固模拟实验 【实验性质】综合性实验;学时:4 ;选做实验 1实验目的 通过模拟实验了解实际高温钢液凝固过程,观察以下三种现象: (1)直接观察自然对流现象,目测其流速,观察宏观组织(Λ形偏析)形成的过程及“沟槽”产生的方位。 (2)观察结晶雨现象导致钢锭底部的负偏析(沉积锥)。 (3)观察凝固过程中氯化铵形成的基本晶形。 2实验原理及设备 2.1实验原理 金属凝固过程是从液态转化为固态的过程,从微观来讲,凝固就是金属原子从无序状态到有序状态的排序过程。也就是液态中无规则原子集团转变为原子按一定规则排列的固态结晶。从宏观来讲,是把液态金属所储藏的热和凝固潜热通过模壁转移到外界,使液态金属转变成为具有一定形状的固体金属。整个凝固过程将发生一系列的物理化学变化。 凝固过程的收缩,密度的差异以及温度场的变化而产生的自然对流现象对钢坯的质量影响是特别显著的。特别是在模铸生产中,大型镇静钢锭由于成分不均匀性而产生Λ形偏析(也就是冶金中常说的倒V形偏析,偏析部位表现在钢锭的柱状晶带上),以及钢锭底部的沉积锥偏析等内部缺陷。 2.1.1 倒“V”形偏析的形成 含有不同物质的熔体在凝固过程中,由于温度、密度、体积以及温度场的变化,液体中会产生对流现象。这种对流现象使流动的液体在通过柱状晶凝固前沿时不易凝固,随着柱状晶的生长延伸而夹入中间,形成带有一定角度的液体流。在选分结晶过程中,高熔点的物质首先结晶,低熔点的物质向液体中扩散,形成液体流中低熔点的物质富集,我们称为正偏析。在钢锭的表现形式称为“Λ”形偏析或称倒“V”形偏析。在钢坯的横断面上通过低倍腐蚀表现得形状又称为“方框形”偏析或称“锭形”偏析。 2.1.2 沉积锥偏析 熔体在凝固过程由于选分结晶,高熔点的物质首先形核结晶称为固体。密度小的物质上浮,密度大的物体自然下落。根据形核机理,在一定温度下会形成大量的晶体,由于其密度大于熔体而下落,在下落过程逐渐长大,此现象称为结晶雨。柱状晶向中心生在阻碍了边沿晶体的下落,在底部形成一个锥体,称为沉积锥。由于高熔点的物质成分富集,所以称为负偏析。 2.1.3 减少偏析生成的措施 (1)提高熔体的纯洁度,减少钢中有害元素。 (2)改善熔体的凝固条件控制浇注过程的注温、注速。 (3)改善熔体凝固过程的动力学条件。 2.2实验方法 本实验采用NH4Cl-H2O溶液模拟钢锭凝固过程,NH4Cl-H2O系二元相图如图1所示。由于NH4Cl-H2O溶液的透明性和NH4Cl-H2O树枝晶体的半透明性,因而可以观察晶体及凝固结构形成的过程,更可形象地观察到晶体的结构。再者氯化铵溶液熔化焓低,便于模拟实验操作。由图1可知,氯化铵溶液的浓度超过19.7%以后为过共晶系,实验中可采用35%的

凝固过程模拟仿真课程论文

凝固过程模拟仿真课程论 文 铸造过程数值模拟的研究发展现状 (Research on the development status of numerical simulation of casting process) 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:不知道 学号:3110703451 指导教师:怯喜周

