文档库 最新最全的文档下载
当前位置:文档库 › 2018广东互联网大会演讲PPT%7C群体智慧-车联网如何助力自动驾驶发展%7C广汽

2018广东互联网大会演讲PPT%7C群体智慧-车联网如何助力自动驾驶发展%7C广汽

群体智慧—车联网如何助力

自动驾驶发展

智能网联技术研发中心

智驾技术部

郭继舜

广汽集团及广汽研究院

01自动驾驶技术难点

02目录

CONTENTS

Q&A

05

基于V2X 的解决方案

03发展趋势

04

广汽集团及广汽研究院About GAC Group and GAC R&D

企业概况

5度入财富世界500强

位居238

研发整车

金融服务

零部件

商贸服务

主要业务研发、整车、零部件、商贸服务、金融服务等业务板块,是国内产业链最为完整的汽车集团之一。

经营业绩

2017年实现营业收入3464.6亿元,利税总额600亿元。2017年第五次入围《财富》世界500强,排名第238位,比2016年(303位)上升65位。

员工总数拥有员工约8.4万人,带动上下游产业链70余万人。

广汽集团

研究机构广汽研究院成立于2006年,作为广汽集团的技术管理部门和研发体系枢纽,负责新产品、新技术的规划和重大研发

工作具体实施,在授权范围内相对独立运营。

一期占地面积近30万平米,建筑面积约15万平米;二期(建设中)占地25万平米,预计2018年开工先导技术部及华南理工大学产学

研合作基地

广汽(硅谷)研发中心2017年4月正式运营

广汽研究院总院五山基地广汽(硅谷)研发中心广汽研究院

开发手段与设施建设

已建造国内一流、国际先进的研发设施,包括整车、动力总成、新能源等15类实验室和1间含焊接、涂装、总装、机加工的试制工厂,以及1条汽车调校专用试验场。

广汽冬季试验场

汽车安全实验室

电子电器实验室

NVH 实验室NVH Lab

24通道道路模拟试验机调校专用跑道

科研设计办公大楼

造型中心

材料实验室电子电器实验室

动力总成实验室

整车耐久实验室

机加工段

总装工段

直线碰撞实验室焊装工段

碰撞实验室、新能源实验室、动力总成实验室、综合环境实验室、试制车间

NVH 实验室

零部件与结构强度

实验室

涂装工段

整车性能实验室

新能源动力总成实验室

白车身三坐标测量室

广汽研究院

技术创新

电动化

Electrification

智联化

Intelligence & connectivity

情感化

Interaction

轻量化

Light-weight

2年近期规划5年中期规划10年远期规划

?

推进2510技术创新战略落地

?不断加大技术创新投入

20%

15%

5%

技术创新方面的资金和人员要逐步达到产品开发的15%到20%.

开辟技术创新第二战场并加快推进,以“电动化、智联化、轻量化、情感化”为重点突破口,强化“两个先行”(平

台开发先行,技术开发先行),着力推进“2510”技术创新战略实施,努力加快由“跟随”到“引领”的转型发展。

广汽研究院

自动驾驶分级

广汽自动驾驶规划

以产业化为目标逐步实现智能驾驶技术的量产,制定了M-partner (Mobility Partner )技术发展路线,计划2020年

实现L3级高速公路自动驾驶,同时实现

全自动泊车功能。

驾驶辅助L1

驾驶辅助L2

有条件自动驾驶L3

高度自动驾驶L4+

智能驾驶技术路线

Mobility-partner-concept

警告提醒解放手脚

解放眼睛

解放注意力

泊车提醒

半自动泊车

全自动泊车

代客泊车Witstar-Ⅱ无人驾驶汽车:具备全天候全路况自主行驶能力

在第九届中国智能车未来挑战赛获总成绩第二名,与西安交通大学联合研发的“发现号”斩获第一名!广汽无人车赛况被央视《新闻直播间》全程跟踪报道,并登上《新闻联播》。

2017世界智能驾驶挑战赛,斩获无人驾驶组“领先奖”和“最佳跟驰奖”。

2022+

2020

2018

2017

智能驾驶技术规划

从互联网公司到OEM

1.汽车技术比我之前想象得要复杂得多,颠覆并不是一件简单的事;

2.OEM并没有那么保守,更多是思维方式不同:主机厂对于行驶安全有执念;

3.供应链是关键;

4.OEM并不担心被颠覆,希望与新兴造车势力作融合,但很担心因为自动驾驶汽车的发展

造成的出行行业价值链后移;

5.自动驾驶的技术链太长,OEM不断强调要提升自己对复杂系统的设计和整合能力。

自动驾驶技术难点

真实场景复杂度高环境数据不均衡模型压缩困难

雾天,雪天,逆光

,阴影,亮度突变

,车道线破损等

环境场景数据分布不平

衡,特殊场景(如光影

突变)数据量相对较少

受现有芯片算力限制,

需将模型进行大幅裁减

,并保证较高的准确率视距范围感知

激光雷达最远探测200米,

摄像头最远探测150米,毫

米波雷达最远探测250米

由于以上种种原因的限制,纯粹的环境感知无论是在技术实现上还是在功能安全角度

即使使用多传感器互为冗余的安装方案,仍然有大量问题存在,外界环境感知的准确激光雷达缺点:

?为非刚体,不合车规;?对雨雪雾天鲁棒性差;

毫米波雷达缺点:

?无法形成稠密感知;?对雨天鲁棒性差;

摄像头缺点:

?易受天气、光照等的影响;

时间同步难点:

?难以同时触发;

?帧率不同,不好维持;

空间同步难点:

?不同场景、工况、功能下,不同传感器的置信度不同;

单车智能决策难点

单车智能决策难点

意图不明

环境复杂

盲区信息不全

他车行为意图不明,决策困难

车道线

盲区信息未知,单车智能难

感知准确率不足

基于单车感知准确率不足,

影响正确决策

芯片,成为自动驾驶的最大瓶颈

?自动驾驶对芯片算力要求极高。要求自动驾驶处理器在每秒能够处理数百万亿次的计算;

?自动驾驶对计算的实时性要求极高。任何一点时延,都有可能造成车毁人亡;

?对低能耗有极大的要求。自动驾驶AI芯片要处理的数据量极大,对芯片能效要求极高;

?对高可靠性的要求。芯片需要无论在多么恶劣的条件下,严寒酷暑、刮风下雨,都有非常稳定的计算表现。

传感方案设计

?微波雷达?智能摄像头?

