文档库 最新最全的文档下载
当前位置:文档库 › 改性大豆蛋白的凝胶流变性

改性大豆蛋白的凝胶流变性

改性大豆蛋白的凝胶流变性
改性大豆蛋白的凝胶流变性

 

 万方数据

 

 万方数据

 

 万方数据

 

 万方数据

大豆功能性食品

大豆功能性食品 随着食品科技、医学、生物技术水平的不断提高及人们饮食观念的更新,大豆中的一些成分的功能特性被重新认识,这就为新型大豆功能性食品的开发提供了新的思路。在近几年的大豆综合深加工的研究过程中,尤其注重了对大豆中营养保健成分及大豆功能性食品的研究,为改善目前我国大豆加工企业普遍存在的资源综合利用率低、加工深度不够的现状提供了新的途径。 1大豆保健功能成分 大豆含有约40%蛋白质,18%脂肪,多种矿物质和维生素。近年来,人们发现大豆中有许多具有保健功能的成分,如大豆多肽、大豆低聚糖、大豆膳食纤维及大豆磷脂等。大量实践证明,大豆中的这些特殊成分具有延年益寿、延缓衰老、降血压、降血脂、抗癌等功能。 1.1大豆多肽 大豆多肽是以大豆蛋白为原料经蛋白酶水解并经分离精制所得到的以分子量低于1000为主的低分子肽,其氨基酸组成几乎与大豆蛋白完全一样,必需氨基酸含量较高。大豆多肽除具有优于大豆蛋白的加工特性(如高保湿性、发泡性、非酸沉性等)外,还具有一些独特的功能特性:(1)易消化吸收性和低抗原性。现代生物代谢研究表明,人类摄食蛋白质经消化道酶作用后主要是以肽形式(二肽、三肽)吸收,并且比氨基酸更易吸收利用,同时多肽的低抗原性食后不会引起过敏反应,所以大豆多肽可作为肠道营养剂或手术后病人恢复的食品;(2)促进脂肪代谢。日本学者小松卡夫[1]等人在治疗儿童肥胖过程中发现,大豆多肽比牛乳更能提高基础代谢水平,使食后发热量增加,促进能量代谢进行,并且可促进皮下脂肪减少。大豆多肽还能有效减少体脂肪,同时保持骨骼肌质量不变。(3)降血压和阻止胆固醇水平升高的作用。 1.2大豆低聚糖 大豆低聚糖是大豆中所含可溶性碳水化合物的总称,其主要成分是水苏糖、棉子糖和蔗糖。大豆低聚糖的甜度约为蔗糖的70%,热值仅为蔗糖的50%,且具有良好的热、酸稳定性。水苏糖和棉子糖作为双歧增殖因子,能够活化肠道内的双歧杆菌并促进其增殖,产生大量醋酸、乳酸,降低肠内的pH值,从而抑制大肠杆菌等有害菌的生长繁殖;能促进肠道蠕动,防止便秘。大量的动物试验结果表明[2],低聚糖促进双歧杆菌在肠道内的大量繁殖,而双歧杆菌能诱导免疫反应,增强人体免疫功能。这些功能归功于双歧杆菌细胞壁的成分和其胞外分泌物,使机体免疫力提高,起到抵抗肿瘤的作用。 1.3大豆膳食纤维 大豆膳食纤维主要是指大豆中那些不能为人体消化酶所消化的高分子糖类的总称,主要包括纤维素、果胶质、木聚糖、甘露糖等。膳食纤维对人体具有重要的生理作用。医学及营养学界公认大豆膳食纤维是预防高血压、冠心病、肥胖症等的重要食物成分。首先,大豆膳

水性聚氨酯胶黏剂成分检测

水性聚氨酯胶黏剂成分检测 聚氨酯(PU)胶黏剂是分子链中含有氨酯基(—NHCOO—)和/或异氰酸酯基(—NCO)类的胶黏剂[1]。聚氨酯由于具有优良的弹性、耐低温性、耐磨、耐化学药品和对各种基材良好的黏附性等特点,使其广泛应用于涂料[2]、胶黏剂[3]、油墨[4]等领域。以往在胶黏剂和涂料方面,溶剂型产品占较大比例。但是溶剂型聚氨酯由于含有挥发性有机化合物而污染环境,使得其应用受到限制。随着人们环保意识的加强,水性聚氨酯获得快速发展。水性聚氨酯以水为溶剂,具有环境友好、无毒、不易燃等优点而被广泛用于环境友好型涂料和胶黏剂中,并显示出一系列优良的性质[5-7]。水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。首先,水性聚氨酯乳液固含量低导致干燥成膜速度慢、自增稠性差、初黏力低等缺点;此外,水性聚氨酯乳液成膜后存在耐水性差、耐溶剂性不良、硬度低、表面光泽差、涂膜手感不佳等缺点。由于水性聚氨酯存在这些缺点,因此需要对其改性。国内外的改性方法主要有丙烯酸改性、环氧改性、有机硅有机氟改性、纳米材料改性、复合改性等。近些年来,水性聚氨酯的改性研究主要向着超支化预聚体改性、纳米纤维素改性等方向发展。 1水性聚氨酯胶黏剂的分类和合成方法 1.1水性聚氨酯胶黏剂的分类 水性聚氨酯根据外观可分为乳液型聚氨酯、聚氨酯水分散液和水溶性聚氨酯。按聚氨酯的异氰酸酯原料分,可以分为芳香族异氰酸酯型、脂肪族异氰酸酯型、脂环族异氰酸酯型。水性聚氨酯根据其主链或侧链是否含有离子基团而被分为阴离子型聚氨酯乳液[8]、阳离子型聚氨酯乳液[9]和非离子型聚氨酯乳液[10]。 1.2水性聚氨酯的合成方法 水性聚氨酯的合成可以分为外乳化法和内乳化法。外乳化法中分子链上引入含有少量不足以自乳化的亲水性链段或基团,或者完全不引入亲水性成分,要添加乳化剂并在强烈的搅拌下制成聚氨酯乳液或分散体。内乳化法则是在聚氨酯分子中引入亲水基团或带有亲水基团的扩链剂(即内乳化剂),然后中和成盐,直接将其分散于水介质中,而无需乳化剂即可形成稳定的乳液。内乳化法又可以分为预聚体法[11-12]、丙酮法[1 3]、熔融分散法、端基保护法[14]和酮亚胺-酮连氮法[15]。其中预聚体法和丙酮法比较成熟。 2水性聚氨酯胶黏剂改性方法 2.1丙烯酸酯改性 丙烯酸酯改性水性聚氨酯的制备方法有以下5种:①PA与PU直接进行物理共混[16];②外加交联剂,形成聚氨酯-丙烯酸酯共混复合乳液[17];③以聚氨酯乳液为种子乳液,进行丙烯酸酯乳液聚合,形成具有核-壳结构的PUA复合乳液[18];④两种乳液以分子线度互相渗透,然后进行反应,形成高分子互穿网络的PUA 复合乳液[19];⑤接枝共聚[20]。 Lu等[21]先用甲苯二异氰酸酯与大豆油多元醇(SOL)加聚生成水性聚氨酯,再加入丙烯酸单体并用K2中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