铸造过程数值模拟的研究发展现状 摘要:随着电子计算机技术的飞速发展,铸造工艺计算机辅助设计CAD,铸件凝固过程数值模拟CAE等多项技术已大量应用于生产实际。工业发达国家制定的下一代制造(NGM)计划所提出的十项关键基础技术中就包括建模与仿真。铸件的凝固过程数值模拟技术主要包括铸件及其工艺的几何造型、三维传热数值计算技术和缺陷判据这三部分,并可对凝固过程中出现的缺陷进行预测,评判铸造工艺设计的合理性,以减少工艺实验的次数,降低工艺设计成本,提高工艺出品率和合格率。 关键词:凝固模拟;数值仿真;铸造CAE;CAD;铸造充型; Research on the development status of numerical simulation of casting process Abstract: with the rapid development of computer technology, computer aided design of foundry technology CAD, numerical simulation of casting solidification process of CAE and many other technology has been widely applied in actual production. Industrial developed countries to develop the next generation manufacturing (NGM) are ten key basic technology plan put forward in includes modeling and simulation. The casting defects of computing technology and criterion of this three part of numerical heat transfer, including 3D geometric modeling and Simulation of the process of casting solidification process numerical, and to predict the defects that appear during the solidification process of casting process design, evaluation of rationality, in order to reduce the times of experiment process, reduce the design cost, increase the process yield and the qualified rate. Keywords: solidification simulation; numerical simulation; CAE CAD; casting; mold filling; 1 前言 凝固在自然界及人类生产实践中占有十分重要的地位。从熔岩冻结为地壳到

数值模拟在铸造充型及凝固过程的应用进展

数值模拟在铸造充型及凝固过程的应用进展 摘要:综述了铸造过程中数值计算的基本理论,简要介绍了铸造充型及凝固当前国内外发展状况以及所存在的问题,并对铸造过程数值模拟的相关软件进行评述。最后指出合理地利用铸造模拟软件,能够优化铸件的微观组织,提高产品质量,降低产品成本,缩短产品设计和试制周期。 关键词:铸造;充型过程;数值模拟;模拟软件

The Application of Numerical Simulation in Mold Filling and Solidification Process Abstract:The basic theory of numerical calculations is summarized, and a brief introduction of the developing situation and existing problems of the casting mold filling and solidification process at home and abroad,reviewed the numerical simulation software of casting process. In the end, it also clearly shows that it can optimize the casting microstructure, improve the quality, decrease the cost and reduce the design and trial cycle for the products by using the numerical simulation software properly. Key words: Casting; Filling and Solidification process; Numerical Simulation; Simulation Software

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

铸造过程的数值模拟

铸造过程的数值模拟 1零件分析 本次铸造过程的数值模拟所用的零件为方向盘,该零件结构复杂,并且在实际使用过程 中,需要承受较大的扭转力,因此选用镁合金并采用压铸工艺。此项工作需要在方向盘上建 立合适的浇注系统和溢流槽,进行充型模拟,得到合理的压铸方案。在建立浇注系统之前,需要合理选择分型面,然后选择浇注系统的内浇口位置,待浇注系统建立好之后,进行一次预模拟,从而确定溢流槽的数量和位置。 2工艺设计 2.1浇注系统 该铸件的分型面为铸件的最大截面,选定的浇注系统在铸件上的位置如下图所示。 rr 口斗+带〒 *”斗-T 已知数据有:压室直径60mm,压室速度0.1m/s-3m/s,铸件材料AM50A,方向盘质量 595g,压射温度685C。 查表取值:AM50A 镁合金密度1.75g/cm3;充填时间t= 0.05s;内浇口厚度b=2.5mm ; 取充填速度v仁50m/s。 铸件的体积v= — = —95 =340000mm 3; P 1.75 根据经验,可以取溢流槽的体积为铸件体积的10%,则溢流槽的体积v^ 34000mm3。 计算内浇口面积(V铸件+ V溢流槽) vt 二340 34 -50 0.05二149.6 2 mm