高精度地图/定位/V2X

控制器软硬件开发

?硬件设计?

平台软件开发

执行控制开发

?横向控制?

纵向控制

驾驶员状态识别

?疲劳状态?身份识别?

……

数据融合算法

?目标识别?环境建模?

行为预测

决策规划算法

?驾驶行为分析?行为决策?路径规划?

驾驶策略

运动控制算法

?制动控制?转向控制?油门控制?

换挡控制

驾驶员行为学习

?数据采集?数据提取?

自学习算法

系统设计

?功能定义?需求分解?架构设计?HMI 定义?安全工程?

性能保障

系统标定及评价

?功能标定?评价体系?HIL 测试?VIL 测试?道路测试?

测试case

仅仅是广汽自动驾驶汽车的ECU

3900+场景定义,60000+逻辑策略,2000+页域控制器设计文档,20000+测试用例

什么样的汽车才是好的L3

要不要HWP ?

0-120km/h 全速区间

高速公路自动驾驶(HWP )

交通堵塞自动驾驶(TJP )

高速公路交通畅通

高速公路交通拥堵

0-60 km/h

【完整版】2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (6) 一、研究原则 (6) 二、研究方法 (7) 第三节企业市场发展战略的作用、特征及与企业的关系 (9) 一、企业市场发展战略的作用 (9) 二、市场发展战略的特征 (10) 三、市场发展战略与企业战略的关系 (11) 第四节研究企业市场发展战略的重要性及意义 (12) 一、重要性 (12) 二、研究意义 (12) 第二章市场调研:2018-2019年中国车联网和自动驾驶行业市场深度调研 (13) 第一节5G推动车联网与自动驾驶腾飞 (13) 第二节5G时代来临,推动车联网与智能驾驶发展 (14) 一、5G具有大流量、低时延、高可靠性等优点 (14) 二、5G赋予车联网更多功能 (16) 三、5G是自动驾驶实现的先决条件 (19) 第三节车联网C-V2X或后来居上,车载终端有望先行爆发 (21) 一、DSRC与C-V2X对比,C-V2X有望后来居上 (22) (1)DSRC (22) (2)C-V2X (23) (3)LTE-V2X完胜DSRC,为车联网的最优解 (25) 二、车联网产业链涵盖芯片模组、终端设备等主要环节 (28) 三、车联网潜在市场规模近万亿 (29) 四、车联网硬件设备有望率先受益 (30) 第四节智能驾驶产业链涵盖感知、决策、执行等环节 (35) 一、智能驾驶产业链 (35) 二、中国或成为最大的自动驾驶市场,未来规模超万亿 (37) 三、ADAS加速渗透,带来行业新机遇 (40) 第五节5G商用箭在弦上,产业链各环节蓄势待发 (44) 一、5G牌照发放,开启商用化进程 (44) 二、产业链各环节进展顺利 (48) (1)芯片及模组 (48) (2)终端设备 (49) (3)整车企业 (49) (4)基础设施 (50) 第六节部分企业分析 (53) 一、均胜电子:安全整合推动业绩增长,汽车电子前景广阔 (53) 二、德赛西威:汽车电子龙头,车联网智能驾驶逐步落地 (53) 三、华域汽车:汽车零部件龙头,智能电动打开成长空间 (54)

智能网联汽车与车联网

一、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成。 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%,CACC系统大规模应用将会进一步提高交通效率; (3)节能减排:协同式交通系统可提高自车燃油经济性20%-30%,高速公路编队行驶可降低油耗10%-15%; (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网、智能汽车及智能交通系统的关系: (1)协同式智能车辆控制(智能网联汽车) (2)协同式智能交通管理与信息服务 (3)汽车电商、后服务、智能制造等

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X 覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025 年,5G-V2X 基本满足智能汽车发展需要。

车联网网联自动驾驶白皮书

车联网白皮书(网联自动驾驶分册)

前言 车联网是汽车、电子、信息通信、交通运输和交通管理等行业深度融合的新型产业形态,是5G、人工智能等新一代信息通信技术在汽车、交通等行业应用的重要体现。自动驾驶是汽车智能化、网联化发展的核心应用,也是车联网部署发展的核心服务。我国在车联网技术创新、应用实践、产业生态构建等方面已经走在了世界前列,将有利于探索实现一条具有我国特色的网联自动驾驶发展路径。 本文聚焦车联网支持实现自动驾驶应用,从“协同感知、协同决策、协同控制”等不同环节,重点研究分析网联需求、典型应用场景、体系架构和核心关键技术。在此基础上,总结提炼网联自动驾驶发展面临的挑战,包括技术融合、基础设施建设以及商业运营等方面。最终以协同发展总结全文,希望我国能抓住难得的历史发展机遇,坚持网联自动驾驶的协同发展路径,影响形成全球广泛认同。