大豆蛋白的应用

大豆蛋白粉的应用 大豆蛋白粉具有乳化性、吸水性、保水性、凝胶性、气泡性、吸味性、防止脂肪渗透和聚集性、粘结性。 大豆分离蛋白是以低温脱溶大豆粕为原料生产的一种全价蛋白类食品添加剂。大豆分离蛋白中蛋白质含量在90%以上,氨基酸种类有近20种,并含有人体必需氨基酸。其营养丰富,不含胆固醇,是植物蛋白中为数不多的可替代动物蛋白的品种之一。 大豆分离蛋白的功能特性: 乳化性:大豆分离蛋白是表面活性剂,它既能降低水和油的表面张力,又能降低水和空气的表面张力。易于形成稳定的乳状液。在烤制食品、冷冻食品及汤类食品的制作中,加入大豆分离蛋白作乳化剂可使制品状态稳定。 水合性:大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。分离蛋白的吸水力比浓缩蛋白要强许多,而且几乎不受温度的影响。分离蛋白在加工时还有保持水份的能力,最高水分保持能力为14g水/g蛋白质。 吸油性:分离蛋白加入肉制品中,能形成乳状液和凝胶基质,防止脂肪向表面移动,因而起着促进脂肪吸收或脂肪结合的作用。可以减少肉制品加工过程中脂肪和汁液的损失,有助于维持外形的稳定。分离蛋白的吸油率为154%。 凝胶性:它使分离蛋白具有较高的粘度、可塑性和弹性,既可做水的载体,也可做风味剂、糖及其它配合物的载体,这对食品加工极为有利。 发泡性:大豆蛋白中,分离蛋白的发泡性能最好。利用大豆蛋白质的发泡性,可以赋予食品以疏松的结构和良好的口感。 结膜性:当肉切碎后,用分离蛋白与鸡蛋蛋白的混合物涂在其纤维表面,形成薄膜,易于干燥,可以防止气味散失,有利于再水化过程,并对再水化产品提供合理的结构。 大豆分离蛋白的应用: 1.肉类制品:在档次较高的肉制品中加入大豆分离蛋白,不但改善肉制品的质构和增加风味,而且提高了蛋白含量,强化了维生素。由于其功能性较强,用量在2~5%之间就可以起到保水、保脂、防止肉汁离析、提高品质、改善口感的作用。将分离蛋白注射液注入到火腿那样的肉块中,再将肉块进行处理,火腿地率可提高20%。分离蛋白用于炸鱼糕、鱼卷或鱼肉香肠中,可取带20~40%的鱼肉。 2.乳制品:将大豆分离蛋白用于代替奶粉,非奶饮料和各种形式的牛奶产品中。营养全面,不含胆固醇,是替代牛奶的食品。大豆分离蛋白代替脱脂奶粉用于冰淇淋的生产,可以改善冰淇淋乳化性质、推迟乳糖结晶、防止“起砂”的现象。 3.面制品:生产面包时加入不超过5%的分离蛋白,可以增大面包体积、改善表皮色泽、延长货架寿命;加工面条时加入2~3%的分离蛋白,可减少水煮后的断条率、提高面条得率,而且面条色泽好,口感与强力粉面条相似。 大豆分离蛋白还可应用于饮料、营养食品、发酵食品等食品行业中。