内浇口宽度 s c 2 b 冲头速度 4v 1s 4x 50 x149.6 “ , V ? 2 2 2.65 m / s nd 兀汽60 横浇道选用等宽横浇道 厚度 bh=10mm ,斜度10°,宽度B=( 1.25-3)An/bh ;圆角半径 r=2mm ,横浇道宽 2 度为 30mm 。增压时间 k=1.5s ,: =0.005 t = k : b 1.5 0.005 9 = 0.0675s 直浇道的设计 因为压室直径为60mm ,因此可以将直浇道与压室相连处的直径设计为 60mm ,直浇道 的高度为40mm ,拔模斜度为5 °。 2.2排溢系统 根据前面所述,溢流槽的总体积设计为铸件总体积的 10%,则v^ 34000mm 3。并且 设计三个溢流槽,分布在方向盘的圆周上,具体位置根据铸件最后充型位置确定。 根据经验和查表,溢流槽的桥部的尺寸与内浇道的尺寸的差距不宜过大, 因此选取溢流 槽的尺寸为 A=30mm , B=35mm , H=12mm ,a=9mm , b=22mm , c=1mm ,溢流槽桥部厚度 为h=1.3mm 。则溢流槽的仓部体积和为 v 溢=3 ^B_H = 3 30 35 37800mm 3。 149.6 治 30 mm

基于虚拟现实的铸造工艺流程仿真

基于虚拟现实的铸造工艺流程仿真 大部分机械工程专业的学生并没有真正意义上的进行铸造工艺实验,多数是从书上获得理论知识,或者是在金工实习时,听或观察老师的操作,使得很多学生并不熟悉真正的铸造是如何进行的。针对这种情况,本文利用虚拟现实的技术仿真铸造工艺的流程,使得学生可以在没有现实设备的基础下,也能依靠自学或者书本的知识,自己进行虚拟的铸造实验。 铸造工艺有很多类型,本文选择了压力铸造工艺流程的仿真。压力铸造是一种精密的铸造技术,是一种不可或缺的铸造技术,也是机械工程专业的学生必须掌握的铸造技术。虚拟现实技术综合利用计算机仿真技术、计算机图形学等等多种技术,通过产生视觉、听觉等,使得用户产生一种身临其境的感觉。其中很多软件能实现这种技术,本文采用了容易掌握和理解的EON Studio来实现压铸工艺的仿真。 本文首先对压力铸造作了简介,对其四种类型:热室压力铸造、冷室卧式压力铸造、冷室立式压力铸造和冷室全立式压力铸造的工艺流程进行了详细的分析,并且选择了热室压力铸造和冷室卧式压力铸造进行工艺仿真。而后简单介绍了EON Studio的重要功能,采用多种节点的配合作用,实现了对压力铸造工艺流程的仿真。 I

第一章绪论 1.1 选题的背景及意义 机械工程是社会发展和国民经济建设的基础学科之一。机械类专业人才的培养在整个教育中是非常重要的一部分。但我国机械专业的教学长期以来沿用原苏联的教学模式。而这种教学模式存在着严重的弊端,例如专业口径较窄、专业划分过细、内容相对过深、体系过于陈旧。随着我国的新技术的迅速发展,使机械工程、机械制造比以前的时代发生了根本性变化。这种传统的机械类教学模式必须彻底改革,不然就不会有创新。 实验教学是一种将课本知识结合到实际的教学方式,实验教学不仅巩固了学生课本上的基础知识,而且还能够培养学生的实际操作能力和动脑能力。由于机械专业属于工科类教学,对学生的实践动手操作能力要求极高,所以实验教学是提高机械工程专业学生实践动手操作能力的一个重要教学环节。 但是由于各种条件的限制,比如操作实验设备难度大、缺乏实验设备、容易精密仪器损坏、实验时间和资源的消耗大等,学生缺乏大量去尝试的机会,也因此这的相当数量的实验创新教学不能正常开展,另外一些抽象性的实验在现实情景中很难实现,例如铸造等等,从而耽误了对学生动手实践能力的培养。将虚拟现实技术应用在实验教学中,可使虚拟出来的效果接近真实实验效果[1]。 铸造成型在现代加工中占有不可或缺的地位,是制造生产复杂零件最灵活的方法。铸造实习是金工实习重要的环节之一,通过铸造实习学生可以学习到常规的铸造工艺,同时也能够了解到基本先进的铸造技术。但是因为受到我国传统教育思想的影响,实验教学的模式一直有一下几个方面的问题: (1)教学方法基本上还是老师带学生的模式,老师做学生在一旁看和模仿,过多的约束使学生难以发挥自己的想象空间,形成了一种被动的模仿实习,而不是由学生自己摸索得到的知识。在过去的实习教学中,都是由指导老师示范砂型的制作过程,然后由学生进行模仿进行操作,然而大部分学生做出来的作品都是基本的形状; (2)后续的浇注过程没有得到很好的展开,学生很难对砂型铸造的后续金属浇注过程有一个直观的认识,例如不同金属熔炼所需要具备的条件、浇注前金属液体的微观状态、铸件的成型过程以及铸件可能产生的缺陷等。而且在这种情况下学生很容易失去对实习的兴趣以及实习的成就感,从而打击到了学生实习的积极性,并且影响到部分同学的学习热情; (3)学生在实际操作之前没有得到相关实习的理论教学。例如学生没有掌握砂型铸造的要点,有的学生不是十分了解基本操作步骤。 华南理工大学机械工程虚拟仿真实验教学中心是首批国家级虚拟仿真实验教学中