目录 一、网联自动驾驶的内涵 (1) 二、网联自动驾驶的需求及典型应用 (2) (一)单车智能自动驾驶发展现状 (2) 1.单车智能自动驾驶应用尚未成熟 (2) 2.单车智能自动驾驶仍面临诸多风险 (3) (二)单车智能自动驾驶的挑战和网联需求 (4) 1.环境感知的挑战和网联需求 (4) 2.计算决策的挑战和网联需求 (5) 3.控制执行的挑战和网联需求 (6) (三)网联自动驾驶的典型应用 (7) 三、网联自动驾驶的技术体系架构 (10) (一)网联自动驾驶的技术体系视图 (10) 1.全局视图下的网联自动驾驶技术体系 (10) 2.智能网联汽车视角下的网联自动驾驶技术体系 (12) 3.信息通信视角下的网联自动驾驶技术体系 (13) 4.交通与交管视角下的网联自动驾驶技术体系 (14) 5.网联自动驾驶技术体系的三向视图 (15) (二)网联自动驾驶的协同关键技术 (17) 1.车载视觉感知关键技术 (17) 2.车载激光雷达感知关键技术 (18) 3.车载毫米波雷达感知关键技术 (18) 4.感知融合关键技术 (19) 5.网联无线通信(C-V2X)关键技术 (19) 6.多接入边缘计算(MEC)关键技术 (20) 四、网联自动驾驶的挑战 (22) 五、网联自动驾驶的协同发展政策现状和展望 (25) (一)美欧日等发达地区或国家持续布局自动驾驶 (25)

《国家车联网产业标准体系建设指南(智能网联汽车)(

《国家车联网产业标准体系 建设指南(智能网联汽车)(2017)》 编制说明 一、背景与概述 (一)定义与内涵 智能网联汽车(Intelligent&Connected Vehicles,简称“ICV”)是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。 (二)国内外技术及产业发展现状 作为汽车与信息、通信等产业跨界融合的重要载体和典型应用,智能网联汽车代表了汽车技术和产业未来发展的方向,也是国际汽车产业未来竞争的重要阵地。包括欧、美、日在内的汽车工业发达国家和地区都将智能网联汽车作为汽车产业未来发展的重要方向,通过加强共性技术研发、示范运行、标准法规、政策鼓励等综合措施引导和促进产业发展,并在智能网联汽车发展方面构建了协调、协作机制。 在规划和战略层面,美国从上世纪九十年代初开始,通过实施

“智能交通系统(ITS)”项目,支持智能网联汽车相关技术和产业发展,2009年和2014年分别以网联化和自动驾驶为重点发布战略研究计划,并于2016年发布自动驾驶汽车政策指南。欧盟议会早在1984年即通过关于道路安全的决议,并于1988年正式启动了“车辆安全专用道路设施(DRIVE)”项目,持续资助对智能网联汽车相关技术研发和应用。2015年,欧盟发布GEAR2030战略,聚集汽车、IT、通信、保险和政府等方面,重点关注高度自动化和网联化驾驶领域等推进及合作。日本政府也将自动驾驶和车车通信作为重要方向和目标,通过车辆信息与通信系统(VICS)、先进安全汽车(ASV)等项目支持技术研发与应用。2014年,日本发布《战略性创新创造项目(SIP)》,将自动驾驶作为十大战略领域之一。 在技术和产品层面,欧、美、日等国家和地区的整车企业,如奔驰、宝马、沃尔沃、通用、福特、特斯拉、丰田、日产等已经实现先进驾驶辅助系统,正在普及推动PA级自动驾驶产品的商业化,部分高端品牌已计划推出CA级自动驾驶产品;各国在整个产业链上的合作日益加强,相互持股与并购的情况日益普遍,通信、信息、电子、整车等行业深度融合发展。美国在网联化技术、智能控制技术、芯片技术等方面处于优势地位,产业上、中、下游实力均衡,欧洲拥有强大的汽车整车及零部件企业,日本则在智能安全技术应用上较为领先。 我国政府高度重视智能网联汽车相关技术及产业发展,工业和信息化部、发展改革委、科技部等相关政府部门,先后安排专项资

5G+V2X车联网自动驾驶

人工智能及识别技术 本栏目责任编辑:唐一东 5G+V2X 车联网自动驾驶 白云龙,杨开欣,陈晓韦,董海博,郭谨玮 (天津卡达克数据有限公司,天津300393) 摘要:汽车物联网技术的发展是实现自动驾驶的基础,5G+V2X 技术将为车辆创造一个无形的安全网,加强和深化对未来 交通管理的影响,5G 高速可靠的数据传输,增强了车辆对各种场景的应变和处理能力,加快了与路侧终端和交通管理站的通信速度,使未来的汽车驾驶能够不只依赖于车身固定的传感器。关键词:5G ;V2X ;车联网;自动驾驶中图分类号:G642 文献标识码:A 文章编号:1009-3044(2019)08-0129-01 开放科学(资源服务)标识码(OSID ): 以车为载体的车联网信息化服务,可实现行人,车辆与路侧装置的信息一体化的道路交通管理体系,可实现车辆交通路况监测、运营管理、调度管理、自动驾驶以及无人驾驶技术。车联网充分展现了无线通信技术与传感器技术的融合的智能算法决策,提升了车辆辅助驾驶和自动驾驶的功能。车联网的发展趋势将人对车辆的控制降辅助角色,增添了多样的自动驾驶方式、娱乐体验和信息咨询,自动驾驶是顺应时代发展趋势的产物。 15G 通讯 随着5G 技术的快速发展,它已成为通讯技术璀璨的一颗明星,拥有较高的可靠性、低延迟、大带宽的数据通讯能力。支持大连接,可同时接入超大量数据连接形成自组织网络结构,从而使万物互联成为可能,支持车辆间交互满足毫秒级要求。5G 时代,一个崭新的汽车物联网时代呼之欲出,促进了汽车物联网的蓬勃发展,汽车的共享化、数据化、智能化、电动化。为自动驾驶,无人驾驶、V2X 、AR 、VR 等技术提供支持,使未来生活的方方面面更加美好和便捷,5G 是不可阻挡的发展趋势。 2V2X 车路协同 车路协同系统(Cooperative Vehicle Infrastructure System ,简称CVIS)是以道路车辆自身传感器的智能感知与道路交通路侧装置的信息交互数据智能为理念,其基本思想是运用多学科交叉融合的方法与无线网络先进技术。采用物联网技术实现人、车、路三位一体多组时动态信息交互与共享,实现车辆和基础设施之间的智能协调与配合。开展道路协同管理和车辆主动安全控制和,从而实现了交通资源的合理化使用,提升了道路通畅能力,并可避免交通堵塞。车联网核心技术是V2X 无线通信,应用V2X 无线短程通信技术,可打破车辆信息共享技术瓶颈和单车在智能化发展方面的非视距感知,加速实现了汽车自动驾驶功能的普及化。 V2X 技术允许车辆转发自身交通信息,行人通过手机终端接收警示信号,从而使在道路上的人与车都成为交通环境信息收发的节点。互联模式的共享数据经过处理后,可以使驾驶员 和行人更加便捷的获取益于自身出行的交通有信息,主要包括目的地路线、车距、限速限高、电子收费、交通灯、道路施工、交通事故等安全提示信息。可靠的交通辅助信息与优化的交通路线减少了出行的时间,避免了交通拥堵。 35G+V2X 车联网 随着5G 技术的发展成熟,5G 通信技术应用到车联网中,依托5G 技术的可靠性、低延迟、大带宽的数据通讯能力和V2X 短程高校的传输特性,中国汽车技术研究中心设计出国内首个5G+V2X 物联网无人驾驶技术项目试验场,基于车辆与路侧基础终端的信息交互,云平台实时上传数据结合高精度地图运算,交通信息以广播的方式下发,实现了L4级别无人驾驶业务车辆在5G 网络下的应用。 图1智慧园区—无人驾驶测试图 汽车技术不断进步,车联网,自动驾驶模式将使用5G 技术,需要考虑如下3种驾驶场景: (1)自动驾驶场景:自动驾驶需要车自身对周围道路具有“主动的”判断能力,“快速的”响应能力,“可靠的”决策能力,这些特性需要5G 通讯技术的较低的端到端数据毫秒级延迟,数据传输速度可靠性保证为每秒几十Mbit/s 。(下转第132页) 收稿日期:2019-01-05作者简介:白云龙(1989—),男,硕士研究生,工程师,研究方向:仪器仪表,电气电子,嵌入式开发。 129