蛋白质的生物和化学改性

文章编号:1003 7969(2000)06 0181 05 蛋白质的生物和化学改性 周瑞宝1,周 兵2 (1 郑州工程学院食品科学与工程系,450052郑州市嵩山南路140号; 2 郑州油脂化学集团公司,450053郑州市黄河路;第一作者:男,59岁,教授) 摘要:生物酶或化学法改性食品蛋白质,是提高食品功能特性的重要途径。生物酶有酶源易于得到,应用更安全,并且可将蛋白质改性到所期望的功能值;化学法的乙酰化、磷酸化、糖基化、交联反应,在改变结构和功能性方面,对提高蛋白质功能特性比酶法更有效。 关键词:蛋白质;生物酶;化学法;改性 中图分类号:TQ645 9+9 文献标识码:A 1 蛋白质的酶法改性 蛋白质的改性就是用化学因素(如化学试剂、酶制剂等)或物理因素(如热、高频电场、射线、机械振荡等),使氨基酸残基和多钛链发生某种变化,引起蛋白大分子空间结构和理化性质改变,从而获得较好的功能性和营养特性。 用于水解大豆蛋白的酶,包括植物来源的木瓜酶(Papain)、微生物蛋白酶(Alcalase、Neutrase、Ther mitase)和动物蛋白酶(Pepsin、Chymotrypsin)等,都可以用于蛋白质的改性。 1 1 大豆蛋白的部分水解及其功能特性 大量文献列举了蛋白质水解对功能特性的影响,其中包括:植物蛋白的大豆蛋白[1]、蚕豆蛋白、小麦谷朊粉、玉米蛋白、燕麦粉(蛋白)、棉籽蛋白、葵花籽和菜籽蛋白;以及动物蛋白的酪蛋白,都可以进行蛋白酶水解,又称蛋白生物酶改性。 大豆蛋白酶改性[2],对于提高蛋白质的溶解性具有特殊重要性,甚至对于在水中难于分散的谷类蛋白,也是如此。只有使蛋白水解之后,才能显示它的改性意义。玉米蛋白是一种玉米储存蛋白,在pH2~5,具有很高的不溶性,当用胰蛋白酶处理水解使1 9%的肽键断裂时,在同样的pH范围内,溶解度可达30%~50%。而小麦谷朊粉用此法处理,在pH7时,达到9 8%水解度(D H)时,溶解度从7%增加到50%。燕麦粉经Alcalase 或Neutrase酶处理,在等电点(pH5.0)条件下溶解度提高3~4倍[3]。在一定的酶与底物比例条件下,增加水解度(3 8%~ 10 4%),溶解度也同时增加。用Alcalase在pH8,或Neutrase在pH7条件下,使大豆分离蛋白进行有限的蛋白酶水解,会改变它的pH值与溶解曲线图。用Thermitase酶处理蚕豆分离蛋白,使水解度达到8 3%时,在等电的pH值下,溶解度增加高达40%。用Ttaphyloc occus aureus V8蛋白酶水解酪蛋白,水解度达到2%和6 7%时,溶解度增加25%和50%。 大豆蛋白生物改性,可以提高水解蛋白的吸水和结合水的能力。这是由于蛋白水解过程中释放出氨基和羧基,离子基团数量增加。甚至大豆分离蛋白在84%的相对湿度的室温下,其吸水性随酶处理程度成比例增加。酸 沉大豆蛋白和11S大豆球蛋白,用菠萝蛋白酶进行有限蛋白水解后,吸水能力增加2~2 5倍。运用Alcalase或Teutrase处理燕麦粉,随水解度(DH)的升高,吸水能力增加。大豆蛋白质酶改性对蛋白质的乳化能力很敏感。使用木瓜蛋白酶对大豆蛋白进行短时水解,会增加乳化能力,然而,当继续水解时,乳化能力减少。有人发现大豆分离蛋白在水解度(DH)为5%时,乳化特性最佳。蛋白酶改性,也能改善花生蛋白的乳化特性。 用胰蛋白酶部分水解由大豆和蚕豆得到的11S 球蛋白,其中高分子量的水解产物大豆球蛋白 T 和豆球蛋白 T,分别对乳化能力和乳化稳定性,起着关键作用。随着豆蛋白 T的生成,其乳化能力和乳化稳定性增加,当豆蛋白 T被胰酶进一步水解时,乳化能力和乳化稳定性降低。 蛋白酶部分水解时,乳化能力和乳化稳定性的有益作用可能是由于暴露了分子内部掩蔽的疏水基团,改善亲水 疏水平衡,从而提高乳化能力。蛋白质表面失去亲水肽,导致表面疏水作用增加,而有利于表面吸附。过度消化的不利影响,使其失去球状 收稿日期:2000 09 15

聚氨酯胶粘剂

聚氨酯胶粘剂 一.组成 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基(-NCO)的胶粘剂。聚氨酯胶粘剂分为多异氰酸酯和聚氨酯两大类。多异氰酸酯分子链中含有异氰基(-NCO)和氨基甲酸酯基(-NH-COO-),故聚氨酯胶粘剂表现出高度的活性与极性。与含有活泼氢的基材,如泡沫、塑料、木材、皮革、织物、纸张、陶瓷等多孔材料,以及金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘接力。 二.发展历史 1937年,德国化学家Bayer—聚氨酯工业的奠基人,与其同事发现异氰酸酯能与含活泼氢的化合物发生反应,如二异氰酸酯与二元胺反应能制成有强度的聚合物,从而奠定了聚氨酯化学基础,并首次利用异氰酸酯与多元醇化合物制得聚氨酯树脂。 第二次世界大战期间,德国拜耳公司用4,4‘,4’‘—三苯基甲烷三异氰酸酯胶接金属和合成橡胶获得成功,应用于坦克的履带上,使聚氨酯胶黏剂首次工业化。该公司还首先以三异氰酸酯和聚酯多元醇为原料开发了商品名为Polystal的系列双组分溶剂型聚氨酯胶黏剂。为日后聚氨酯胶黏剂工业的发展奠定了基础。

