文档库 最新最全的文档下载
当前位置:文档库 › 共轭聚合物为基础的荧光传感器

共轭聚合物为基础的荧光传感器

共轭聚合物为基础的荧光传感器
共轭聚合物为基础的荧光传感器

第22卷第3期大学化学2007年6月今日化学

共轭聚合物为基础的荧光传感器

赵达慧

(北京大学化学与分子工程学院北京100871)

摘要近年来,借助共轭聚合物的荧光发射与淬灭过程开发化学与生物传感技术成为倍受关注并获得迅速发展的研究领域。由于共轭聚合物能够沿分子链进行能量和电荷传导,从而产生信号放大现象,这类传感器通常都具有较高的灵敏度。本文主要通过对几种具有代表性的此类化学/生物传感器的举例说明,概述荧光共轭聚合物的传感机理,并简要介绍这一领域的发展状况。

化学传感器是指能够利用某一种或某一类分子的特殊物理或化学性质对被检测物进行检测的器件;当用于实现检测的这种(类)分子或被检测对象是存在于生物活体中或本身具有生物活性或生理机能时,这类传感器就成为生物传感器。近年来,化学与生物传感器的研制无论是从检测的准确度、灵敏度还是检测对象的范围来看都取得了重大的进展。这不仅是由于用于信号检测的光/电仪器本身性能的提高,更重要的是经过科学工作者的努力,新的更灵敏、更准确的检测材料及方法、手段不断地被研究开发出来。在化学与生物传感器中,通过光或电信号实现检测的传感器的应用最为广泛,种类与数量也最为繁多。由于荧光检测的灵敏性与便捷性,通过荧光光谱的变化实现的检测又是光电传感器中极为普遍而重要的一类[1~3]。这类传感器利用了被检测物与某种荧光分子或材料之间特定的相互作用引发的荧光强度的增加或降低,或者是所发射的荧光波长的变化来实现对被检测物的检测与信号的传递。在不同的荧光传感材料中,共轭聚合物近年来成为特别吸引研究者注意力的研究对象,以共轭聚合物为基础的荧光传感器因而获得了迅速的发展。形成这种趋势的原因首先在于共轭聚合物通常具有很高的摩尔吸光系数与荧光量子效率,有利于发展高灵敏度的检测技术;另外,共轭聚合物所特有的传感信号的放大功能是它们成为优良的传感活性材料最重要的原因。

1共轭聚合物荧光信号放大的机理

共轭聚合物所实现的传感信号的放大作用是以检测共轭聚合物荧光为基础的传感器的一个重要特点。这种对传感信号的放大是相对于小分子体系而言的;这种现象可以用共轭聚合物的/分子导线0理论来解释[1,4](图1)。对于小分子而言,能够进行荧光传感的分子通常至少具有两种功能:发光功能和与被检测物相互作用的功能。承担这两项功能的结构分别被称为荧光基团(fluorophore)与受体(acceptor);在某些体系中,这两部分结构可以合二为一;并且,分子的发光性质(如发射波长、强度等)在与被检测物相互作用后会产生明显变化,这是体系实现传感功能的基础。如图1(a)所示,由于被检测物(ana l y te)的浓度通常较低,在小分子传感体系中,只有部分荧光分子与被检测物相结合,并且产生荧光传感信号,如荧光的淬灭、产

图1共轭聚合物荧光放大效应的示意图[1]

(a)小分子,(b)共轭聚合物(分子导线)

生或波长的变化等。因此,对于这种小分子体系,检测灵敏度(即检测信号的强度变化)与传感分子与被检测分子的结合常数以及被检测分子的浓度相关(通常呈线性关系)。相反,在共轭聚合物体系中,受激发产生的激子(exc iton)可以沿共轭主链发生迁移(即激发态能量可以沿聚合物主链进行传递),这就是共轭聚合物的分子导线特征。如果我们设想将具有以上传感功能的小分子连接成共轭聚合物(图1(b)),当被检测分子与共轭聚合物链上多个受体中的任意一个相结合时,它将不仅仅改变与其直接相连的荧光基团的发光性质;由于共轭链的分子导线性质,与被结合受体相邻的多个聚合物链节的发光性质都将受到影响而发生变化。或者可以这样解释,当激子产生于分子链的某一位置时,它可以沿共轭链被传递至待检测分子附近,并与之发生相互作用,从而产生传感信号。这是对信号放大现象最简化的描述。但是,激发态能量并不能无限传递,激子只具有一定的寿命(即半衰期),即使在没有被检测分子存在的条件下,它也可以通过辐射(如荧光)或其他非辐射方式衰减。因此,激子在受激产生后,以无规行走的方式沿共轭链迁移,只有当它能够在半衰期内迁移到被检测分子附近并与其产生相互作用时,有效传感信号才会产生。由此可见,相对于结构相似的小分子体系而言,共轭聚合物对于传感信号(包括荧光信号)具有放大功能,而其放大效率主要决定于激子的寿命以及激子在共轭聚合物链上的迁移速率等因素。

以上所描述的信号放大作用是基于分子内能量传递(激子迁移)的机理产生的。但人们在研究许多基于共轭聚合物荧光淬灭的传感器,特别是带电荷的聚电解质(polyelectrol y te)体系时发现,实验测得的信号放大程度远高于由于分子内激子迁移所能够产生的信号放大幅度,这种现象被称为超(高效)猝灭(superquenchi n g)。根据进一步的实验结果与分析,科研工作者现在基本得出共识,荧光传感信号放大除可借助分子内能量传递外,分子间的能量传递同样可能对信号起放大作用。但分子间的能量传递只能发生在当分子链间的距离缩小到一定程度的情况下。在溶液状态下,共轭聚合物的分子间能量传递主要发生在分子聚集体中。分子聚集现象在聚电解质体系中尤为普遍;当被检测对象带有的电荷与共轭聚合物带有的电荷相反时,被检测物的存在减弱了带有相同电荷的聚合物间的静电斥力,这就可能会引起聚合物在溶液中发生聚集(aggregate)。这种分子间相互聚集的驱动力可以是静电力、憎水(hydrophob ic)或憎溶剂效应,甚至是氢键作用等。在这些分子聚集体内部,由于分子间距离较小,激子甚至可以在分子链间/跳跃0(hopp i n g);由此被检测物所造成的传感信号得以获得进一步的放大[5](图2)。同样,在材料的本体聚集态条件下,例如当传感材料以固体膜状态被加以运用时,聚合物分子间的能量传递过程同样可以进行,并促进信号放大效应的产生,从而大大提高

传感灵敏度。

图2共轭聚合物分子在聚集态下荧光淬灭放大效应的示意图[5]

由于以共轭聚合物为基础的荧光传感器的研究在过去几年中开展得十分活跃,众多科研组发表了大量涉及化学、生物等多种检测目标的研究结果。本文将举例介绍近年来文献中报道的几个具有代表性的以共轭聚合物为基础的荧光化学/生物传感器的设计及应用。至于更为详尽系统的介绍,读者可以从相关的综述文献中获得[1~3]。