泵体铸件凝固过程模拟

第一章绪论 1.1选题的背景及意义 铸造行业是一个古老而又非常重要的传统行业,具有数千年的历史。无论过去还是现在,无论发达国家还是发展中国家,铸造行业对国民经济的发展都起着十分重要的作用。据有关资料统计,铸件(按重量计)在机床、内燃机、重型机器中占70%~90%,农业机械中占40%--70%。此外,在冶金工业、能源工业的水电站、火电站与核电站、航空、航天等产业部门都发挥着重要作用。 铸造技术随着科学技术和生产机械化的发展而获得了巨大发展,但我国铸造行业的技术水平与国外相比有较大差距,它严重制约着我国国民经济的发展。我国铸件年产量已超过1000万吨。居世界第二,但其中高性能、优质铸件的比例只占20.7%,丽美国已占40.7%(1998年统计);精密铸件比例只占2%,而美国已占13%(1994年统计)。又如,服务予航空、航天工业的精密熔模铸造业,全世界销售额为52.3亿美元,其中美国为24.8亿奖元,占47.4%,而中国仅1.8亿美元,只占3.4%。另外,我国铸件重量平均比国外重10%、20%,劳动生产率低5~8倍,而能耗高2倍。再以汽车发动机缸体铸件为例:我国生产的发动机缸体铸件平均壁厚为5.5~6.0mm,而国外只有3.5-4.5mm。我国的轿车生产已有多年历史,但目前发动机铸铁缸体质量仍然是关键技术问题。 铸件充型凝固过程计算机模拟仿真是铸造学科发展的前沿领域,是改造传统铸造产业的重要途径。经历了数十年的努力,铸件充型凝固过程计算机模拟仿真发展已进入工程实用化阶段。铸造生产正在由凭经验走向科学理论指导。铸件充型凝固过程的数值模拟,可以帮助工作人员在实际铸造前对铸件可能出现的某些缺陷及其大小、部位和发生的时间予以有效的预测,在浇注前采取对策以确保铸件的质量。缩短试制岗期,降低生产成本。计算机技术的突飞猛进使得这一梦想成为现实。 1.2用计算机技术改造传统铸造行业 1.2.1 铸造过程计算数值模拟的国内外研究概况 随着计算机技术的迅猛发展,计算机在铸造中的应用越来越广泛。60年代初,杰·麦德弗洛桑德把戴森摩尔等人在工程应用中提出的有限差分近似法第一次用于铸造凝固过程的传热计算,开始了铸件凝固的过程模拟。此后,美国密西根大学的曼.万等人以及日本的大中逸雄等相继开始了凝固过程模拟,并取得了显著的进步。在第50届国际铸造年会举办的“凝固过程计算机模拟”专题讨论会上,深入讨论了铸件凝国过程数值模拟在研究微观组织结构和铸件性能等方面的应用,总结了凝固过程模拟所依据的。系列关系式,并设想利用这些关系式将几何

