文档库 最新最全的文档下载
当前位置:文档库 › (完整版)材料力学复习总结全解

(完整版)材料力学复习总结全解

(完整版)材料力学复习总结全解
(完整版)材料力学复习总结全解

《材料力学》第五版

刘鸿文 主编

第一章 绪论

一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能

力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压

一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A

σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=

注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max

max N F A σσ=≤

六、利用正应力强度条件可解决的三种问题:1.强度校核[],max

max N F A σσ=≤

一定要有结论 2.设计截面[],max

N F A σ≥ 3.确定许可荷载[],max N F A σ≤

七、线应变l l ε?=没有量纲、泊松比'εμε

=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA

?= 注意当杆件伸长时l ?为正,缩短时l ?为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l l

δ-?=??及断面收缩率1100A A A

?-?=??,工程上把5δ?≥?的材料称为塑性材料。 十、卸载定律及冷作硬化:课本第23页。对没有明显屈服极限的塑性材料,如

何来确定其屈服指标?见课本第24页。

十一、 重点内容:1.画轴力图;2.利用强度条件解决的三种问题;3.强度校核

之后一定要写出结论,满足强度要求还是不满足强度要求;4.利用胡克定律

N F l l EA

?=求杆的变形量:注意是伸长还是缩短。 典型例题及习题:例2.1 例2.5 习题2.1 2.12 2.18

第三章 扭转

一、如何根据功率和转速计算作用在轴上的外力偶矩,注意功率、转速和外力偶矩的单位。9549e P M n

= 二、扭矩及扭矩图:利用右手螺旋规则(见课本75页倒数第二段)判断的是扭

矩的正负号而不是外力偶矩的正负号,扭矩是内力而外力偶矩是外力 。

三、圆轴在扭转时横截面的切应力分布规律:习题3.2

四、圆轴在扭转时横截面上距圆心为ρ处的切应力的计算公式p

T I ρρτ= 五、对于实心圆轴和空心圆轴极惯性矩和抗扭截面系数的计算公式 实心圆:4

32p D I π= 3

16t D W π= 空心圆:()4

4132p D I πα=- ()3

4116t D W πα=- 其中d D

α= 六、轴在扭转时的切应力强度条件[]max max t

T W ττ=≤及解决的3种问题:强度校核(一定要有结论)、设计截面、确定许可荷载。

七、相距为l 的两截面间的相对扭转角p Tl GI ?=

,单位是rad ;单位长度扭转角'p T GI ?=

,单位是/rad m

八、圆轴在扭转时的刚度条件'

'max max 180p T GI ??π

??=?≤??(注意单位:给出的许用单位长度扭转角是度/米还是弧度/米)

九、切应力互等定理及剪切胡克定律:见课本78,79页

十、重点内容:1.画扭矩图;2.强度条件及刚度条件的校核,校核之后一定要

写出结论,满足要求还是不满足要求;3.极惯性矩和抗扭截面系数的计算公

式;4.利用强度条件和刚度条件来设计截面尺寸,最后要选尺寸大的那个。

典型例题及习题:例3.1 例3.4 习题3.1 3.2 3.8 3.13

第四章 弯曲内力

一、剪力和弯矩正负号的规定:课本117,118页

二、如何快速利用简便方法来计算任意截面上的剪力和弯矩:

横截面上的剪力在数值上等于左侧或右侧梁段上所有外力的代数和,对于

左侧梁段,向上的外力将产生正值的剪力,向下的外力将产生负值的剪力。对

于右侧梁段,向下的外力将产生正值的剪力,向上的外力将产生负值的剪力。

横截面上的弯矩在数值上等于左侧或右侧梁段上所有外力对该截面形心产

生的力矩的代数和。无论左侧梁段还是右侧梁段,向上的外力均产生正值的弯

矩,向下的外力均产生负值的弯矩;对于左侧梁段,顺时针方向的外力偶将产

生正值的弯矩,逆时针方向的外力偶将产生负值的弯矩。对于右侧梁段,逆时

针的外力偶将产生正值的弯矩,顺时针的外力偶将产生负值的弯矩。

三、利用写剪力方程和弯矩方程的方法来画剪力图和弯矩图

四、用剪力、弯矩、均布荷载三者间的微分关系来画剪力图和弯矩图,利用三者

间的微分关系也可以来检查画的图是否正确。

五、掌握上课时画在黑板上的表,准确判断当外力为不同情况时剪力图和弯矩图

的规律及突变规律。

六、剪力为零的位置弯矩有极值,要把极值弯矩求出来,可利用积分关系来求。

七、重点内容:画剪力图和弯矩图

典型例题及习题:做过的题目

第五章 弯曲应力

一、基本概念(见课本139页相关知识):纯弯曲、横力弯曲、中性层、中性轴

(实际是过形心的形心轴)