2蛋白质传感器

运用共轭聚合物发展生物传感器的研究近几年开展得十分热烈,其中以聚电解质(即带有离子化侧基的共轭聚合物)为基础的传感体系的发展尤为突出。这一领域中最早的具有原创性研究的报道之一是Whitten教授与其合作者在1999年发表在PN AS上的一篇文献[6]。在这部分工作中,作者利用带有磺酸根侧基的水溶性聚对苯撑乙烯的荧光可以被N,N c2二甲基2 4,4c2联吡啶阳离子有效地淬灭这一性质,将联吡啶与生物素(bioti n)相连接组成一个阳离子化合物,并通过它实现了对亲和素(avidin)的有效检测。

N,N c2二甲基24,4c2联吡啶阳离子对聚对苯撑乙烯的荧光淬灭作用从根本上讲是由于共轭聚合物的激发态能量向缺电子的联吡啶阳离子转移所造成。但淬灭剂对于这种聚合物的荧光淬灭效率却远远高于它对于具有相似结构的小分子化合物的淬灭效率。这其中,激发态能量沿共轭链的传递显然起了一定的信号放大作用,但这还不是全部的原因所在。实验研究发现,一些二价的阳离子如钙、镁离子等也能够在一定程度上淬灭这种带有磺酸根侧基的聚对苯撑乙烯。而这些简单的碱土金属离子本身不具有能量或电子接收能力,也就不具有荧光淬灭功能。由此推论,阳离子(包括本身具有淬灭效应的二甲基联吡啶阳离子)的存在造成了聚合

物链在溶液中的聚集,并由此引发激发态下分子间的相互作用以及荧光自淬灭现象。这在很大程度上提高了二甲基联吡啶的荧光淬灭效率。

这一联吡啶阳离子对于共轭聚合物的高效淬灭现象,以及b i o ti n与avidi n的超强亲和作用,被Whitten等巧妙地利用来发展avi d i n的生物传感手段[6]。其具体方法是,将联吡啶与biotin用一段含有酰胺键的脂肪链相连接,组成一个一端为联吡啶阳离子另一端为b i o ti n的阳离子,它在水溶液中也能够有效地淬灭磺酸基聚对苯撑乙烯的荧光。但当向这两种分子共存的溶液中加入avi d i n时,共轭聚合物的荧光得到了有效地恢复。作者认为,淬灭剂中的b i o ti n 基团与avidi n相结合后,由于avi d i n的体积较大,它有效地在空间上分隔了联吡啶阳离子与聚合物分子,减小了其相互间的作用,从而使得淬灭效应大大降低(图3)。在此基础上,Wh itten 科研组根据相似的设计理念,即利用淬灭剂与被检测物的配体相连接(/quencher2tether2 li g and0)的方法,进一步发展出了更多的生物传感(模型)体系。

图3W h itten的avid i n生物传感体系[6]

然而,Wh itten的这一结论在2004年被质疑。Bazan与合作者所进行的实验发现,avi d i n 不仅能够恢复被带有b iotin基团的联吡啶阳离子淬灭的荧光,当向含有磺酸基聚对苯撑乙烯与单电荷的N2甲基24,4c2联吡啶的混合溶液中加入avi d i n时,被淬灭的荧光同样能够部分地恢复[7]。很显然,由于N2甲基24,4c2联吡啶是无法与avi d i n相结合的,所以avi d in对聚合物的荧光恢复作用并不仅仅源于avidin2bioti n的相互作用。而进一步的实验发现,向只含有聚合物的溶液中加入avi d i n时,也能够提高溶液的荧光强度。这说明,avi d i n与聚合物之间存在某种相互作用,这种相互作用影响了聚合物的发光强度。根据这些实验结果,作者做出以下推测, avidi n对带有磺酸根的聚合物的荧光恢复/加强作用是由于它本身带有正电荷,avi d i n蛋白质与带有负电荷的聚合物发生了不确定相互作用(nonspec ific interactions);它们之间结合形成的复合物减弱了聚合物与淬灭剂的相互作用,从而提高了聚合物的荧光量子产率。

3DNA传感器

与上面介绍的avi d i n传感器不同,下面例举的D NA传感体系借助了荧光共振能量传递(fl u orescence resonance energy transf er,FRET)过程,或者称为Fêrster能量传递过程。在上面的例子中,能量/电子在从给体(聚合物)向受体(联吡啶阳离子)转移之后,激发态能量最终以无辐射跃迁的形式被释放,体系表现为荧光被淬灭。而在Fêrster能量传递过程中,激发态能量借助于给/受体之间的长程偶极2偶极相互作用,从能量给体转移至受体,随后以辐射跃迁方

式(即发光过程)返回基态。FRET作为热力学自发过程,它的发生伴随激子能量降低,表现为发射波长比无FRET状态下变长。FRET的发生对于给/受体间的距离、偶极矢量的相对方向、发射/吸收光谱的重叠程度等都有一定的要求。

2002年,Bazan教授与H eeger教授合作,利用FRET对

于给/受体间距离十分敏感的特征,运用结构如右图所示的

水溶性共轭聚合物实现了D NA的检测[8]。这种带有四级

铵阳离子侧基的聚(芴2苯撑)与末端被荧光素(fl u orescein)

标记的一段PNA共同组成传感体系。在水溶液中,由于中

性的P NA与带正电荷的共轭聚合物之间的静电相互作用

很弱,它们之间的距离不足以发生FRET。但当溶液中出

现与这段P NA碱基对互补的D NA片段时,PNA与D NA相结合所形成的带有负电荷的复合结构随之与带有正电荷的共轭聚合物在静电力作用下相互靠近。当它们之间的距离缩短至一定程度时,聚合物与PNA链上的荧光素之间就会发生FRET;即当以聚合物的吸收波长辐射体系时,可以观察到荧光素的发光。在这里,共轭聚合物起到了放大信号和类似于天线的作用。聚合物长链上产生的激子可以迁移到最有利于FRET发生的位置,从而实现更灵敏的检测。相反,如果体系中出现的D NA片段与存在的PNA片段并非完全互补,PNA则无法与D NA形成复合体,FRET也就无法进行,体系将几乎观察不到任何荧光素的发光。

在进一步的研究中,设计者用传统的DNA双螺旋链取代了D NA2P NA复合物,即用标记的单链D NA取代了更为昂贵的PNA作为探针片段,也实现了DN A的检测[9]。在这一体系中,虽然带负电荷的单链DNA探针本身会与聚合物存在一些相互作用,造成一定的FRET与荧光素的发光,但是由互补碱基对组成的双螺旋结构与聚合物的相互作用要远远强于单链D NA与聚合物之间的作用,因此,当体系中出现与探针片断互补的目标D NA片段时,可以明显观察到比非互补D NA片段造成的更强的荧光素发光信号。尽管如此,研究者仍继续探寻进一步优化体系的方法,以消除由于荧光素标记的单链D NA探针与共轭聚合物之间的FRET所造成的/噪音0问题。这一课题最终通过向体系中引入另一个染料分子的方法而巧妙地得以解决[10]。新引入的染料分子溴乙锭(eth i d ium bro m ide,EB)具有两个与所设计的体系相关的特点:首先,EB作为受体可与荧光素之间发生有效的FRET;更重要的是,EB单独在水溶液中的发光效率很低,但当它插入D NA双螺旋结构中之后,它的荧光量子效率大大增加。因此, Bazan研究组设计的传感体系包含了以下元素:含有如上阳离子侧基的共轭聚合物,荧光素标记的与目标DN A片段互补的单链DN A探针分子以及EB分子。当溶液中不含有目标D NA分子时,EB分散于溶液中,与共轭链或荧光素都无法进行FRET,并且入射光波长与EB的吸收波长不匹配,所以EB不发光或发光效率极低;而当被检测的D NA片段出现时,它首先与探针D NA形成双螺旋结构,然后EB分子可以插入其中。这样,可以实现EB高效发光的条件:荧光素标记的双螺旋D NA携带EB与共轭聚合物靠静电吸引相互靠近,从而出现了从聚合物到荧光素,再从荧光素到EB连续两次的FRET(图4)。因此,传感体系可以从观察到EB的发光信号证明体系中存在目标D NA片段。