5G 推动车联网与自动驾驶腾飞

5G推动车联网与自动驾驶腾飞 5G 是车联网和自动驾驶的完美搭配。5G 网络具有高传输速率、低时延、高可靠性等特点,是车联网和自动驾驶的完美搭配。车联网领域,高传输速率使得车内AR/VR、超高清流媒体等业务有望得到应用;智能驾驶领域,低时延高可靠的连接是智能汽车实现L4/5 自动驾驶的关键。5G 的持续推进,有望推动车联网与自动驾驶腾飞。 车联网C-V2X 有望后来居上,2025 年市场规模近万亿。车联网主要有DSRC 和C-V2X 两种技术,DSRC 发展较早,但C-V2X 有望凭借更多应用场景、更低延迟时间、更远通信距离等优势后来居上,成为未来主流技术标准。车联网领域,中国联通预计2020 年国内市场规模将突破2000亿元,2025 年将突破9000 亿元,终端设备OBU、RSU 市场空间分别高达280 亿、1430 亿元。 辅助驾驶加速渗透,2030 年自动驾驶规模超万亿。智能驾驶领域,IHS预计2020 年L1/2 渗透率有望达到40%,2025 年L3、L4/5 渗透率分别有望达到15%、5%。短期市场以ADAS 为主,2020 年国内市场空间约878 亿元,长期看5G 推动L4/5 自动驾驶逐步落地,2030 年国内自动驾驶出行服务收入规模有望突破万亿。 5G 商用箭在弦上,产业链蓄势待发。国内5G 牌照已经发放,C-V2X 进展顺利,第一阶段LTE-V2X 有望于2019-2020 年开始商用部署,为车联网发展奠定良好基础。产业链通信芯片及模组、终端设备、整车企业、基础设施、运营服务等各环节蓄势待发,未来有望大幅受益于车联网及智能驾驶爆发。 5G 时代来临,推动车联网与智能驾驶发展 5G 具有大流量、低时延、高可靠性等优点 5G(5th-Generation),即第五代移动电话行动通信标准,也称第五代移动通信技术,是4G 之后的延伸。根据IMT-2020(5G)推进组,5G 概念可由“标志性能力指标”和“一组关键技术”来共同定义。 其中,“标志性能力”指标指Gbps 用户体验速率,“一组关键技术”包括大规模天线阵列、超密集组网、新型多址、全频谱接入和新型网络构架。面向 2020 年及以后移动数据流量的爆炸式增长、物联网设备的海量连接,以及垂直行业应