美国第二次世界大战后于1953年引进德国技术,开发了以蓖麻油和聚醚多元醇为原料的聚氨酯胶黏剂。1968年,Goodyear公司开发了无溶剂型聚氨酯结构胶黏剂“,并成功地应用于汽车用玻璃纤维增强塑料的胶接。1978年又开发了单组分湿固化型聚氨酯胶黏剂,1984年美国市场上又出现了反应型热熔聚氨酯胶黏剂。 日本于1954年引进德国和美国聚氨酯技术,1960年生产聚氨酯原料,1966年开始生产聚氨酯胶黏剂。1975年日本光洋公司开发成功“乙烯类聚氨酯”水性胶黏剂,于1981年投入工业化生产。目前日本聚氨酯胶黏剂的研究与生产十分活跃,与美国、西欧一起成为聚氨酯生产、出口大国。 三.聚氨酯胶粘剂的制备与配方 1.多异氰酸酯胶粘剂(单组分) 1.配制:将多异氰酸酯单体与溶剂按一定比例混合均匀,即可配制成多异氰酸酯胶粘剂(单组分)。 2.固化原理:—NCO与被粘物表面—OH作用,可在常温或高温下固化。 3.多异氰酸树脂胶粘剂的特点: 1)多异氰酸酯分子量低,渗透力强,且反应后性高,故粘结力很强; 2)固化后,耐热、耐溶剂性能好。

大豆分离蛋白改性的研究进展

基金项目:国家自然科学基金资助项目(20704044); 作者简介:李海萍(1984-),女,硕士研究生; 3通讯联系人,E 2mail :cesyjz @https://www.wendangku.net/doc/d12850224.html,. 大豆分离蛋白改性的研究进展 李海萍,易菊珍3 (中山大学化学与化学工程学院高分子研究所,广州 510275) 摘要:首先介绍了大豆分离蛋白的基本组成与结构,然后分别从化学改性、酶改性和物理改性三个方面对 大豆分离蛋白改性进行了综述。其中,在化学改性方面,针对大豆分离蛋白中含有的氨基、羧基、巯基等不同活性基团的改性原理及研究现状进行了介绍。在酶改性方面,主要介绍了谷胺酰胺转胺酶、木瓜蛋白酶等对大豆分离蛋白的改性作用。在物理改性方面,介绍了共混、加热改性等目前研究较多的方法。通过化学、物理和酶等方法等来引起分子结构的微变化,可使人们获得各种符合预期的性能优良的产品,开发其在医药、化工等领域的应用潜力。 关键词:大豆分离蛋白;结构;改性 引言近年来,由于全球石油危机及环境污染问题,以石油为原料、不可降解的聚合物材料的广泛使用引起 了大家的担忧[1],而且塑料垃圾掩埋后,有毒单体和小分子低聚物的释放又会污染地下水资源 ,给人类和 生物体健康构成威胁。因此,人们致力于研究通过可再生农作物开发环境友好、可生物降解的材料。大豆分离蛋白(s oybean protein is olate ,SPI )是一种重要的植物蛋白,是每年都可进行大量种植的可再生资源,而且具有无毒、可降解等优点,在材料领域具有广泛的应用前景。大豆蛋白包含多种功能团,如氨基、羟基、巯基、酚基、羧基等。这些活性基团可作为化学改性或交联的位点,来合成各种功能可与以石油为原料的材料相当或更优的新型聚合物。因此,本文介绍了大豆分离蛋白的基本组成与结构,并对基于大豆分离蛋白功能基团的改性研究进行了综述。 1 大豆分离蛋白的基本组成及结构 大豆分离蛋白(S oybean Protein Is olate ,SPI )是以低变性脱脂豆粕为原料,采用现代化的加工技术制取的一种蛋白质含量较高的功能性食品添加剂或食品原料。其主要组成元素为C 、H 、O 、N 、S 和P ,还含有少量的Zn 、Mg 、Fe 和Cu 。大豆分离蛋白中蛋白质含量高达90%以上,含有多种人体必需氨基酸,其主要 氨基酸含量如表1所示[2]。 SPI 主要包括β 2大豆伴球蛋白(7S 球蛋白,β2conglycinin )和大豆球蛋白(11S 球蛋白,glycinin )两种成分[3]。其中β2大豆伴球蛋白是由α’2(69kDa )、β2(68kDa )和β2(42kDa )三种亚基组成的分子量约为~180kDa 的三聚体糖蛋白,三种亚基分子量不同文献报道有所差别[4]。大豆球蛋白是由五种分子量为54kDa ~64kDa 的亚基(G 12G 5)组成的分子量约为~320kDa 的六角形化合物。各个亚基的基本结构通式为A 2SS 2B ,其中A 表示分子量为34~44kDa 的酸性多肽,B 表示分子量约为20kDa 的碱性多肽,A 和B 由 二硫键(SS )连接。Utsumi [5]、Maruyama 等[6]利用基因重组技术并通过X 射线晶体衍射法推导出大豆球蛋 白和β2大豆伴球蛋白结构模型,如图1所示。