二、弯曲时横截面上距中性轴为y 处正应力的计算公式z

My I σ= 正应力正负号的判断:根据变形特征来判断,如果处于受拉部分则为拉应力,

如果处于受压部分则为压应力。

三、弯曲时横截面上正应力的分布规律图:见141页图5.4d 和147页图5.7c

四、正应力强度条件[]max max max max z z

M y M I W σσ==≤及解决的3种问题 五、矩形截面、实心圆及空心圆惯性矩z I 及抗弯截面系数z W 的计算公式 矩形截面:312z bh I = 26z bh W = 实心圆:4

64

z D I π= 332z D W π= 空心圆:()4

4164z D I πα=- ()3

4132z D W πα=- 其中d D

α= 六、矩形截面梁切应力的分布规律:2224S

z

F h y I τ??=- ???见150页图5.10 最大切应力:,max

max 1.5S F bh τ= 七、切应力的强度校核[]*max max max

S z z F S I b ττ=≤ *max z S 是中性轴以下部分截面对中性轴的静矩,b 是中性轴穿过的截面宽度

八、重点内容:利用正应力强度条件解决3种问题,切应力的强度校核

典型例题及习题:例5.3 例5.5 习题5.4 5.5 5.12 5.16 5.17

附录

一、静矩z A S ydA =? y A

S zdA =?,其量纲是长度的三次方。 二、形心: 1.不规则图形:_A z

ydA

S y A A ==? _y

A zdA

S z A A ==?

2.规则图形:__i

i i A y y A =∑∑ __i

i i A z z A =∑∑

三、静矩与形心的关系:课本374页

四、惯性矩2y A I z dA =?,2z A I y dA =?,极惯性矩2p A

I dA ρ=?,惯性矩和极惯性 矩之间的关系p y z I I I =+ ,各种常用图形惯性矩和极惯性矩的计算见第三

章和第五章有关公式。

五、惯性矩的平行移轴公式2y yc I I a A =+,2z zc I I b A =+,其中yc 轴和zc 轴是图

形的形心轴,a 是两平行轴y 轴和yc 轴之间的距离;b 是两平行轴z 轴和zc

轴之间的距离。

六、重点内容:1.静矩和形心的计算;2.静矩和形心的关系;3.各种常用图形

惯性矩和极惯性矩的计算;4.利用平行移轴公式计算不对称图形的惯性矩。

典型例题及习题:例I.2 例I.3 例I.6 习题I.9b

第六章 弯曲变形

一、衡量弯曲变形的两个指标是:挠度和转角(挠度以向上为正,向下为负;转

角以逆时针为正,顺时针为负)

二、挠曲线的近似微分方程是:()''EI M x ω=

三、转角方程:()'EI EI M x dx C θω==+?

挠曲线方程:()EI M x dxdx Cx D ω=++??