智能汽车车联网系统分析

智能汽车车联网系统分析 发表时间:2019-05-22T16:16:34.133Z 来源:《基层建设》2019年第5期作者:何晓蕊[导读] 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。 国能新能源汽车有限责任公司天津 300301 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。因此,在当前我国科技信息技术持续进步发展的时代背景下,车联网系统的重要性日益凸显。文中对智能汽车车联网系统进行了分析。 关键词:智能汽车;车联网;系统 1车联网系统概述 车联网系统是车辆智能化和信息化的重要体系之一,该系统提供必要的通信网络,实现车辆的远程通信、远程控制、故障报警、紧急事故报警等安防功能。同时该系统需提供车载WIFI热点,方便用户的其他便携式电子设备连接网络。该系统需提供足够快速、安全的通信网络,并且在全国所有网络信号已覆盖的地区能搜索到网络信号。 2对当前我国汽车车联网发展实际以及难点的分析当前,车联网实现了物联网与智能化汽车的有效连接,二者进行集成,这也是信息化与工业化相结合的重要方面。在新型车联网发展中红,发展了通信、控制以及智能技术的结合,对整个汽车行业,甚至交通运行也意义重大,带动了相关产品的智能化升级,生产方式得以创新,分工更加明确,使得汽车产业突破产品的束缚,更加倾向服务方向,是新型模式的发展。同时,在新一代车联网的发展中红,信息服务得以增强,安全性提高,能效性较强,使得汽车行业实现生态式的发展,立足设计、开发和制造,实现全生命周期的创新。当前,我国的汽车市场庞大,规模扩大。结合不同耳朵主导者,模式各异。首先,是以车厂为主体的模式,其自我进行平台的搭建,提供的是物联网中前装服务。其次,是以行业为主导的模式。主体是使用者或者集成商客户。再次,是电子消费品模式。第四,是移动互联网的模式。随着车联网的不断发展,其技术难点也十分突出,如,缺乏完善的标准和规范,互通性不强,需要不断进行平台和接口的建设。另外,数据安全性需要不断增啊,加强质量体系建设,强化行业可靠性。需要无线通信技术实现不同提升,强化性能,因此,要进行体制的不断创新,加大支持力度,推进车联网技术的不断发展。 3智能汽车车联网系统分析 在整个系统中,车载终端T-BOX是重要的通信设备,实现车内网络与移动网络的有效连接,实现用户在安防、信息获取以及娱乐方面的要求。作为通信的主要通道,其主要的载体是SIM卡,实现与运营商的有效通信,完成其诸多方面的作用和功能。在安防方面,能够实现对相关终端信息的有效接收,以独立终端的主体,实现与BCM的有效互通,主要涉及一些车辆的状态以及实时故障灯,将信号进行传输,达到对车辆的远控控制。另外,借助T-BOX,能够实现对车内新的预先定义,而后发送至相应的数据背景中,也能够实现对信息的接纳,达到及时反馈的目的。娱乐方面的功能主要是借助热点,与网络进行连接,能够进行网络娱乐的共享。 3.1车载终端 车载终端主要负责智能汽车车内网与车联网或者说移动网络之间的通信的重要功能,其次兼顾完成车内的信息收集、安全防护以及车内娱乐等部分功能,作为重要车载通信设备而存在。具体来说,车载终端内置SIM卡可与移动网络运营商通信,从而接通网络通道,进而实现上述娱乐、安防功能。在信息收集方面,车载终端与移动网络之间通信时可以同时将预先定义的车内网信息发送至数据中心,同样的,车载终端也能够直接接收到来自于数据中心所发送的反馈信号或控制信号。在安防功能实现方面,车载终端可以接收其他独立终端所发出的车辆信息、故障信息以及状态信息等,在处理远程控制信号时,也能够直接将其发送至不同相关终端,以实现车辆的远程控制功能。在娱乐方面,由于车载终端内设有WIFI热点,因此,车内人员直接以移动产品进行热点链接就可以进行网络连接。 3.2手机客户端 手机客户端,即手机APP,其功能主要包括用户登录、个人中心、车况显示以及相应的远程功能,通常情况下,为了保障用户信息的安全性,数据中心与手机客户端之间的通信一般采取加密方式,并且,客户端内可以设置相应的地图信息,如此一来,驾驶员就能够直接通过手机或其他设备清晰明确车辆位置的实时信息。 3.3数据中心 作为智能汽车车联网的核心部位,数据中心不仅承担着用户信息、车辆信息中转的重要枢纽作用,更多时候也充当着不同信息存储需求满足载体,其具体功能笔者现总结如下: 3.3.1具备网络通信功能 只有具有网络通信功能,数据中心才能够与用户的手机或其他移动设备进行相互连接,此时才能够实现数据与指令的相互传输与发送。其次,当数据中心社会有网页访问端口时,用户才能够在购买智能汽车后自行注册用户。 3.3.2具备保存用户车辆信息以及用户信息的功能 用户在购买智能汽车并注册用户后,数据中心则可以对用户信息(用户名、用户手机号码、车辆VIN码以及远程控制预设密码等)进行永久保存,且这些信息在任何情况下均不能对外泄露或盗取。另外,数据中还可以通过移动网络为用户显示相应的车辆信息,而用户运用手机客户端对车辆所发送的指令也可以被记录、储存于数据中心,通常情况下,这部分信息的保存期为1年。 3.3.3具备对车辆信息的分析计算功能 当数据中心具备这一功能后,汽车用户的日常驾驶习惯以及机动车近段时间内的油耗情况则可以通过数据中心的分析处理结果适时判断并提示用户是否存在危险驾驶或油耗较高现象,其次,在实际驾车时,所存储的车辆信息处理数据也可以给予用户相应的安全驾驶与经济驾驶建议。 3.3.4具体可拓展第三方应用与接收第三方信息的的功能

基于5G的自动驾驶发展趋势

基于5G的自动驾驶发展趋势 随着5G技术和车联网的发展,传统的自动驾驶技术在5G 车联网的助推下,未来的发展前景非常值得期待。基于DSRC 的车联网技术经过十几年的发展,具备较好的覆盖范围,但是受到传输距离短的限制,发展优势不明显;另一方面,基于LTE的车联网技术具备重复利用蜂巢式基础设施与频谱的优势,网络度盖范围更大,也可以平滑演进到5G;5G网络具备高可靠低时延的优势,5G的商用将为LT&V2X提供更强大的性能和更多的可能性。基于5G车联网的自动驾駛场景,可以克服传统自动驾驶技术无法互联的缺陷,进一步提升自动驾驶的性能,减少对高精度传感器的依赖。5G车联网的最终目标是完全自动驾驶和全部联网,这对整个汽车与交通行业都具有很好的推动作用。 5G技术、车联网和自动驾驶(或无人驾驶)是最近几年的科技发展热点。基于专用短程通信(Dedicated Short Range Communications,DSRC)的车联网技术存在一些不足之处,基于5G网络的车联网技术可以提供更抉的传输速率,对自动驾驶的发展具有很好的助推作用。 一、车联网技术