4爆炸物传感器

爆炸物的检测是化学传感器研究中最重要的目标之一。爆炸物传感器的研发不仅对于战

图4通过两次FR ET实现的DNA传感体系[9]

场上包括地雷在内的多种爆炸性武器的检测具有重要意义,在和平社会中对保卫国家和人民的安全,尤其是对当前的反恐活动也具有重大的意义。因此,实现快速准确、方便快捷的爆炸物检测一直是科研工作者不懈努力的方向之一。已经发展出的运用不同技术手段、仪器设备进行爆炸物检测的方法是多样的。这里只介绍一个利用荧光共轭聚合物,针对硝基芳香化合物的传感技术的例子。这一技术的核心传感材料及其传感机理的研究是由S wager教授研究组完成的[11~12],其突出优点在于可以实现灵敏方便的检测(T NT的检测浓度下限可低于该物质常温下的蒸气压;并且实现了非溶液条件下的固态检测)。

包括最常用的T NT、D NT等在内的许多炸药都是含有多硝基的芳香化合物。这种多硝基的结构决定了这些化合物具有缺电子的特性,或者说它们都是良好的电子受体。因此,它们可以通过光引发的电子转移过程从富电子的共轭聚合物接受电子,从而实现共轭聚合物的荧光淬灭。共轭聚合物受光激发,基态电子吸收一个光子跃迁到激发态,形成激子;激子可以沿共轭主链移动。遇到芳硝基化合物后电子转移至缺电子的芳硝基化合物中的空轨道,随后再以

无辐射跃迁的形式转移回聚合物基态轨道,造成荧光淬

是基于这一荧光淬灭以及共轭聚合物利用能量迁移实现

的信号放大机理。他们合成并考察了一系列不同结构的

共轭聚合物,发现其中对T NT与DNT等硝基芳香化合物

的淬灭反应最为敏感有效的荧光材料是具有如右图所示

的化学结构的分子[11~12]。这种聚合物除具有摩尔吸光系

数高、荧光量子效率高等适于作为荧光传感材料的特点外,它最重要的特征是包含了一系列具

有刚性、相对伸展结构的三蝶烯基元(如图5所示)。这些三蝶烯结构主要起到两个作用。首先,这些刚性、伸展的结构在凝聚态下将聚合物主链相互分隔开来,从而减小了不利于荧光发射的分子间相互作用与自淬灭效应,保证了这些聚合物在凝聚态,即膜状态下,也具有很强的发光能力。这对于共轭聚合物的固态发光来说是突破性的成果;同时这一特点也是这种聚合

物实现非溶液状态下进行传感、检测的基础。另外,这些三蝶烯结构使聚合物的膜材料具有多

图5含三蝶烯基元的共轭聚合物与被测物分子间相互作用的示意图[11~12]

(纳米级)微孔的性质;因此,被检测的小分子能够更迅速有效地渗透进入传感材料内部,造成荧光信号的大幅度变化以实现高灵敏度的传感器。

在此基础上,S wager教授研究组通过进一步实验证明,由芳硝基化合物(如TNT)造成的这一类聚合物荧光淬灭的灵敏度与聚合物的荧光寿命有关,荧光寿命长的聚合物材料对淬灭剂的灵敏度更高[13~14]。这一结果为共轭聚合物能够通过激子的迁移对荧光信号产生放大效应的理论提供了有力的证据。另外,进一步的实验表明,硝基芳香化合物对这些共轭聚合物的淬灭过程和机理对聚合物本身的结构与性质都具有相当的依赖性[15]。例如,具有更加富电子性质的三蝶烯对于芳硝基化合物有可能产生吸附作用,从而获得更灵敏的荧光淬灭与检测。

5结论与展望

由于研究者的共同努力,以共轭聚合物为基础的荧光传感器近几年获得了巨大的发展。它们已经在化学、生物对象的检测、传感领域显示出强大的应用潜力与前景。一部分设计合理、检测灵敏、方便快捷的荧光聚合物传感器已经得到了实际应用。但同时,已经获得的科研结果充分说明,由于被检测对象具有多样性和复杂性,检测体系以及检测机理也需要随之变化;因此,我们必须发挥灵活的思维,设计出多样的材料与巧妙的技术来完成大量而多样的检测工作。随着这一领域的基础科研与技术工程的进一步发展与相互结合,我们相信会在未来不断看到更多的聚合物荧光传感器在生活中发挥作用。