四、求积分常数时的边界条件及连续性条件是如何确定的?见课本180页图6.6

和图6.7

五、用叠加法求弯曲变形

六、重点内容: 衡量弯曲变形的两个指标、挠曲线的近似微分方程及边界条

件和连续性条件、叠加法的应用。

典型例题及习题:6.10 6.11 6.34 6.36

第七章 应力和应变分析 强度理论

一、正应力和切应力正负号的规定:正应力以拉伸为正,压缩为负;切应力对单

元体内一点产生的力矩顺时针为正,逆时针为负。α角是指从x 轴到截面的

外法线方向,逆时针为正,顺时针为负。

二、会画轴向拉压、扭转及弯曲时任一点处的应力状态,尤其是对弯曲的情况应

力状态比较复杂,见课本221页图7.8b

三、掌握主平面及主应力的概念,3个主应力的大小顺序:123σσσ≥≥

四、几个主要公式:1. 任意斜截面上的正应力及切应力计算公式

cos 2sin 222x y

x y

xy ασσσσσατα+-=+- sin 2cos 22x y

xy ασστατα-=+

2.最大正应力及最小正应力的计算公式 max min 2x y σσσσ+?=??max σ和min σ实际上是主应力。

3.最大切应力及最小切应力的计算公式

max min ττ?=??4.主平面的方位02tan 2xy

x y τασσ=--,可以求出相差为90度的两个角度0α;如

约定用x σ表示两个正应力中代数值较大的一个,即x y σσ≥,则两个角度0

α中,绝对值较小的一个确定max σ所在的平面。要求:能在单元体上画出主平

面的位置。

五、如何画应力圆?

六、应力圆圆周上的点和单元体上的面存在着一一对应的关系。见课本224页第

二段 七、广义胡克定律:()()()111x x y z y y z x z z x y E E E εσμσσεσμσσεσμσσ???=-+???????=-+???????=-+???? xy xy yz yz zx zx G G G τγτγτγ?=???=???=??

当单元体的六个面皆为主平面时,广义胡克定律的表达式见课本238页公式

7.20及公式d ,此时的线应变称为主应变。

八、强度理论及4个相当应力

第一强度理论:最大拉应力理论 11r σσ=

第二强度理论:最大伸长线应变理论 ()2123r σσμσσ=-+

第三强度理论:最大切应力理论 313r σσσ=-

第四强度理论:畸变能密度理论

4r σ= 其中第一、二强度理论适用于脆性材料,第三、四强度理论适用于塑性材料

要求记住四个强度理论的内容及各自的相当应力的表达式。

九、 重点内容:1.会画单元体的应力状态2.求任意斜截面上的正应力及切应

力3.由应力状态求主应力的大小、主平面的位置、在单元体上绘出主平面

的位置及主应力的方向、最大切应力。4.广义胡克定律的应用 5.利用强度

理论进行强度的校核

典型例题及习题:例7.3 例7.9 习题7.3 7.4 7.10 7.26 7.36

第八章 组合变形

一、轴向拉(压)和弯曲的组合变形

横截面上只有正应力:由轴向拉(压)产生的正应力和由弯曲产生的正应力

二、两相互垂直平面内的弯曲

横截面上只有正应力:由两个不同方向的弯矩产生的正应力

三、弯扭组合

横截面上既有正应力又有切应力,应该先画出单元体上的应力状态,根据

应力状态及上第七章的最大及最小正应力计算公式来计算出3个主应力,再代

入到第三及第四强度理论的相当应力的表达式

3r σ=

4r σ=1适用于弯扭组

合变形 2适用于轴向拉(压)与纯剪切的组合状态

3r z W σ=

4r z

W σ= 这两个公式的适用范围:1适用于弯扭组合变形 2适用于轴向拉(压)与纯剪切的组合状态3适用于圆截面杆,因

为用到了2z t W W =

四、解题思路:1先判断出是哪一种组合变形 2判断出组合变形后分别画出

内力图 3从内力图上来判断哪一个截面是危险截面 4找出危险截面后判

断出哪一个或哪一些点是危险点 5根据危险点做相应的计算

典型例题及习题:课堂上补充的题目,例8.1 习题8.12 8.13

第九章 压杆稳定

一、欧拉公式:()

22cr EI F l πμ= 或 22cr E πσλ=,其中惯性矩min I I =。注意当杆的约束形式不同时,长度因数μ的取值。见课本297页表9.1

二、柔度(或长细比):l

i μλ=无量纲,对于直径为d 实心圆截面,惯性半径4

d i = 三、欧拉公式的适用范围:22cr p E πσσλ=≤

或λ≥

令p λ=则p λλ≥的杆称为大柔度杆,即欧拉公式只适用于大柔度杆。

四、中柔度杆(对于塑性材料):当s p λλλ≤<时,称为中柔度杆。 其中

s s a b

σλ-=, 此时cr a b σλ=- ()cr cr F A A a b σλ==- 五、小柔度杆(对于塑性材料):当s λλ<时,称为小柔度杆,对于小柔度杆不