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

大豆蛋白的性质及功能应用

大豆蛋白的性质及功能应用 摘要针对大豆蛋白的组成,阐述了大豆蛋白的性质,包括溶解性、持水性、乳化性、起泡性、凝胶性、吸油性和粘度,并总结了大豆蛋白的功能应用,以期为大豆蛋白的利用提供参考。 关键词大豆蛋白;组成;性质;功能应用 大豆中含有丰富的植物蛋白,其产量高、价格低廉,含蛋白质40%左右,为蛋白质含量最高的食物。因此,对大豆蛋白的提取、加工、应用等研究已成为热点。为此,笔者对大豆蛋白的组成、性质及功能应用进行阐述。 1 大豆蛋白的组成 大豆蛋白中含有多种蛋白质,主要是贮存于子叶亚细胞结构——蛋白质中的蛋白[1]。周瑞宝等[2]采用了超速离心方法对大豆蛋白质进行了分离分析,并将其分为2S、7S、11S、15S 4个主要组分(以沉降模式为依据),这些成分在不同的大豆品种中所占的比例有一定的差异。但是通常情况下:7S和11S这2个组分占70%以上,而2S和15S 2个组合含量所占比例比较少,约占10%。李荣和、朱建华等[3-4]采用免疫学电泳技术对大豆蛋白进行了分析,又可将其分成α-伴大豆球蛋白(2S)、β-伴大豆球蛋白和γ-伴大豆球蛋白(7S)以及大豆球蛋白(11S)和15S(以免疫性质的差异为依据)。而这些组成按照分子量由大到小的排列顺序是:15S最大,约为600 kDa,其次是11S、7S,而2S最小,约为1~30 KDa。现主要介绍7S大豆蛋白质和11S大豆蛋白。 1.1 7S大豆蛋白质 7S大豆蛋白质的分子量为18~210 kDa,它是由多糖与蛋白质的N端天门冬氨酸结合而成的共轭型糖蛋白,每个7S球蛋白分子含有38分子甘露糖及12分子葡萄糖胺。7S蛋白质的等电点分别为4.9、5.2和5.7,同时7S球蛋白中含有5%的α-螺旋结构、35%的β-片层结构和60%的不规则结构,因此其具有致密折叠的高级结构。另外分子中3个色氨酸残基几乎全部处于分子内部;4个半胱氨酸残基,每2个结合在一起形成二硫键[5]。也有研究发现7S蛋白质非常敏感于离子强度及酸碱值,比如在离子强度0.5或pH值3.6状态下,7S蛋白则分别以单体和二聚物的形态存在着[5-7]。 1.2 11S蛋白质 11S蛋白组分比较单一,到目前只发现一种11S球蛋白,分子量为302~375 kDa,主要是由6个酸次单元体及6个碱次单元体所组成的非糖蛋白,等电点为6.4。其中对于组氨酸、脯氨酸及胱氨酸这些氨基酸,在酸次单元体中含量要比碱次单元体中多;而对于疏水性氨基酸,在碱次单元体要比酸次单元体中多。另外,11S蛋白质含有较多的赖氨酸和少量的氮氨酸,其中有23.5%的疏水性,46.7%

大豆蛋白纤维

大豆纤维的探究及应用 院系:外语系 学号:201313060124 姓名:司淼

目录 大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法

大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造

大豆活性肽的分离纯化和生理活性

大豆活性肽的分离纯化和生理活性 大豆蛋白肽是利用酶法或微生物发酵法将大豆蛋白降解成多肽、短肽和氨基酸的混合物。大豆蛋白肽是一种重要的肽来源。大豆蛋白肽与蛋白质相比较,多肽具有如下特点:在较宽的pH 范围内溶解度高,容易在体内消化和吸收;渗透压低,能够避免高渗透压导致的腹泻;不容易导致过敏。Rerat 等研究表明,短肽的特点是吸收速度快、消耗能量低、载体不易饱和,不同肽之间运转没有竞争和抑制。 随着生物技术与生命科学的不断进步与发展,大豆多肽的功能越来越多的被人们所发掘,而某些活性肽的结构与生理功能也逐渐被人们所认识和了解,这对活性肽的研究起到了推动作用,更有利于人类对大豆活性肽进行研究与开发。 迄今为止,从大豆蛋白中已分离出降血压肽、免疫调节肽、抗氧化肽、降胆固醇肽、抗血栓形成、促进钙磷及微量元素的吸收等多种纯化的大豆蛋白生物活性肽,对这些大豆活性肽的研究情况进行了综述,以期为大豆活性肽的应用提供参考。 1 大豆蛋白活性肽的分离和纯化目前,生产大豆活性肽的方法主要三种有:酶解法、微生物发酵法和化学法,最为先进的是微生物发酵法,它不仅能修饰肽的苦味。还能将原料中的KTI 和BBI 等影响消化和口味的抗营养因子降解。 大豆蛋白肽的活性易受到外界条件的影响,在过强的酸碱、较

高的温度与剧烈震荡等条件下都有可能失活。初始的肽液成分相对较复杂,目标产物的浓度也比较低,一般低于5%,含有大 量杂质,某些杂质的理化性质和目标产物有相似之处,这就提高了大豆肽的分离纯化的难度。传统多肽分离工艺,如吸附沉淀、溶媒、萃取和离子交换法等步骤繁多,耗时,原料消耗量大,耗能高,得到的产品较少。生物技术的发展与人们对大豆肽结构和功能研究的不断深入,大豆肽分离检测技术也获得了突飞猛进的发展,出现了反相高效液相色谱法、凝胶过滤色谱法、毛细管电泳法、膜分离法、各种技术手段的联用等许多高效的分离纯化技术和手段。 1.1反相高效液相色谱(RP—HPLC法 反相高效液相色谱是一种色谱洗脱法,它以非极性的反相介质为固定相,流动相是水溶液或甲醇、乙腈等极性有机溶剂。根据流动相中被分离溶质疏水性的不同,与固定相发生的作用大小的差异,使被分离物质在固定相和流动相中具有不同的分配系数,从而进行分离纯化。 如果大豆多肽是疏水性较弱的分子,它和固定相之间的作用比较小,能够较快流出;反之,如果大豆多肽分子疏水性比较大,流出会比较靠后。反相高效液相色谱法分离纯化大豆活性肽时采用三氟乙酸- 乙氰这种挥发性冲剂作为流动相,其纯化产品不需脱盐,这样就简化了操作步骤,对于分子量在lOOODa以下的小分子大豆肽类物质的分离和纯化尤为重要。 反相高效液相色谱分离和纯化大豆活性肽时多采用增加流动相