参考文献

1S wager T M.Acc Che m Res,1998,31:201

2M c Quade D T,Pu llen A E,S wager T M.Che m Rev,2000,100:2537

3Tho m as SWó,Jol y G,S wager T M.Che m Rev,2007,107:1339

4Zhou Q,S wager T M.J A m Che m Soc,1995,117:7017

5Tan C,Atas E,M ll er J G,et a l.J A m Che m Soc,2004,126:13685

6Chen L,M cBranch D W,Wang H2L,et al.ProcN a tlAcad Sci US A,1999,96:12287

7Dw i gh t S J,Gaylord B S,H ong JW,et a l.J Am Che m Soc,2004,126:16850

8Gay l ord B S,H eeger A J,Bazan G C.P rocNa tl Acad Sci US A,2002,99:10954

9Gay l ord B S,H eeger A J,Bazan G C.J A m Ch e m Soc,2003,125:896

10W ang S,Gay l ord B S,Bazan G C.J A m Che m Soc,2004,126:5446

11Yang J2S,S wager T M.J A m Che m Soc,1998,120:5321

12Yang J2S,S wager T M.J A m Che m Soc,1998,120:11864

13RoseA,Lug m ai r C G,S wager T M.J A m Che m Soc,2001,123:11298

14Ya m aguch i S,S wager T M.J A m Ch e m Soc,2001,123:12087

15Zhao D,S wager T M.M acromolec u les,2005,38:9377

高分子结构和形态特点

1. 结构 高聚物是由许多巨大的分子构成的。这些大分子有许多重复的结构单元组成。某些高聚物的结构单元是完全一致的(均聚),但另一些则是由两种以上的结构单元混合组成(共聚),同时大分子之间又有各种联系。因此必须从微观、亚微观直到宏观不同的结构层次来描述高聚物分子结构、形态和聚集态等。 高聚物主要分为以下结构:一次结构(近程结构)、二次结构(远程结构)、三次结构(聚集态结构)和高次结构的层次。 一次结构式是指大分子的化学组成,均聚或共聚,大分子的相对分子量,链状分子的形状如直链、支化、交联。此外还包括大分子的立体构型如全同立构、间同立构、无规立构、顺式、反式的等的区别。 二次结构指的是单个大分子的形态(微观),如无规线团、折叠链、螺旋链等。 三次结构指的是具有不同二次结构的单个大分子聚集在一起形成的不同的聚集态结构。如:无规线团构成的线团胶团、缨束状结构、片晶和超螺旋结构。 高次结构指三次结构以及与其他物质构成尺寸更大的结构,如由折叠链形成的片晶构成球晶。 2.高聚物结构的测定方法 测定结构的方法有X射线衍射法(大角),电子衍射法、中心散射法、裂解色谱-质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分析法、核磁共振法、顺磁共振法、荧光光谱、偶极矩法、旋光分光法、电子能谱等。 测定聚集态结构的方法有X射线小角散射、电子衍射法、电子显微镜、光学显微镜、原子力显微镜、固体小角激光光散射等。 测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收(宽线)、红外吸收光谱,密度法,热分析法。 3.高聚物分子运动(转变与松弛)的测定 了解高聚物多重转变与运动的各种方法,主要有四种类型:体积的变化、热力学性质及力学性质的变化和电磁效应。测定体积的变化包括膨胀计法、折射系数测定法等;测定热学性质的方法包括差热分析方法(DTA)和差式扫描量热法(DSC)等;测定力学性质的变化的方法包括热机械法、应力松弛法等;还有动态测量法如动态模量和内耗等;电磁效应包括测定介电松弛、核磁共振等。 4.高聚物性能的测定 高聚物的力学性能主要是测定材料的强度和模量以及变形。试验的方法有很多种,有拉伸、压缩、剪切、弯曲、冲击、蠕变、应力松弛等。静态力学性能试验机有静态万能材料试验机,专用应力松弛仪、蠕变仪、摆锤冲击机、落球冲击机等,动态力学试验机有动态万能材料试验机、动态粘弹谱仪、高低频疲劳试验机。 材料本体的粘流行为主要是测定粘度和切变速率的关系、剪应力与切变速率的关系等,采用的仪器有旋转粘度计、熔融指数测定仪、高压电击穿试验机等。 材料的电学性能主要有电阻、介电常数、介电损耗角正切、击穿电压,采用仪器有电阻计,电容电桥介电性能测定仪、高压电击穿试验机等。 材料的热性能,主要有导热系数、比热、热膨胀系数、耐热性、耐燃性、分解温度等。测定仪器有高低温导热系数测定仪、差示扫描量热仪、量热计、线膨胀和体膨胀测定仪、马丁耐热仪和维卡耐热仪、热失重仪、硅碳耐燃烧试验机等。

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

共轭聚合物光电材料设计

材料化学专业科研训练 题目:共轭聚合物光电材料设计班级:材化12-3 姓名:丁泽 指导教师:杨照地 哈尔滨理工大学化学与环境工程学院 2014年12月31日

摘要 共轭聚合物是由大量重复基元通过化学键连接的一维体系,具有独特的光、电、电化学等性质,由于共轭聚合物结构( 链段、构象、聚集态) 的复杂性,即使在非常精细的合成条件下,少量结构缺陷的形成也是难免的,本文在前人的基础上设计了在PPV共轭聚合物主链及侧链上添加各种基团或原子后的改性情况。共轭聚合物,特别在其固态状态下激发能量能够有效传递,使得少量缺陷的影响被放大,对其光电性质产生巨大影响。因此对共轭聚合物结构缺陷的研究,包括缺陷成因与控制、缺陷密度的分析、缺陷的分子结构与电子结构特征等,对于高品质材料的研发具有重要的意义。 关键词共轭聚合物,PPV,光电材料,合成改性,修饰改性

目录 摘要...................................................................................................................... I 第1章绪论.. (1) 1.1 共轭聚合物概述 (1) 1.1.1 共轭聚合物的分类 (4) 第2章PPV类共轭聚合物 (5) 2.1 PPV类共轭聚合物简介 (5) 2.2 共轭聚合物的缺陷 (6) 2.2.1 PPV 的四面体缺陷 (8) 2.2.2 PPV的氧化缺陷 (9) 2.2.3 顺式缺陷 (10) 第3章PPV共轭聚合物的改性研究 (13) 3.1 PPV类聚合物的结构修饰 (13) 3.1.1 侧链修饰 (14) 3.1.2 主链修饰 (18) 总结 (20) 参考文献 (21)

共轭聚合物合成方法的研究

80 2003年增刊 化学与生物工程 ————一———————一—_—h—一—————●—___-一 共轭聚合物合成方法的研究 王维,张爱清 (中南民族大学化学与生命科学学院,湖北武汉4311074) 摘要:综连了聚芳撑(PPP、PPY、PqP)、聚对苯撑乙烧(PPV)、聚苯胺(PAn)、聚腈(PAZ)几种共轭聚合物的合成 方法,井指出了甚轭聚各物应用中存在问题厦夸后的合成方向。 关键词:典轭聚合物;聚对苯撑}聚吡咯}聚噻吩;聚对苹撑乙烧;聚苯胺;聚腈;合成中图分类号:0631.23 文献标识码:A 文章编号:1672—5425(20(13)增刊一0080一07 聚合物常被认为是绝缘体,但共轭聚合物因其结构特征而具有优良的光电学性能。自1977年白川英 树(K.Shiakawa)和MacDiarmid等人首次用AsF5或 12对聚乙炔(Polyaeetylene,PA)进行P型掺杂,获得 103 s?m1以上的高电导率以来,人们对共轭聚合物 的结构和性能有了新的认识。1990年剑桥大学的Burronghes等用聚对苯撑乙炔(PPV)制备了电致发光器件,引起了世人的关注。共轭聚台物的研究在世 刘丽,路庆华,印杰,朱子康,王宗光.溶胶一凝胶{击制备聚酰亚胺/二氧化钛赙光杂化材料[J].高等学校化学学报,2001.22 (11),1943—1944. JPhotopolSdTechno】,1992-298. KerwlnR E,GodrickMR.Thermally stablephotorejist p。ly— mer[J]PdymEng Sci,1971,8(5)l426—429.YochN.HiramotoH.New photosensitivehigh temperaturepol— ymers forelectric applications[J].JMaeromol Sei Chem,1984, A211I3-14):1641—1663. 攘豪情,李悦生t丁盂贤.新的离子型光敏秉酡亚胺U3.应用化 学,1998.1 8(2).J00—105. WilsonD,Santa Ann.StenzenbergerH D.et a1.Polyimide[M]. Puhllshed r,theUSAChapman andHallNew York.1990:119. Hasegawn M.KoehiM,Mita1,eta1.Moleeulafaggragadonand fluorescencespectraofaromatic I)0lyimides[J].EurPolymJ, 1989,25:349‘354 RubnerR.Kieeberg W,KuhnE.German Patent2 437 348, 1994 界范围内乍l益广泛的开展起来,已逐渐成为一门新型的多学科交叉的研究领域。近些年研究主要集中在聚对苯撑(PPP)、聚吡咯(PPY)、聚噻吩(PTP)、聚苯胺(PAn)和聚苯撑乙炔(PPV),这是因为它们原料易得.合成方法简便、聚合物性能优良等优点,并显示出了广泛的应用前景。其应用领域主要包括:发光材料、非线性光学器件、充电电池、电容器、传感器、液晶材料等,国内外相关研究有不少文献报道[1“…,且部分应用已 [i9]柬普坤,李佐弗,李加深,玛戚,王强.主链古有机硅结构的光敏 聚酰亚胺的研究[J].功能高分子学报,1998.11(1):1998 f20]LinAA,VinodRS,et a1.MaeromoIeeules,1998,21:1165[213 ScaianoJ C.Ferrira J C N。Polym EngSci.1989,29(14);942 [zz3 Chiang wT.MeiwP.Tetrahedmn Letters,199Z,33‘511: 7869-7878. [23]ChiangWT,MeiWP.JApplyPolymSci,1993.50,2191—8195.[24]1wamotoM,KasaharaS?IrayamaK,ct日1.JpnJ Appl phys, 1991.30(2A):L218 [zsJ Jgargoa,MethodsMater,MleroeleetronTechaol(Proc hit. Syrup)。1982:81. [883JoChoi,e1.a1.Polym EngSci,1992.32(21)11632. [273KRCarter.eta1.PMSE,1995t72I 385. [683 E PCassidy,etal Po[ymNews.1989,14:392. 作者简介:扬志兰(1979一),士,硕士研宛生.研究方向:高分子 功能材料。 StudyofPhotosensitivePolyimide YANGZhHan,ZHANGAi-qing (College∥ChemistryandLi尼Science,SouthCentralUniversityforNationalities,Wuhan430074。Chinn) Abstract:Thepresentpaperreviewstheinvestigativeresearchofphotosensitivepolyimides.Thesyntheticmethods,propertiesandapplication arc discussedindetail.Beside,thedevelopmentaldirectionandappliedforegroundo{photosensitivepolyimides in microelectron are included. Keywords:photosensitive;polyimide;syntheticmethod;property;application;microelectron 圮玷钉 q 阳朝 叼 龃 ;  万方数据