在中国信息通信研究院《车联网白皮书(2017年)》中,给车联网的定义是:借助新一代信息和通信技术,实现车内、车与车、车与路、车与人、车与服务平台的V2X(Vehicleto Everything)全方位网络连接,提升汽车智能化水平和自动驾驶能力,构建汽车和交通服务新业态,从而提高交通效率,改善汽车驾乘感受,为用户提供智能、舒适、安全、节能、高效的综合服务。网络连接、汽车智能化、服务新业态是车联网的三个核心。 车联网是物联网在汽车领域的典型应用,其核心关键是V2X无线通信技术,包括DSRC、5G-V2X、LTE-V2X(Long Term Evolution,长期演进)等。借助于V2X无线通信技术,可以突破单一汽车在智能化发展方面的非视距感知、车辆信息共享等技术瓶颈,助力实现汽车自动驾驶功能的推广应用。 当前,国际成熟的V2X无线通信技术有两种技术路线选择,一是基于IEEE802.11p的DSRC技术,二是我国参与推动的基于LTE的V2X无线通信技术(LTE-V2X)。 (一)基于DSRC的车联网技术 DSRC由物理层标准IEEE802.11P和网络层标准IEEE 1609构成。在此基础上,美国汽车工程师协会(Societyof Auto-motive Engineers,SAE)发布的SAE J2735和SAE JF2945两个标准规范了信息内容和结构。DSRC系统包含了车载装置

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

写在前面的 (6) 当前是无人驾驶的关键时点 (6) 智能汽车(ADAS)和车联网(V2X)分别是实现无人驾驶的内部和外部要求 (9) ADAS——车内智能的开端 (9) ADAS的原理、构成和分类 (10) 市场空间:全球市场规模众说纷纭,测算国内千亿前装规模 (12) 产业链公司发展现状及推荐标的 (15) 车联网——通向无人驾驶高级阶段的核心技术 (16) 广义车联网包含车内、车际和车云网 (16) 车际网是车联网之魂,其核心在于V2X技术 (16) 车联网市场空间:预计到2025年市场规模接近万亿级别 (19) 车联网标的推荐 (21) 展望:无人驾驶发展之路 (22) 短期关注ADAS渗透率提高带动传感器产业链发展 (23) 中期关注车联网伴生的智慧交通基础设施建设 (30) 长期关注L4级别成熟后共享汽车引领的出行方式颠覆 (38) 问题 (40) 安全问题或成为拖慢自动驾驶发展的重要因素 (41) 多传感器融合成为趋势的同时也将带来算法挑战 (41) 5G商用速度或影响车联网应用进度 (41) 标准法规制定 (42) 无人驾驶产业链标的推荐 (42) 华域汽车——龙头转型,业务结构持续优化 (42) 中国汽研——掌握核心技术,前瞻布局5G以及智能检索检测业务 (42) 德赛西威——国内车机龙头,智能驾驶推进有序 (43) 保隆科技——中国TPMS龙头,汽车电子新贵 (44) 星宇股份——好行业+好格局+好公司,具备全球车灯龙头潜质 (44) 拓普集团——智能刹车系统切入ADAS执行层 (45)

车联网三大瓶颈

车联网三大瓶颈:主导、技术、模式 在“零事故”、“无拥堵”、“自动驾驶”一连串炫目的关键词背后,顶着“物联网首选应用”出现的车联网,却还是一团乱麻。 2010年10月底,一则“车联网将被写入国家科技重大专项,并有巨额资金扶持”的消息,让车联网这一概念在资本市场一炮而红。与汽车电子和智能交通有关的股票应声上涨,多支股票一度涨停,车联网概念股也随即诞生。 热炒下的车联网概念迅速走红,但商业价值和技术模式却似雾里看花。“现在讨论车联网的实现为时尚早,”中科院上海微系统与信息技术研究所研究员邢涛对《财经国家周刊》记者指出,“技术、市场、标准、商业模式等都有欠缺,整个行业还需要相当长时间的积累酝酿。” 主导缺失 与智能电网、安防等领域相比,车联网并不是最成熟、最接近实际应用的物联网应用,但凭借其战略高度和庞大的消费级市场,仍然赢得了强烈的关注。 车联网的出现,为汽车制造、内容提供和移动通信等领域带来产业升级机遇。一方面促使汽车行业从单纯硬件销售,转为与服务、内容捆绑的新模式;另一方面,又让运营商和服务商得以迅速定位高端客户群体,便于提供产品和服务。此外,国家对新能源汽车“必须具备远程监控能力”的要求,也让车联网横跨两大战略性新兴产业。 所谓车联网并无严格定义,简单地说,就是将汽车作为信息网络中的节点,通过无线通信等手段实现人、车、路及环境的协同交互,实现智能交通。然而,自诞生之日起,车联网便始终面临缺乏统一管理主体的“无人驾驶”局面。 “目前车联网最关键的问题在于多头管理。”中国物联网标准联合工作组秘书长王立建告诉《财经国家周刊》记者,汽车生产制造归工信部,牌照管理在公安部,运营则由交通部负责,三大管理部门都是只管一块,谁来作为主体出面并不明确,围绕汽车的行业协会也不只一两个。同时,几个部门又都有各自与车联网相关的项目,最后能否融合为一个体系也未可知。 对此,中国汽车工程学会会长张小虞表示,汽车行业只是一个被服务的对象,不会做整体规划的工作。“我们也是刚认识车联网这个概念,说不太清楚。” 相比三大管理部门,移动运营商、汽车电子企业、内容提供商、服务提供商对参与车联网的兴趣更为积极。由于车联网产业链较长,参与行业众多,对车联网“盲人摸象”式的理解比比皆是,其中的利益博弈也在所难免。 “现在基本上都乱了,很多人站在不同的角度上讲车联网。”交通部科学研究院信息技术研究室主任李海峰向《财经国家周刊》记者解释说,在智能交通和