双金属复合垂头铸造工艺及充型模拟模拟

双金属复合锤头铸造工艺设计及充型模拟 [摘要]:锤头是反击式破碎机中破碎矿石的主要部件,该部件在使用中锤柄不断承受交变的弯曲应力和冲击力,而锤头部位则主要承受较强的冲击力和摩擦力。本文通过设计出一种新型的锤头制作工艺,采用镶铸复合技术解决现有技术中存在的锤头易磨损、易破碎、使用寿命短的问题。采用的技术方案是双金属复合型锤头的制作方法,双金属复合型锤头的结构为:包括相连接的锤柄和端头,所述端头内部设置11根耐磨棒,锤柄部分为高锰钢,耐磨棒的主要成分为高铬铸铁,各耐磨棒之间呈等边三角形放置;与传统的砂型铸造相比较采用消失模模铸造工艺有大大的简化,且零件的质量及精度较高,设计自由度大。同时利用负压紧实可以解决高铬铸铁的固定问题;进而使耐磨棒的外表面与锤柄主体合金紧密结合,并力求达到冶金结合。并对铸造过程进行ProCAST铸造模拟。 [关键词]:镶铸复合法;高铬铸铁;高锰钢;消失模;

The casting process design of Double metal composite hammer and filling simulation Fan-Hao (Grade08,Class1,Major control materials,Materials Science and Engineering,Shaanxi University of Technology,Hanzhong 723003,Shaanxi) Tutor:Wang-Hua [Abstract]: Hammerhead is the main parts of the broken ore crusher hammer handle, the component is in use constantly to withstand alternating bending stress and the impact hammer parts, mainly exposed to the strong impact and friction force. Through the design of a new type of hammerhead production process, using cast-in composite technology to solve existing technology hammerhead easy wear, easy broken, the short life of the problem. The technical solution adopted for the production of bimetal composite hammer, bi-metallic composite structure of the hammer: including the hammer handle and the end connected to the end internal settings wear rods 11, the hammer handle part greatly simplified, and the quality of the parts of high manganese steel wear bar the main component of high chromium cast iron, and other equilateral triangle is placed between each wear rod was; compared with the traditional sand casting using the lost foam casting process and accuracy of high design freedom. While taking advantage of the vacuum tight can solve the fixed problem of high chromium cast iron; thus closely integrated rods, wear-resistant outer surface with a hammer handle the main alloy, and striving to achieve a metallurgical bond. And the casting process ProCAST casting simulation. [Key words]: cast-composite method; high chromium cast iron; high manganese steel; lost foam

铸件充型凝固过程数值模拟实验报告

哈尔滨工业大学 《材料加工过程数值模拟基础》实验课程 铸件充型凝固过程数值模拟实验报告 姓名: 学号: 班级: 材料科学与工程学院

铸件充型凝固过程数值模拟实验报告 实验一:铸件凝固过程数值模拟 一、实验目的 1.学习有限差分法温度场模拟的数学模型和基本思路; 2.掌握用AnyCasting 铸造模拟软件进行温度场模拟的方法。 二、实验原理 1.有限差分法温度场模拟的基本思路: 设计铸造工艺方案→根据定解条件求解能量方程→揭示凝固行为细节→预测凝固缺陷→改进工艺方案,返回第二步循环。 2.有限差分法温度场模拟的数学模型: 222222T T T T L C t x y z t r l 骣抖抖?÷?÷=+++?÷÷?抖抖?桫 三、铸件凝固模拟过程及参数设置 1.凝固模拟过程 铸件、浇冒口等三维实体造型(输出STL 文件)→网格剖分、纯凝固过程参数设置等前处理→凝固温度场和收缩缺陷计算模拟数据→后处理得到动态的液相凝固、铸件色温图和缩孔缺陷等文件。 2.参数设置 铸件材质:AC1B 铸型材质:SM20C 初始条件:上下模500℃,侧模400℃,升液管700℃。 边界条件:所有界面与空气间的界面传热系数都为10W/(m 2?K),熔融金属液与模具之间的界面传热系数为4000 W/(m 2?K),各部分模具间和模具与升液管间界面传热系数都为5000 W/(m 2?K)。 四、模拟结果