高分子材料结构特点及形成原因

高分子材料的结构特点及形成原因 刘海翔 103511072 摘要:简单综述了高分子材料的结构特点,包括高分子链结构、晶体结构和微区结构等,同时简要阐述这些结构特点是如何形成的。 关键字:高分子材料;结构特点 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子的链结构 高分子链结构是指单个高分子化合物分子的结构,链结构主要包括高分子链的组成与结构和高分子链的分子量与构象。高分子链的组成是由聚合单体决定的,通常对某一种高分子材料而言,单体的组成并不是研究的主要对象。即使高分子链具有相同的组成,材料的性能也可能不同,这可能与高分子链的形态有关。图1展示了常见的分子链形态。

水溶性荧光共轭聚合物MPS_PPV的聚合新方法及其荧光波长调控研究

2009年第67卷化学学报V ol. 67, 2009第24期, 2827~2832 ACTA CHIMICA SINICA No. 24, 2827~2832 zhkhe@https://www.wendangku.net/doc/cf7362264.html, * E-mail: Received April 27, 2009; revised July 29, 2009; accepted August 21, 2009. 国家自然科学基金(Nos. 90717111, 20621502)资助项目.

2828化学学报V ol. 67, 2009 Scheme 1 但是这种方法所需步骤长[图式2(a)], 合成总产率低, 聚合过程操作复杂、所需时间长[见图式2(c)]. Bazan课题组[17]采用1,4-丁基磺酰内酯为原料, 大大缩短了反应步骤并提高了合成产率[图式2(b)]. 但是迄今为止, 在聚合方式上仍然没有大的改进. 过去几年, 我们一直在从事水溶性荧光共轭聚合物传感器研究[3,7,15,18,19], 发现聚合物的聚合方法及其性能对传感器的影响尤为重要, 因此如何实现单体简单快速的聚合具有很重要的意义. 作者以4-甲氧基苯酚和1,3-丙基磺酰内酯为反应原料, 提出了一种新的单体聚合方法[图式2(d)], 使聚合步骤得到了简化, 缩短了反应时间; 同时, 我们发现改变聚合反应溶液中NaOH的浓度, MPS-PPV的链长有所改变, 导致其紫外吸收和荧光发射峰发生变化. 利用元素分析, IR, 1H NMR和动态光散射对0.5 mol/L NaOH乙醇溶液中生成的聚合物进行表征, 所得结果与文献[13]的结果基本相符, 证实目标产物为MPS-PPV. 研究了聚合物与过氧化氢之间的作用, 结果发现, 过氧化氢可使聚合物原有发射峰(508 nm)蓝移, 并在472 nm处出现新的荧光峰, 进一步验证了聚合物的链长与其荧光发射波长的关系. 同时结合聚合物峰形和强度的变化可以实现过氧化氢选择性的检测, 优于单纯基于聚合物荧光猝灭的传感模式, 此研究无疑为基于荧光聚合物的新型生物化学传感器研制提供了新的思路. 1 实验部分 1.1 仪器和试剂 荧光激发和发射光谱使用Perkin Elmer LS55荧光仪测试; 核磁共振于Variant Mercury UX-300核磁共振仪测定; 红外光谱在Nicolet Magna-IR spectrometer 550红外光谱仪上测定; 紫外光谱使用TU-1901紫外光谱仪测试; 元素分析数据在Perkin-Elmer2400元素分析仪上获得; 分子量在ALV/DLS/SLS-5000动态光散射仪上测定; pH用PHS-3C精密pH计调节. 4-甲氧基苯酚、1,3-丙基磺酰内酯、四氢噻吩、三羟甲基氨基甲烷(Tris)均购于Aldrich公司; 二氧杂环己烷购于百灵威化学技术公司; 无水乙醇、乙醚、氯仿、丙酮、DMF (N,N-二甲基甲酰胺)、二氯亚砜、多聚甲醛、苯、无水甲醇、浓盐酸、浓硫酸、无水硫酸镁、过氧化氢均为国药分析纯试剂, 所用MPS-PPV配成1× 10-4 mol/L(以重复单元的浓度表示, 以下相同); Tris缓冲溶液浓度为20 mmol/L, 用浓盐酸调节至所需pH; 过氧化氢现配; 实验用水为超纯水. 1.2 荧光共轭聚合物MPS-PPV的合成 根据文献以4-甲氧基苯酚和1,3-丙基磺酰内酯为起始原料, 通过四步反应和一步聚合得到MPS-PPV, 具体 图式2 MPS-PPV的合成路线图Scheme 2Synthetic route of the MPS-PPV

水溶性共轭聚合物发光材料(精)