自动驾驶发展现状

国外发展现状(-2014) 在自动驾驶汽车研究方面,非汽车厂商表现抢眼,以谷歌自动驾驶汽车为例,在2010年,谷歌公司在官方博客中宣布,正在开发自动驾驶汽车,目标是通过改变汽车的基本使用方式,协助预防交通事故,将人们从大量的驾车时间中解放出来,并减少 碳排放。到目前为止,谷歌已经申请和获得了多项相关专利,其无人驾驶汽车于 2012 年获得牌照上路,总驾驶里程已经超过了 48.3 万千米,并且几乎零事故发生率。谷歌自动驾驶汽车[8]外部装置的核心是位于车顶的 64 束激光测距仪,能够提供 200 英尺 以内精细的3D 地图数据,无人驾驶车会把激光测到的数据和高分辨率的地图相结合,做出不同类型的数据模型以便在自动驾驶过程中躲避障碍物和遵循交通法规。安装在 前挡风玻璃上的摄像头用于发现障碍物,识别街道标识和交通信号灯。GPS 模块、惯 性测量单元以及车轮角度编码器用于监测汽车的位置并保证车辆行驶路线。汽车前后 保险杠内安装有 4个雷达传感器(前方 3 个,后方 1 个),用于测量汽车与前(和前置摄像头一同配合测量)后左右各个物体间的距离。在行进过程中,用导航系统输入路线,当汽车进入未知区域或者需要更新地图时,汽车会以无线方式与谷歌数据中心 通信,并使用感应器不断收集地图数据,同时也储存于中央系统,汽车行驶得越多, 智能化水平就越高。 意大利帕尔马大学 Vislab 实验室研制的无人车于 2010 年经过意大利、斯洛文尼亚等 到达中国上海,行程 15900 千米。它利用太阳能作为辅助动力源,配备 5 个激光雷达、7 个摄像机、GPS 全球定位、惯性测量设备、3 台 Linux 电脑和线控驾驶系统。2013 年,他们的无人驾驶车在无人驾驶的情况下成功识别了交通信号灯、有效避开行人, 成功驶过十字路口、环岛等常见的城市危险路况[9]。德国汉堡 IBEO 公司早在 2007

智能网联汽车与车联网

、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%, CACC系统大规模应用将会进 步提高交通效率; 节能减排:协同式交通系统可提高自车燃油经济性20%-30%高速公路编队行 驶可降低油耗10%-15% (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业 快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网 ■ 丨⑴II ■\ g 唧

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自 2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时 协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9 月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025年,5G-V2X基本满足智能汽车发展需要。

5G车联网对自动驾驶技术发展的影响

2018年第6期 信息通信2018 (总第 186 期)INFORMATION&COMMUNICATIONS(S u m.N o 186) 5G车联网对自动驾驶技术发展的影响 许彩i t2 a湖北省信产通信服务有限公司科技咨询分公司; 2.湖北省邮电学校,湖北武汉430079) 摘要:随着5G技术和车联网的发展,传统的自动驾驶技术在5G车联网的助推下,未来的发展前景非常值得期待。基于 DSRC的车联网技术经过十几年的发展,具备较好的覆盖范围,但是受到传输距离短的限制,发展优势不明显;另一方面,基于LTE的车联网技术具备重复利用蜂巢式基础设施与频谱的优势,网络度盖范围更大,也可以平滑演进到5G;5G网络具备高可靠低时延的优势,5G的商用将为LT&V2X提供更强大的性能和更多的可能性。基于5G车联网的自动驾駛 场景,可以克服传统自动驾驶技术无法互联的缺陷,进一步提升自动驾驶的性能,减少对高精度传感器的依赖。5G车联 网的最终目标是完全自动驾驶和全部联网,这对整个汽车与交通行业都具有很好的推动作用。 关键词:5G网络;车联网;自动驾驶;V2X;DSRC;LTE 中图分类号:TP393 文献标识码:A文章编号:1673-1131( 2018 )06-0046-02 5(}技术、车联网和自动驾驶(或无人驾驶)是最近几年的科技发展热点。基于专用短程通信(Dedicated Short Range Communications,DSRC)的车联网技术存在一些不歧处w,基于5G网络的车联网技术可以提供更抉的传输速率121,对自动驾驶的发展具有很好的助推作用。 1车联网技术 在中国信息通信研究院《车联网白皮书(2017年)》中,给车联网的定义是:借助新一代信息和通信技术,实现车内、车与车、车与路、车与人、车与服务平台的V2X(Vehicle to Every-thing) 全方位网络连接,提升汽车智能化水平和自动驾驶能力,构建汽车和交通服务新业态,从而提高交通效率,改善汽车驾乘感受,为用户提供智能、舒适、安全、节能、高效的综合服务M。网络连接、汽车智能化、服务新业态是车联网的三个核心。 车联网是物联网在汽车领域的典型应用,其核心关键是V2X无线通信技术,包括 DSRC、5G-V2X、LTE-V2X( Long Term Evolution,长期演进)等。借助于V2X无线通信技术,可以突破单一汽车在智能化发展方面的非视距感知、车辆信息共享等技术瓶颈,助力实现汽车自动驾驶功能的推广应用'应用场景如图1所示 当前,国际成熟的V2X无线通信技术有两种技术路线选择,一是基于IEEE802.11p的DSRC技术,二是我国参与推动的基于LTE的V2X无线通信技术(LTE-V2X)。 1.1基于D SR C的车联网技术 D SR C由物理层标准IEE E 802.11P和网络层标准IEEE 1609构成。在此基础上,美国汽车工程师协会(Society of A uto-motive Engineers,SAE)发布的 SAE J2735 和 SAE J F2945 两个标准规范了信息内容和结构。DSRC系统包含了车载装置(On board Unit?OBU)和路侧装置(Road Side Unit,RSU),两者提供信息的双向传输,RSU再将交通信息传送至后端平台' DSRC技术得到美国政府的大力支持,2016年12月美国交通部计划通过强制立法让美国所有轻型车在2023年装配车用DSRC技术,欧洲和日本也陆续跟进。 DSRC技术的优势在于可靠性髙、传输实时性强,主要由福特、丰田等车企进行推动。但由于DSRC的物理层技术与人们生活中常用的WiFi相同,通信距离优势不明显,覆盖距离短,实际应用中需要针对路边设施进行大规模改造和投入。 1.2基于LTE的车联网技术 LTE-V2X是由 3GPP(3rd Generation Partnership Project)基于LTE技术研究而成,它分为LTE~V-Cell和L m V-Direct,前者利用现有的频谱和基站进行蜂窝通信,后者则作为自组织网络在小范围内进行V2X通信[a。 LTE>V2X能重复使用现有的蜂巢式基础设施与频谱,营运商不需要布建专用的路侧设备R S U以及提供专用频谱。LTE^V2X主要解决交通实体之间的“共享传感”问题,可将车载探测系统(如雷达、摄像头)从数十米、视距范围扩展到数百米以上、非视距范围,成倍提高车载A I的效能,实现在相对简 图1车联网应用场景示例单的交通场景下的辅助驾驶。 相比较之下,DSRC技术具有先发优势,验证时间长,也更 4结语 航电WDM网络作为下一代航电网络的理想选择,已经成为每年AVFOP讨论的热点问题。为了满足航对航电WDM 网络系统进行了分析,之后对航电WDM架构进行了简要描述,并给出了航电光网络单元的设计方法,构建了环形光网络。未来准备结合该架构进行实现,从多方面评价其性能和网络的合理性。参考文献: [1]周立,丁凡,熊华钢.航空电子WDM网络多信道强实时调 度设计[J],北京航空航天大学学报,2010,36 (12): 1392-1395. [2]霍曼,邓中卫.国外军用飞机航空电子系统发展趋势[J].航 空电子技术,2004,35⑷. 46