功能性大豆浓缩蛋白的加工技术

一、功能性大豆浓缩蛋白的加工技术 以低变性脱脂大豆粕为原料,采用独特的等电点洗涤方法去除其中的低聚糖等可溶性成分后,凝乳通过独特的屋里方式进行蛋白质变性,改性后的物料经过杀菌和闪蒸处理后进行喷雾干燥,产品即为功能性大豆浓缩蛋白。 经济技术指标:蛋白含量≥67% ,产品得率≥60%,氮溶解指数(NSI)≥70%,持水持油能力≥1:5:5,气味、色泽及外观:与国外同类产品相近。 二、大豆浓缩蛋白又称70%蛋白粉,原料以低温脱溶粕为佳,也可用高温浸出粕,但得率低、质量较差。生产浓缩蛋白的方法主要有稀酸沉淀法和酒精洗涤法。 ①稀酸沉淀法 利用豆粕粉浸出液在等电点(pH4.3~4.5)状态,蛋白质溶解度最低的原理,用离心法将不溶性蛋白质、多糖与可溶性碳水化物、低分子蛋白质分开,然后中和浓缩并进行干燥脱水,即得浓缩蛋白粉。此法可同时除去大豆的腥味。稀酸沉淀法生产浓缩蛋白粉,蛋白质水溶性较好(PDI值高),但酸碱耗量较大。同时排出大量含糖废水,造成后处理困难,产品的风味也不如酒精法。 ②酒精洗涤法 利用酒精浓度为60%~65%时可溶性蛋白质溶解度最低的原理,将酒精液与低温脱溶粕混合,洗涤粕中的可溶性糖类、灰分和醇溶蛋白质等。再过滤分离出醇溶液,并回收酒精和糖,浆液则经干燥得浓缩蛋白粉。此法生产的蛋白粉,色泽与风味较好,蛋白质损失少。但由于蛋白质变性和产品中仍含有0.25%~1%的酒精,使食用价值受到一定限制。此外还有湿热水洗法、酸浸醇洗法和膜分离法等。其中膜分离法是用超滤膜脱糖获得浓缩蛋白,反渗透膜脱水回收水溶性低分子蛋白质与糖类,生产中不需要废水处理工程,产品氮溶指数(NS)高,因此是一种有前途的方法。 ③大豆浓缩蛋白的用途 可应用于代乳粉、蛋白浇注食品、碎肉、乳胶肉末、肉卷、调料、焙烤食品、婴儿食品、模拟肉等的生产,使用时应根据不同浓缩蛋白的功能特性选择。 三、新技术辽宁营口渤海天然食品有限公司最近完成了利用高、低温豆粕在一条生产线上连续提取大豆功能因子和浓缩蛋白生产新技术的研究和应用。该项技术具有独立自主知识产权,不仅成功地实现了工业化生产,而且标志着我国大豆连续提取新技术研究与应用创国际领先水平。

大豆蛋白改性及活性肽

大豆蛋白改性修饰技术及活性肽简介 摘要:为了加强大豆蛋白的功能性质和营养,从而扩大大豆蛋白在食品中的应用,本文介绍了蛋白改性修饰技术及将蛋白转化为活性肽两种加工方法。 关键词:大豆蛋白;改性修饰;活性肽 Abstract:In order to strengthen the functional properties of soya protein and nutrients,thereby expanding the application of soybean protein in food. This paper introduces the modified protein modification technology and active peptide protein can be converted to two kinds of processing methods. Key words: soy protein; modification; polypeptides 蛋白质是人类生命活动不可缺少的营养物质,正常情况下每人每天需要蛋白质60-80克。但是中国居民所摄取的蛋白还达不到这个水平,并且摄取蛋白质主要还是以植物性蛋白质为主。 1、植物蛋白 蛋白质是构成身体的物质基础,是与生命及各种形式的生命活动紧密联系的物质。所占人体的20%,是构成人体内各种细胞的原料、构成人体内各种重要物质、调节人体代谢、在必要,即完全饥饿的时,为人体提供一部分能量,人体内若缺乏蛋白质,轻者会造成亚健康,重则会导致死亡。 蛋白质按来源,可分为动物蛋白、植物蛋白,植物蛋白主要来源于植物,即米面、豆类。其营养价值与动物蛋白相似,但与动物蛋白相比,植物蛋白在人体内更容易消化、吸收;且不含有对人体有害的胆固醇及脂肪,还可提供较多的、动物蛋白不含的纤维素,维生素E等。