图1 冷却时间 由于模拟中设置了水冷和空冷条件,所以铸件冷却速度较快。由图1可知凝固首先发生在铸件表面,铸件的轮辋区厚度较薄,冷却速度比轮辐处冷却快。内浇口先于轮辐凝固,在内浇口凝固后升液管内铝合金熔液无法对轮毂进行补缩, 则在轮毂中最后凝固处容易产生缩松缩孔。 图2 冷却率 由冷却率分布情况可知凝固过程中各部分冷却速率不同,可以判断出凝固时 内应力较大的区域,在应力较大区域铸件容易产生裂纹缺陷。 由模拟结果中铸件的温度场情况,合理设置工艺参数减少缩松缩孔及裂纹的 产生,合理布置冷却水管的分布位置。

铸件凝固过程中热应力场及热裂的数值模拟分析

铸件凝固过程中热应力场及热裂的数值模拟分析 作者:杨屹蒋玉明刘力菱焦玉琴 1铸件凝固过程数值模拟的意义及概况 自1962年丹麦Fround第1个采用电子计算机模拟铸件凝固过程以来,计算机在铸造工艺研究中得到了广泛的应用,如凝固过程温度场、热应力场的数值模拟,充型过程流速场的数值模拟;组织形态及力学性能的数值模拟等。通过这些单1或复合过程的数值模拟,可以分析铸件中存在的各种缺陷的产生原因,进而采取相应工艺措施来消除缺陷,实现工艺优化,同时可以节省大量的人力、物力和财力,缩短产品从设计到应用的周期,增强产品的市场竞争能力。如今,在芬兰,90%以上的铸造厂在日常中应用铸造模拟软件辅助铸造工艺设计;世界上一些大型的汽车公司的铸造厂,如美国的通用、福特,德国的奔驰等,都把数值模拟软件作为1种日常工具来使用。 近10年来,涌现出了许多优秀的铸造过程数值模拟软件,如美国的ProCast、德国的MAGMASoft、芬兰的CastCAE、西班牙的ForCast、日本的CASTEM、法国的SIMULOR 软件等。从功能上看,许多软件可以对砂型铸造、金属型铸造、精密铸造、压力铸造等多种工艺进行温度场、流场、应力场的数值模拟,可以预测铸件的缩孔、缩松、裂纹等缺陷和铸件各部位的组织。国内在经历了10多年的基础研究和发展后,也出现了一些技术水平接近国外商品化的应用软件,可以进行铸钢、铸铁件砂型铸造时的三维温度场模拟及收缩缺陷的预测,以及对铸钢、铝合金件的热应力场进行模拟。总的来说,国外软件的通用性强,能进行铸造全过程的数值模拟,并具有较强的后置处理功能及友好的用户界面。建模方便,易于模型设计和修改,便于用户掌握和使用。其计算精度与运算速度等方面也能满足需要。正因为如此,国外模拟软件已经成为实际生产中的有力工具.国内不少用户趋向于采用大型通用工程软件如:COSMOS、ANSYS、ADINA等进行模拟计算。 2数值模拟的基础性研究 2.1铸件凝固过程温度场数值模拟 经过几十年的发展,铸件凝固过程温度场数值模拟技术已日臻成熟。现在可以采用有限差分法、有限元法、DFF格式、Solyef格式等进行温度值的计算,边界条件处理方法有N方程法、温差函数法、点热流法、综合热阻法、动态边界条件法等,潜热的处理方法有温度

相关文档