水溶性共轭聚合物发光材料 本论文的研究内容主要涉及共轭高分子发光材料领域。上世纪九十年代以来,共轭高分子发光材料的研究开始成为当今高分子科学热点研究领域之一。共轭高分子发光材料在高分子发光二极管方面的应用研究方兴未艾,水溶性共轭高分子发光材料特别是共轭聚电解质的研究又愈来愈引起人们的关注。本课题组长期从事共轭高分子发光材料的研究,在共轭聚电解质的研究方面也已经有一定的工作积累。除了采用传统的经典化学合成即利用共价键连接的合成方法得到水溶性共轭高分子之外,最近我们开始尝试采用共轭高分子非共价键自组装的方法来制备水溶性共轭高分子发光材料。这类材料主要是利用共轭聚合物和水溶性小分子或者高分子之间的非共价键相互作用而得到的,此类材料目前研究较少,但是当材料科学发展到今天,单一材料的性质已具有某种程度的可预测性时,通过分子层次的剪裁或者组装来实现材料应用上的需求将逐渐上升为研究主流。共轭高分子的分子或者聚集态结构及其性能特别是发光性能的关系始终是贯穿我们课题组学术研究的主线之一,结合本课题组与此相关的工作基础,本论文对水溶性共轭聚合物发光材料进行了系列研究,论文工作主要分为四个部分,分别简述如下:第一部分,合成了系列新型阳离子聚对苯乙烯撑类共轭聚电解质,并进行了系列表征;我们合成了系列胺功能化的苯取代PPV类共聚物P1\'— P4\',通过Wittig反应在主链上分别引入了噻吩、芴、烷氧化的苯以及苯取代的苯等组分,经过季胺化以后得到相应的阳离子发光聚合物。从FT-IR以及~1H NMR谱图分析得知,这些聚合物具有不同含量的顺式构型,其含量与PPV主链上 所引入的芳香基类型有关。它们的发光颜色可以通过在PPV共轭主链上引入具有不同光电性能的单元很方便的进行调控。P3和P3\'主链上含有芴以及大体积苯取代的苯单元,在中性聚合物以及季胺化聚合物中分别表现出最高的荧光量子效率。进一步的荧光猝灭行为研究表明,顺式构型含量较少的P4\'荧光表现出 完全猝灭,而顺式构型含量较多的P1\'-P3\'表现出不完全荧光猝灭。第二部分,在第一部分工作基础之上,我们系统研究了系列聚对苯乙烯撑类共轭聚电解质的荧光猝灭行为,发现包括顺反异构在内的分子结构因素是荧光猝灭行为最主要的影响因素。我们研究了具有不同含量顺反构型的系列阳离子型PPV类衍生物与Fe(CN)_6~(4-)之间的荧光猝灭行为。我们发现,采用Wittig反应所合成的顺式构型含量较多的PPV呈现线性下偏型Stern-Volmer曲线,即不完全荧光猝灭;而采用Gilch反应所得到的全反式构型的PPV的Stern-Volmer曲线则为线性上偏型,即完全荧光猝灭。通过对其荧光猝灭行为比较研究,我们发现荧光猝灭主要是通过电子转移而非能量转移而完成的。考虑到被包埋发色团的存在以及“作用范围”的影响,参考前人工作,我们引入了一个经过修正的Stern-Volmer方程,能很好的拟合顺式构型含量较多的PPV所呈现的线性下偏型Stern-Volmer曲线。此外,对比研究发现,分子链中大体积的苯取代基对荧光猝灭行为很可能存在直接的位阻效应,阻止了发色团与猝灭剂之间的静电相互作用,一定程度上影响了荧光猝灭;而在不存在大体积的苯取代基时,顺式构型的存在应该是产生这种不可接触发色团的主要因素。而链间聚集以及季胺化不完全等其它因素对荧光猝灭行为的影响则较小。由于在Wittig反应中分子侧链中的取代基对于最终的顺式构型含量具有较大影响,我们可以把这些聚合物特殊的荧光猝灭性质本质上归因于其分子链上取代基性质的不同(即分子结构的不同)。第三部分,基于上述结论,我们采用Gilch反应合成了一种侧链无大体积取代基的新型阳离子聚对

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

共轭聚合物为基础的荧光传感器

第22卷第3期大学化学2007年6月今日化学 共轭聚合物为基础的荧光传感器 赵达慧 (北京大学化学与分子工程学院北京100871) 摘要近年来,借助共轭聚合物的荧光发射与淬灭过程开发化学与生物传感技术成为倍受关注并获得迅速发展的研究领域。由于共轭聚合物能够沿分子链进行能量和电荷传导,从而产生信号放大现象,这类传感器通常都具有较高的灵敏度。本文主要通过对几种具有代表性的此类化学/生物传感器的举例说明,概述荧光共轭聚合物的传感机理,并简要介绍这一领域的发展状况。 化学传感器是指能够利用某一种或某一类分子的特殊物理或化学性质对被检测物进行检测的器件;当用于实现检测的这种(类)分子或被检测对象是存在于生物活体中或本身具有生物活性或生理机能时,这类传感器就成为生物传感器。近年来,化学与生物传感器的研制无论是从检测的准确度、灵敏度还是检测对象的范围来看都取得了重大的进展。这不仅是由于用于信号检测的光/电仪器本身性能的提高,更重要的是经过科学工作者的努力,新的更灵敏、更准确的检测材料及方法、手段不断地被研究开发出来。在化学与生物传感器中,通过光或电信号实现检测的传感器的应用最为广泛,种类与数量也最为繁多。由于荧光检测的灵敏性与便捷性,通过荧光光谱的变化实现的检测又是光电传感器中极为普遍而重要的一类[1~3]。这类传感器利用了被检测物与某种荧光分子或材料之间特定的相互作用引发的荧光强度的增加或降低,或者是所发射的荧光波长的变化来实现对被检测物的检测与信号的传递。在不同的荧光传感材料中,共轭聚合物近年来成为特别吸引研究者注意力的研究对象,以共轭聚合物为基础的荧光传感器因而获得了迅速的发展。形成这种趋势的原因首先在于共轭聚合物通常具有很高的摩尔吸光系数与荧光量子效率,有利于发展高灵敏度的检测技术;另外,共轭聚合物所特有的传感信号的放大功能是它们成为优良的传感活性材料最重要的原因。 1共轭聚合物荧光信号放大的机理 共轭聚合物所实现的传感信号的放大作用是以检测共轭聚合物荧光为基础的传感器的一个重要特点。这种对传感信号的放大是相对于小分子体系而言的;这种现象可以用共轭聚合物的/分子导线0理论来解释[1,4](图1)。对于小分子而言,能够进行荧光传感的分子通常至少具有两种功能:发光功能和与被检测物相互作用的功能。承担这两项功能的结构分别被称为荧光基团(fluorophore)与受体(acceptor);在某些体系中,这两部分结构可以合二为一;并且,分子的发光性质(如发射波长、强度等)在与被检测物相互作用后会产生明显变化,这是体系实现传感功能的基础。如图1(a)所示,由于被检测物(ana l y te)的浓度通常较低,在小分子传感体系中,只有部分荧光分子与被检测物相结合,并且产生荧光传感信号,如荧光的淬灭、产