聚氨酯胶粘剂制备工艺技术

1、一种新型水性双组份聚氨酯胶黏剂用丙烯酸改性树脂及包含该树脂的聚氨酯胶黏剂 2、耐高温油墨用聚氨酯胶黏剂的制备方法 3、一种阻燃耐水聚氨酯胶粘剂及其制备方法 4、无溶剂型双组分聚氨酯胶粘剂及其制备方法 5、耐高温水性聚氨酯胶黏剂的制备方法 6、一种豆油醇解物聚氨酯胶粘剂的生产方法 7、一种用于橡胶地砖的聚氨酯胶粘剂的制备方法 8、聚氨酯胶粘剂 9、聚氨酯胶辊 10、一种干式复合聚氨酯胶粘剂及其制造方法 11、一种鞋用聚氨酯胶黏剂及其制备方法 12、纳米聚氨酯胶粘剂及其制备工艺 13、一种聚氨酯胶粘剂粘贴墙体保温装饰一体化板材施工方法 14、一种圆织机梭子专用聚氨酯胶轮 15、一种纳米粒子改性的聚氨酯胶黏剂及其制备方法 16、双组份改性无水聚氨酯胶 17、冷轧用聚氨酯胶辊表面破损修复方法 18、一种用于复合软包装的水性聚氨酯胶粘剂的制备方法 19、一种水性聚氨酯胶粘剂及其制备方法 20、改性聚氨酯及水性聚氨酯胶粘剂组合物 21、一种用于人造草坪背胶的蓖麻油改性聚氨酯胶粘剂组合物 22、一种单组份高固含量水性聚氨酯胶粘剂的制备方法 23、一种RFID天线基材用水性聚氨酯胶粘剂 24、一种双组份聚氨酯胶粘剂的制备方法 25、聚氨酯输送带用乳液型水性聚氨酯胶黏剂及其合成方法 26、环保型低成本聚氨酯胶粘剂生产方法 27、低游离MDI单体双组份无溶剂聚氨酯胶粘剂 28、一种高强度耐黄变弹性聚氨酯胶及其制备方法和应用 29、一种酚醛树脂-聚氨酯胶粘剂的制备方法 30、一种有机蒙脱土改性双组份聚氨酯胶粘剂及其制备方法 31、一种长寿聚氨酯胶轮 32、植珠用水性聚氨酯胶黏剂及其制备方法 33、聚氨酯胶粘剂的制备方法 34、一种水性聚氨酯胶粘剂及其制造方法 35、一种双组分聚氨酯胶粘剂及其制备方法和应用 36、可常规喷涂风机叶片用聚氨酯胶衣组合物及其制备方法 37、阻燃及耐碱聚氨酯胶粘剂的制备方法 38、一种鞋用聚氨酯胶粒的配方 39、一种溶剂型双组份聚氨酯胶黏剂及其制备方法 40、一种双组份聚氨酯胶及其制备方法 41、聚氨酯胶专用纳米碳酸钙的制备方法 42、一种单组份聚氨酯胶黏剂及其制备方法 43、室外聚氨酯胶黏剂

采用发酵法工业化生产大豆蛋白活性肽

采用发酵法工业化生产大豆蛋白活性肽 张雁平 (黑龙江省国际工程咨询公司,哈尔滨 150008) 摘 要:本文结合生产实际,对采用发酵法工业化生产大豆蛋白活性肽产品准备工作技术方案及配套条件等方面进行详细介 绍,旨在为工业化生产起到参考和指导作用。 关键词:大豆蛋白活性肽;发酵法;工业化生产 中图分类号:TS 21412 文献标识码:B 文章编号:1009-2765(2003)03-0026-02 0 前言 采用发酵法生产大豆蛋白活性肽,通过微生物作用对某些苦味肽基团进行修饰和重组,使小肽之间、小肽与氨基酸之间发生移接、重排。制得的大豆蛋白活性肽具有溶解性好,无苦味和异味,口感好,溶解粘度小,受热不凝固等优点。克服了酶解法产品苦味大和口感差等缺点。产品可广泛用于食品和医药工业,采用该方法获得的大豆蛋白混合肽含量可达60%以上。 1 工业化生产的准备工作通过研究和小试、中试,初步确定了大豆肽的工业化生产方法、操作要点、技术参数等,从研究到生产确定先进成熟的工艺,稳定可靠的装备,合理的原料动力消耗,尤其需要取得定量的各种相关数据,合理配置各项工程内容,完成从科研到生产的顺利过渡。 工业化生产前通过进行工艺研究,技术参数的反复摸索,生产设备多种组合方案等扩大试验后,已经基本确定了成熟的生产路线,通过生产性试验证明了其合理性。 2 工业化生产技术方案211 生产工艺21111 粉碎、配料:以豆粕为原料,粉碎细度为100μm 的颗粒粉。经计量后,加入清水与之混合配制混合液,豆粕粉浓度为10%~15%,另外加入少量其它微量元素。在加入水、料的同时不断搅拌,使混合液均匀。 21112 灭菌:配制好的混合液升温杀灭杂菌,灭菌温度121℃,压力011MPa ,时间40~60min 。 21113 冷却:灭菌后的混合液降温至25~28℃,创造适合菌种作用的条件。 21114 接种:冷却后按混合液总量的10%接入菌种并搅拌使其均匀。 21115 发酵:接入菌种后的混合液在发酵罐内进行发酵,发酵温度控制在25~28℃,发酵时间72h ,发酵过程中按一定比例向发酵液中通入压缩空气,以提供发酵过程中需要的氧气,并不断搅拌,使物料液发酵充分和均匀。发酵过程中发酵液的PH 值应保持在615~7的范围内,出现异常时,用HC L 及Ca (OH )2进行调节。 21116 灭活:发酵周期结束后,发酵液升温进行灭活,以杀灭发酵菌,灭活温度121℃,压力011MPa ,时间15min 。 21117 分离:采用离心方式对发酵液中浆、渣进行分离,清液用于生产大豆肽,分离出的纤维可加工纤维食品或纤维饲料。 21118 过滤:分离出的清液中还含有少量大豆纤维,采用板框过滤机滤出剩余纤维,清液浓度约6%~9%。 21119 真空浓缩:滤液泵入三效真空浓缩罐进行低温真空浓缩,干燥掉料液中的部分水分以符合下步喷雾干燥要求,浓缩后的浓度在40%~50%,浓缩温度约85℃,低温干燥的目的是不改变蛋白质性质及不破坏肽的活性。 211110 喷雾干燥:浓缩液经喷雾干燥塔采用低温气流喷雾干燥呈颗粒状,其水分含量≤8%。 211111 筛分:将粉末和大颗粒团分离开,大颗粒团要进行粉碎,经筛分后合格品进行定量包装。 211112 成品:产品进行定量包装后经检验合格即可入库储存。包装材料可用复合聚乙烯等。 212 工艺流程(见附图)213 设备选配 按其工艺要求,可选用粮油加工、发酵工业、乳品行业、轻工业通用设备进行组合,满足工艺生产需要。工艺生产过程中对设备性能无特殊要求,按食品加工要求,设备及储罐宜采用不锈钢材质,以符合食品卫生规定,选用国产设备或引进设备均可。 21311 活性肽生产设备:调浆罐,一级种子罐,二级种子罐,三级种子罐,发酵罐,螺杆浓浆泵,卧式螺旋卸料沉降离心机,高速立式分离机,离心泵,卧螺后储罐,调整立式分离后储罐,三效降膜蒸发器,保温储罐,立式压力喷雾干燥机组,离心泵,中间贮罐,自动包装 ? 62?加工技术张雁平:采用发酵法工业化生产大豆蛋白活性肽2003年 大豆通报 第3期