2019年5G车联网自动驾驶行业分析报告

2019年5G车联网自动驾驶行业分析报告 2019年10月

目录 一、5G时代来临,推动车联网与智能驾驶发展 (5) 1、5G具有大流量、低时延、高可靠性等优点 (5) 2、5G赋予车联网更多功能 (7) 3、5G是自动驾驶实现的先决条件 (11) 二、车联网C-V2X或后来居上,车载终端有望先行爆发 (14) 1、DSRC与C-V2X对比,C-V2X有望后来居上 (14) (1)DSRC (15) (2)C-V2X (16) (3)LTE-V2X完胜DSRC,为车联网的最优解 (19) 2、车联网产业链涵盖芯片模组、终端设备等主要环节 (22) 3、车联网潜在市场规模近万亿 (23) 4、车联网硬件设备有望率先受益 (25) 三、辅助驾驶加速渗透,自动驾驶市场规模超万亿 (31) 1、智能驾驶产业链涵盖感知、决策、执行等环节 (31) 2、中国或成为最大的自动驾驶市场,未来规模超万亿 (33) 3、ADAS加速渗透,带来行业新机遇 (36) 四、5G商用箭在弦上,产业链各环节蓄势待发 (42) 1、5G牌照发放,开启商用化进程 (42) 2、LTE-V2X获众多企业支持,有望于2019-2020年商用部署 (43) 3、产业链各环节进展顺利,华为等企业有望把握先机 (46) (1)芯片及模组 (46) (2)终端设备 (47)

(3)整车企业 (48) (4)基础设施 (49) (5)运营服务 (50) 五、总结及相关企业 (52) 1、总结 (52) (1)5G是车联网和自动驾驶完美搭配 (52) (2)车联网C-V2X有望后来居上,2025年市场规模近万亿 (52) (3)辅助驾驶加速渗透,2030年自动驾驶规模超万亿 (52) (4)5G商用箭在弦上,产业链蓄势待发 (53) 2、重点公司简况 (53) (1)均胜电子:安全整合推动业绩增长,汽车电子前景广阔 (53) (2)德赛西威:汽车电子龙头,车联网智能驾驶逐步落地 (54) (3)华域汽车:汽车零部件龙头,智能电动打开成长空间 (54) (4)保隆科技:受益TPMS法规实施,ADAS逐步落地前景看好 (55) 六、主要风险 (55) 1、5G商业进程不及预期 (55) 2、车联网及自动驾驶推进不及预期 (55) 3、汽车销量下滑 (55)

自动驾驶系统路基智能云控制技术

自动驾驶系统路基智能云控制技术 10月12日,由深圳市交通运输委员会主办,深圳市综合交通运行指挥中心承办的2018中国城市智慧交通大会在深圳益田威斯汀酒店隆重举行。清华大学副教授李萌发表了《自动驾驶系统路基智能云控制技术》的主旨演讲。 李萌:尊敬的各位领导、各位来宾,大家下午好!非常荣幸来到中国城市智慧交通大会和大家分享对未来交通的一些思考。我的题目是“自动驾驶系统路基智能云控制技术”,这里有两个关键词,第一个词是自动化交通。现在说未来交通,最常说的一个词是自动驾驶,自动驾驶是从车、驾驶的角度,让机械工具更有效自动化运行,但这只是其中一个手段,而不是最终目的。我们的最终目的是让自动化驾驶能够更好的服务自动化交通,改善生活质量。第二个词,路基智能云控,自动驾驶有很多技术手段,怎样才能够更好有效的发挥协同作用。从四个方面跟大家分享。 一、概述 9月份下旬的时候,作为中国代表团的一员,我参与了2018年世界智能交通大会,见识了世界上最先进智能交通理念。欧洲的未来交通有哪些特点?2018年世界智能交通大会的主题Quality of life(生活品质),往届很多讲自动驾驶、智能网联、通讯5G的主题,都是从技术的手段来阐释未来交通特点,但欧洲人讲的是生活品质。从欧洲人的视角来看,不论交通是哪些技术的发展,最终都是要服务于人类生活。哥本哈根是非常有名的交通城市,从70年代开始,它就已经推出以公共交通作为引导的城市发展主题。 右边的这张图,一个手指型的手指规划,五个手指头构建了整个城市的公共交通系统发展,这个城市依赖公共交通的体系发挥最有效的的交通作用,这是一个根本性的改变,也改变了我们很多根本的规划理念。 丹麦哥本哈根是全世界自行车使用量最高的国家。我国曾经是自行车大国,但自行车应用率最高的城市应该是哥本哈根。右上这张图是全世界第一条自行车快速路,这个城市25%的出行是自行车提供支持。我想要强调的是,交通的最终目的不是改善交通工具,而是改

相关文档
相关文档 最新文档