高分子聚合物的详细介绍

高分子聚合物又称高分子化合物,是天然高分子和合成高分子化合物的总称,是由一种(均聚物)或几种(共聚物)结构单元用共价键连接在一起的、分子量很高的、比较规则的连续序列所构成的化合物。 高分子聚合物或其预聚体均称为合成树脂,高分子聚合物是通过聚合反应而制得的,且大多数是由人工合成制得的,故人们又称其为高分子合成材料。 高分子聚合物可以抽丝做成合成纤维,做成高弹性的合成橡胶,也可以通过加工成型形成刚性材料—塑料,这就是所谓的三大合成材料,高分子聚合物还可以用来生产涂料、胶黏剂和密封材料。 (一)高分子聚合物的分类 高分子聚合物根据其来源,可分为天然聚合物、人工合成聚合物、半合成聚合物等几类;根据其使用性能,可分为纤维、橡胶、塑料、涂料和胶黏剂等几类;根据分子量大小的不同,可以把聚合物分为齐聚物、低聚物和高聚物;其重复单元的种类仅为一种的称为均聚物,可分为线型聚合物、接枝共聚物、嵌段共聚物(又称镶嵌共聚物)、网状聚合物等;从高分子化学角度着眼,一般以有机化合物分类为基础,根据其主链结构,可分为热塑性聚合物和热固性聚合物二类。 (二)高分子聚合物的特性 合成高分子聚合物的化学组成比较简单,许多小分子化合物如果它们带有两个以上的可反应基团(功能基),则这类小分子化合物即可发生聚合反应,生成高分子聚合物(这类小分子化合物称为单位)。例如聚氯乙烯则是由氯乙烯结构单元重复而成,若聚合物的分子量已经很高,再增加几个机构单元并不显著影响其物理机械性能者,称高聚物;泛指的聚合物多是单体通过聚合形成的高聚物;若聚合物的聚合度很低(几至几十),再增加几个结构单元对其性能有明显影响者,则称为低聚物或齐聚物。 聚合物通常是由分子量不等的许多大分子链组成,这是在单体进行聚合的过程中,由于许多因素的影响,而使生成的聚合物是许多结构和性质相类似而聚合度不完全相等的混合物所致。这些聚合物称为同系聚合物,因此高分子聚合物是不同分子量的同系聚合物,这种特点称为多分散性,多异高分子聚合物的分子量也只能用平均分子量来表示,这是聚合物的又一特征。 潍坊市凯鑫防水材料有限公司

PPV共轭聚合物光电材料

P P V共轭聚合物光电材料 PPV共轭聚合物概述 随着社会的发展,显示技术目前已经成为无论是信息化还是人们日常生活都离不开的高科技领域。阴极射线管(CRT)、液晶显示(LCD)、无机LED、等离子体显示(PDP)和荧光管显示(VFD)等显示技术都在不断的被改进和完善,以适应社会和市场的要求。 有机薄膜电致发光(OLED)是近年来发展迅速并且具有巨大应用前景的新型平板显示技术,按材料的分子结构和化学性质可以分为有机小分子材料和聚合物光电材料,此两种材料各有优缺点。 有机小分子发光材料的优点是:材料易提纯、亮度高、发光效率高和易蒸镀成膜,缺点是热稳定性差且易结晶。 聚合物光电材料的优点是:具有良好的热稳定性、优异的成膜性和较好的机械强度,但材料合成复杂,提纯困难,难制成多层器件。其中聚对苯撑乙烯撑PPV [poly(1,4-phenylenevinylene)]以分子结构易于修饰、合成路线多、发光效率高、热稳定性好而成为最有发展前途的一类发光聚合物。 概括起来,有机电致发光显示器具有以下优点; (1)可实现红、绿、蓝多色显示; (2)具有面光源共同的特点,亮度达200cd/m3; (3)不需要背光源,可使器件小型化; (4)驱动电压较低(直流10V左右),节省能源; (5)器件厚度薄,附加电路简单,可用于超小型便携式显示装置;

(6)响应速度快,是液晶显示器(LCD)的1000倍; (7)器件的象元数为320个,显示精度超过液晶显示器的5倍; (8)可制作在柔软的衬底上,器件可弯曲、折叠。 PPV类高分子是典型的空穴传输型发光材料,空穴的传输速度远远大于电子。PPV类共扼高分子的发光是分子从基态被能量激发到激发态,再由激发态回到基态产生的辐射跃迁过程。由于聚合物具有偶数电子,基态时电子成对存在于各分子轨道,根据Pauli不相容原理,同一轨道上的两个电子自旋相反,所以分子中总的电子自旋为零(S),这个分子所处的电子能态为单重态(2S+1=0)。当分子中的一个电子吸收能量被激发时,通常它的自旋不变,则激发态是单重态;如果激发过程中电子发生自旋反转,则激发态为三重态(三重态的能量低于单重态)。当分子在电场(或光能)激发下被激发到激发单重态(S),经振动能级弛豫到最低激发单重态(S1),最后由S1回到基态So,此时产生荧光;或者经系间跨跃至最低激发三重态(Tl)最后产生Tl-So的电子跃迁,此时辐射出磷光。由于PPV类共扼高分子的EL发光光谱和PL发光光谱极其相似,表明二者具有相同的激发态,即主要通过单重态激发而发出荧光。[1] 图1-1 PPV共扼高分子的辐射跃迁过程

共轭聚合物应用研究新进展

1995,N 〇6 材料导报 ? 55 ? 71994-2015 China Academic Journal Electronic Publishing House. All rights reserved, https://www.wendangku.net/doc/cf7362264.html, 共轭聚合物应用研究新进展 New Progress in Applications of Conjugated Polymers 金绪刚龚克成 (华南理工大学高分子材料系,广州510641) 摘要 由于具有优异的电活性和光学性能以及可加工性,共轭聚合物有着广 泛的并有希望实现的用途。文中总结和展望了共扼聚合物在应用研究方面的发展现 状 和前景。 关键i 司 共轭聚合物导电聚合物电活性 Abstract In this paper.it is pointed out that the conjugated polymers have a wide range of promising applications because of their excellent electroactive and optical performance and processability. The current status and prospect of their applied research are forecasted. Key Words conjugated polymer,conducting polymer?eiectroactive 1概述 聚乙炔、聚苯胺等共轭聚合物是近十几 年发展起来的具有半导体或金属导电率的本 征型导电聚合物材料,其电活性来源于独特 的共轭电子结构。在分子链中,随着〃电子体 系扩大,出现w 成键态和,反键态,继而形 成能带。n 成键态形成价带,^反键态形成导 电带,其禁带宽度一般在1?4eV 间。由于这 种非定域的《电子结构,通过化学掺杂*聚合 物 可形成P 型或N 型导电态。反式聚乙炔掺 杂态导电率高达l 〇5ScnT l 数量级,许多掺杂 态共轭聚合物在1〇2?lOScm —1。理论和实 验表明,孤子,极子或双极子是掺杂共轭聚合 物导电的主要载流子,跳跃和隧道效应是载 流子主要传递机理。在共轭聚合物中,控制载 流子浓度的方法除化学掺杂外.也可由光激 发或电子器件注入法。在此情况下,由于电子 和声子相互作用,载流子自定域,形成孤子、 极子、双极子或激子,共轭聚合物表现出一些 持别的光电性能,如掺杂引起的强的次能级 光吸收带;激子缔合辐射发光现象;在激光下 非线性光学特性,等等。 导电聚合物合成方法主要有化学法和电 化学法。合成的产物多为不熔不溶的结晶粉 末,不易加工成型。另外,导电聚合物还存在 稳定性问题。未掺杂聚合物的不饱和双键易 受氧化及其它物质的攻击,导致电性能及其 它性能下降。同时,掺杂剂的 作用也影响聚合 物的稳定性。作为实际应用,上述 缺点是必须 克眼的。近年来.国内外工作者在这方面进行 了许多卓有成效的研究工作,可概括如下几 点:①在合成方法和掺杂方式上下功夫,改善 加工性能 和稳定性[1?2];②化学改性W ,如侧 基化或共聚;③ 与高分子材料或无材料等复 合,形成性能优异的新 材料体系[<];④合成新 型的共轭聚合物[5] ? 共轭聚合物独特的电学和光学性能及其 作为高分子材料的特点,决定了共轭聚合物 广泛的应用 前景。这便是共轭聚合物材料突 飞猛进发展的动力源泉。 2典型的共轭聚合物及其复合材料 共轭聚合物发展至今,其品种较多,主要 有聚乙炔(PA )、聚苯胺(PANI )、聚噻吩 (?丁)、聚吡咯(??丫)、聚(对-苯撑)(卩??)、聚 (对-苯撑乙烯)(PPV )、聚二乙炔(PDA )、聚 苯硫醚(PPS )等。其中聚苯胺、聚噻吩和聚吡 咯被公认为最有实用价值的共轭聚合物,也 是研究的热点。 聚苯胺(PANI )的化学稳定性好,电化学 可逆性优异.原料易得,合成方法简便,是最 有希望在实际中应用的导电高分子材料,_ 杂态电导率可达lOOScm —。一般来说,非导 电态PANI 可溶于NMP 、DMAC 等有机溶 剂,但掺杂后变得难溶。