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

大豆的功能性与功能食品开发

大豆的功能性与功能食品开发 摘要:大豆中含有多种活性成分,具有非常高的营养价值及保健功能,其功能产品的开发前景广阔。我国以生产优质大豆而闻名中外,倘若将大豆中的有效成分充分利用在食品中,将有非常可观的社会和经济效益。 关键词:大豆;功能性食品;营养成分;保健功能 大豆的研究历史 中国饮食文化历史悠久,源远流长,是人类的宝贵财富。大豆是中国饮食生活的传统食品之一。富含天然的植物蛋白和不饱和脂肪酸,可制作多种美味食品,是家庭餐桌上不可缺少的菜肴。 大豆原产我国,古称“菠”,属于豆科,蝶形花科,大豆属,一年生。大豆在我国的种植十分普遍,北到黑龙江,南到海南岛,都有种植。目前,我国的大豆产量位于美国、巴西、阿根廷之后,居世界第四位。根据美国农业部《世界油料形势和展望》发表统计资料表明,近年来世界大豆生产有很大发展。 大豆营养丰富,含40%左右的蛋白质,20%左右的脂肪,20%左右的碳水化合物。1勺大豆所含的蛋白质相当于2勺牛肉或4.skg猪肉[2〕。随着科学技术的飞速发展,研究人员搞清了许多有益健康的食品成分,以及疾病与饮食的关系。使得人类可以通过饮食达到健康的目的。多年来,研究人员通过对大豆多种成分的研究分析,发现大豆不仅具备食品所必须的第一、第二功能,而且还具有多种满足特殊要求的特定功能。随着对大豆功能性成分越来越深人的研究,大豆的综合开发利用价值受到世界各国的关注。美国于1765年引进大豆,19世纪50年代开始大面积推广[31。现如今,大豆食品已成为美国发展最快的行业之一。 在我国,1994年“国家食品与营养咨询委员会”向国务院及有关部委提出关于我国城乡实施“大豆行动计划”的建议,得到国务院及各部委的大力支持,大豆开发及综合利用已在我国拉开了序幕。 健康是身体上、精神上和社会适应上的完好状态。人人追求健康,但做法各有不同。为了健康,有人不惜重金购买各色各样昂贵的保健食品,有人则对极其普通廉价的大豆情有独钟。其实,山不在高,有仙则灵;食不在贵,有豆则灵。大豆中含有丰富的营养物质,如蛋白质、不饱和脂肪酸、功能性低聚糖、丰富的矿物质和维生素等,对人体健康具有重要作用。 蛋白质是构成及修补细胞组织的主要原料,具有供给能量、调节生理机能、维持人体生长发育等功能,是大脑从事复杂智力活动的基本物质。100克大豆约含蛋白质35克,约为猪肉蛋白质含量的3倍、牛肉的2倍。大豆中的蛋白质不仅含量高,而且质量优:氨基酸齐全(含人体必须的8种氨基酸),并且各种氨基酸组成接近或高于联合国粮农组织和世界卫生组织建议的适宜人体的必需氨基酸需要量模式。大量科学研究已证实大豆蛋白具有保健功能,美国FDA授权在符合要求的食品标签上声称其保健功能:“与低饱和脂肪和低胆固醇饮食配合,每天食用25克大豆蛋白,可以有效降低患心血管病的风险。” 大豆的功能性成分研究 大豆的功能性成分研究广泛砰,习。脂肪中不饱和脂肪酸占85%,完全没有胆固醇,而且含有亚油酸、亚麻酸、花生四烯酸三种人体必需氨基酸。大豆磷脂具有良好的乳化特性,能阻止胆固醇在血管壁的沉积,并清除部分沉积物;能改善脂肪的吸收和利用,降低血粘度,改善血供养循环,补充磷脂,血色素含量增加,贫血症有所减少;能降低血清胆固醇,改善血循环;同时具有预防心血管疾病的功效。大豆低聚糖具有促进双歧杆菌的生长繁殖,改善便秘,不引起龋齿等功效。大豆异黄酮具有抗氧化、抗雌激素[6l和抗血管增生作用,所以

相关文档