存在稳定性问题只有强度问题,所以按强度问题处理。 cr s σσ= cr cr s F A A σσ==

六、压杆的稳定性校核:cr cr st F n n F σσ

==≥时,满足稳定性要求,否则不满足稳定性要求。

七、压杆的临界应力总图:见课本302页图9.16

八、重点内容:1.根据不同柔度的杆(大柔度杆、中柔度杆和小柔度杆)来求相应的临界应力及临界力。2. 压杆的稳定性校核。3. 压杆的临界应力总图 典型例题及习题:例9.4 习题9.5 9.14 9.15

超静定问题

解题步骤1、选研究对象画受力图,列出静力学平衡方程2、列变形协调方程3、列物理方程

典型例题及习题:做过的题目

第十三章 能量法

一、应变能的计算:轴向拉压 22N F l V EA

ε= 或 ()22N l F x V dx EA ε=? 桁架 212n Ni i i i

i F l V E A ε==∑ 扭转 22p T l V GI ε= 或 ()22l p

T x V dx GI ε=? 纯弯曲 22M l V EI ε= 横力弯曲 ()22l M x V dx EI

ε=? 二、卡氏第二定理:梁或刚架 ()()i l i

M x M x dx EI F δ?=?? 桁架 1n Ni i Ni i i i i i F l F E A F δ=?=?∑

三、单位载荷法:

桁架 1n Ni Ni i i i i F F l E A =?=∑

梁或刚架 ()()l M x M x dx EI

?=? 四、重点内容:运用应变能、卡氏第二定理或单位载荷法求相应的位移或转角

典型例题及习题:例13.513.613.713.12习题13.213.313.6 13.913.14

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减 函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = (0,,a m n N * >∈,且1n >). 根式的性质 (1)当n a =;

2016高中数学诱导公式全集总结

2016高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα

cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-s inα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如:

材料力学论文学习心得

《集中力作用下深梁弯剪耦合变形应力计算方法》学习心得 背景 深梁是工程中常见的的结构,其跨高比一般介于3~8之间。当梁上作用集中力时,既有弯矩又有剪力即横力弯曲,出现弯剪耦合现象。由于剪力的存在,梁的横截面上会出现翘曲现象,并且与中性层平行的截面上出现挤压应力。 跨高比小于5的梁在应用细长梁的纯弯曲理论及假设计算时,误差会随跨高比的减小而迅速增大。对这种深梁而言,细长梁理论就不适用了。深梁应力计算主要影响因素有截面形状、支座约束、跨高比,究其原因是集中力作用下发生弯曲变形时,平面假设和纵向纤维相互不挤压的假设与实际相差太大。 原理 文章只研究两端简支和两端固支时,集中载荷作用在跨中时的横力弯曲的问题,以矩形截面为例,然后推广至工字形截面。 模型简化:在深梁跨中施加集中力F ;当深梁为简支时,两端只有集中反力R 的作用;当深梁为固支时,梁两端受到剪力和弯矩的共同作用。当深梁受有集中力时,由于跨度小,梁高大,其跨中截面的挠度较小。故以力的作用点为圆心的区域内按一半平面考虑应力分布。根据弹性力学半平面体在边界上受集中力作用时,应力计算方法得出深梁内的应力分布。由弹性力学半平面模型可得到图1所示载荷下应力表达式。 ?x =? 2F πx 2y (x 2+y 2)2 (1) 在梁两端集中反力作用下,梁内也会产生应力场,按照叠加原理,梁内应力由这三个力产生的应力场叠加而得。为方便将这三个应力叠加在一起,文章采用了坐标变换, 变换方式坐标轴以图2为基准。坐标变换公式如下: 对于集中力F 产生的应力场,有如下坐标变换:

x F=x?l 2 y F=y?? 2 (2) 对于集中反力R1产生的应力场,有如下坐标变换: x R 1 =?x y R 1=?y+? 2 (3) 对于集中反力R2产生的应力场,有如下坐标变换:x R 2 =l?x y R 2=?y+? 2 (4) 将(2)、(3)、(4)式代入到(1)中,由平衡原理知R1=R2=F 2 ,可得到叠加后应力表达式: ?x=2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (5) 梁在集中力作用下,不仅引起剪力,还会产生弯矩,因此需要考虑弯矩剪力共同作用产生的应力。再将材料力学梁受弯矩作用下的应力公式代入叠加到(5)式中,可得弯剪共同作用下的应力表达式: ?x=My I + 2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (6) 分析 对(6)式所得结果进行无量纲化分析,定义剪跨比η=x l (0<η<1),跨高 比α=l ?,和y值的无量纲值ξ=y ?/2 。将其代入(6)得到 ?x=My I +F 2π? {2α 2 η+1 2 2 (ξ+1) α2 η+1 2 +1ξ+12 2 ?α2η2?ξ+1 α2η2+1 4 ?ξ+12 2 ?α2(1?η)2?ξ+1 α21?η2+1 4 ?ξ+12 2 }(7) 再将大括号中的表达式用λ表达得到?x=My I +Fλ 2π? 。为材料力学解加一个修 正项。为比较材料力学和修正项的比例又引入无量纲翘曲应力λ?=Fλ 2π? I My 。得到 无量纲弯曲正应力表达式:

材料力学公式汇总

材料力学常用公式 1.外力偶矩 计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关 系式 3.轴向拉压杆横截面上正应力的计 算公式(杆件横截面轴力 F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴 正方向逆时针转至外法线的方位 角为正) 5. 6.纵向变形和横向变形(拉伸前试 样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1) 7. 8.纵向线应变和横向线应变 9.10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形计 算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性材 料,塑性材料 16.延伸率 17.截面收缩率 18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E、泊松比和切变 模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆

21.(b)空心 圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到 圆心距离r) 23.圆截面周边各点处最大切应力计 算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆 26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切应 力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的扭 矩不同或各段的直径不同(如阶 梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆性 材料 31.扭转圆轴的刚度条件? 或 32.受内压圆筒形薄壁容器横截面和 纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的一 般公式 , 34.平面应力状态的三个主应力 ,

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

高中数学诱导公式全集总结

2019高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα

孙训方版 材料力学公式总结大全

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为 极限应力理想情形。 塑性材料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横

截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??== l p l p dx GI T dx GI T ?;等直杆:p GI Tl =? 圆轴扭转时的刚度条件: p GI T dx d == '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系 )() (x q dx x dQ =; ()()x Q dx x dM =;()()()x q dx x dQ dx x M d ==2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。 c )在梁的某一截面。 ()()0==x Q dx x dM ,剪力等于零,弯矩有一最大值或最小值。 d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

诱导公式总结大全

诱导公式1 诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 常用的诱导公式 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 同角三角函数的基本关系式 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α)

材料力学定律公式汇总

材料力学重点及其公式 材料力学的任务变形固体的基本假设外力分类:(1)强度要求;(2)刚度要求;(3)稳定性要求。 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2 )在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力:P Hm —E 兰正应力、切应力。 应变。 杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转; 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷变化的载荷为动 载荷。 失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限 关系为:。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即为弹性模量。将应力与应变的表达式带入得:l 皿 EA 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部 未知力。 圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设d_ 。物理关系——胡克定律 d G G 。力学关系T °d_dx dA 2G d G2 dA圆轴扭转时的应力: dx A A dx dx A max T R T;圆轴扭转的强度条件: I p W t T max W t [],可以进行强度校核、截面设计和确 变形与应变:线应变、切 (4)弯曲;(5)组合变形。动载荷: 载荷和速度随时间急剧 s时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: n3 b n b ,强度条件: max max ,等截面杆max A 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为: l l1l,沿轴线方向的应变和横截面上 的应力分别为: l N P 站b 。横向应变为: l 'A A b E ,这就是胡克定律。E 色-,横向应变与轴向应变的b

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学学习心得

材料力学学习体会 摘要:本文对我在学习材料力学中的心得体会作了总结 关键词:力学性能,生活,体会 引言:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。这学期,从第一章的绪论到附录一的平面图形的几何性质,使我更深入的了解了材料力学,学会了如何应用材料力学解决生活总的实际问题,以及对材料力学有了更深刻的体会。 一:综述 在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。 包括两大部分:一部分是材料的力学性能,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: ①线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形,可先分别求出各外力单独作用下杆件的变形,然后将这些变形叠加,从而得到最终结果。 ②几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 ③物理非线性问题。在这类问题中,材料内的变形和内力之间不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 二:生活中的材料力学 生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的形变属于扭转变形。

相关文档