高分子材料结构特点及形成原因

高分子材料结构特点及形成原因 段星宇123511028 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有及时到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子材料的结构研究包括两部分: 高分子链的结构:指单个高分子化合物分子的结构和形态,可分为近程结构和远程结构。 高分子聚集结构:高聚物材料整体的内部结构,即高聚物中分子的堆积情况,又称为三级结构。 高分子链的结构 近程结构:又称为一级结构。主要指结构单元的化学结构,立体化学构型,它包括分子链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等“构造”情况,以及某些取代基在空间排列所构成的“构型”。 远程结构:又称为二级结构,是指孤立的高分子链,包括分子的大小和形态、链的柔顺性以及分子在各种环境中所采取的“构象”。 近程结构

聚合物的结构特点及其对聚合物材料性能特点的决定性作用

聚合物的结构特点及其对聚合物材料性能特点的决定性作用摘要高分子物理的基本任务之一就是探求高聚物的结构与性能, 揭示结构与性能之间的内在联系及其基本规律。高聚物结构与性能的关系应该包含3个层次: 通过分子运动联系的分子结构与材料性能关系、通过产品设计联系的凝聚态结构与制品性能关系和通过凝聚态物理知识联系的电子态结构与材料功能关系。传统教材上仅讲授结构与性能关系,有相当的局限性, 需要在研究生阶段补充有关凝聚态结构与制品性能关系和电子态结构与材料功能关系的课程。 关键词高分子物理结构性能高聚物 作为化学学科重要分支之一的高分子科学,其基本任务之一就是探求高聚物的结构与性能关系,揭示结构与性能之间的内在联系及其基本规律, 以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。 一、聚合物的结构特点 高分子(macromolecule)也常称聚合物(polymer),通指由许多单元组成的大分子,这些单元可以是具有相似或完全相同的结构,或是由完全不同但能互相生成共价键的有机化合物相互之间连接形成长链结构。高分子由小分子经聚合反应生成,聚合生成高分子的小分子被称为单体(monomer)。 从链的形状来说,高分子可以分为三类:直链高分子,支化高分子,和交联高分子。直链高分子的结构最简单,它是由许多单体分子一个接一个连接而成的长链分子;如果这条长链带有与其相比较短的分枝,它就被称为支化高分子;如果高分子链与链之间由支链连接起来而形成网状,就成为交联高分子。 同低分子化合物相比,高分子化合物的结构有以下特点:

1、分子量高 高分子聚合物与低分子化合物相比较,一个非常突出的特点,就是分子量非常高。 2、线链状结构 高分子可看成是数目庞大的低分子以共价键相连接而形成的。如果把低分子抽象为一个“点”,那么绝大多数高分子则抽象为由千百万个“点”连接而成的“线”或“链”。而且,人们通过长期的实践和研究,证明高分子是链状结构。一般合成高分子是由单体通过聚合反应连接而成的链状分子,称为高分子链,除真正的线状链外,还可能形成支链、网链等。而较大尺寸的高分子的分子运动行为就可通过“链”的运动来描述。 3、分子量和分子量尺寸的多分散性 高分子化合物实际上是一种具有相同的化学组成(链节结构相同),而分子链长度不等(每个分子的链节数目不同)的同系高分子的混合物。也就是说,构成高分子化合物的每个分子的分子量不完全一样(即分子量的不均一性),即分子量是一个平均值,这种特性就称为分子量的多分散性。除有限的几种天然高分子外,其他高分子的分子量都是不均一的。也可理解为分子量相同的不同分子之间在同一时刻可具有不同的尺寸。这就决定了高分子的分子量和分子尺寸只能是某种意义上的统计平均值。 二、聚合物结构与性能的关系 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合

高分子及高分子聚合物特性综述

高分子及高分子聚合物特性综述 年级:11级物理(2)班 姓名:彭传梦 学号:20111041214

摘要:聚合物(英语:Polymer)是指具有非常大的分子量的化合物,分子间由结构单位 (structural unit)、或单体经由共价键连接在一起。这个字眼(polymer)是出自于希腊字:polys代表的是多,而meros 代表的是小单位(part),所以很多小单位连结在一起的这种特别的分子,我们称之为聚合物[2]。需要更多的资讯,可以参考塑胶、DNA和高分子。 关键字:高分子聚合物应用有机合成无机合成聚合物反应机理导电聚合物 引言:大多数聚合物的研究都会被分类在聚合物科学中,其次被分类在包含了化学(特别是与有机化学),物理学和工程学的材料科学的研究中。聚合物科学粗略分成两门次学科 总括来说,聚合物科学的领域包含了合成、化学处理和自然聚合物的改造。虽然如此,但有关于生物上常见的聚合物,包括它们的结构、功能及合成方法等却多属于生物学、生化学及生物物理学的范畴当中。这些学科应用了不少聚合物科学中的专有名词,特别是在讨论有关合成脱氧核糖核酸及多糖的反应机理的时候。当一些分子拥有非常广泛、或特别的生物上的功能时,它们就很少会使用聚合物科学的字汇去形容。例如蛋白质就很少会以共聚物去称呼。 聚合物的合成,聚合物有三种重要的合成方式: 1.在工厂或实验室的有机合成 2.在细胞和器官中的生物合成 3.化学方式改良天然聚合物 在1907年,利奥·具克兰透过精确地控制温度及压力,把苯酚及甲醛聚合,成为第一个完全用合成方式制造的聚合物,酚醛树脂。其后华莱士·卡罗瑟斯(Wallace Carothers)于1920年展示了聚合物可透过由构成它们的单体合成,例如自然界中的多糖就可由单糖单体聚合而成,由此聚合物合成就得到长足的发展。大部份市面上重要的聚合物都是透过有机合成的反应机理,大容量地合成的。 实验室中的合成方法大致上可分成两个类别: 1.卡罗瑟斯分类法 加成聚合反应 2.聚合反应机理分类法 连锁聚合反应 逐步聚合反应 卡罗瑟斯分类法受到早年聚合科学家的广泛应用,因为这个分类只集中在单体及生成物的关系上。实际上由卡罗瑟斯提出,并一直沿用多年。但这个分类却忽略了聚合过程中的反应机理,致使部份聚合物无法被正确分类(例如聚酯本身就可以同时透过缩合聚合、加成聚合及开环聚合等方法达成)。因此后来的聚合科学家多用聚合反应机理分类法

相关文档